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Abstract

To operate power generation and distribution industries efficiently and economically,

their management must deal with a number of challenging problems. Of them, dynamic

economic dispatch (DED) and bidding problems are two important topics. The purpose

of a DED problem is to schedule the available generators to satisfy the daily load de-

mands at minimum cost while that of a bidding one is to maximize the individual profit

of an energy market by determining the optimal action of each participant.

Over the last few decades, although these problems have been extensively studied,

they mainly dealt with the thermal power plants while ignoring the renewable sources

and their uncertainties. This thesis considers the mix of different thermal, hydro, solar

and wind generators with their uncertainties. For solving these problems, although many

solution approaches have been developed, the evolutionary algorithms (EAs) achieve the

best results. However, no single EA performs consistently over a wide range of these

problems. Also, because of their dimensionality, non-convexity, multi-modality and large

number of equality constraints, current EAs are inefficient for solving them. Moreover,

most existing methods for solving a bidding problem aim to find a single solution whereas

detecting multiple ones is more practical and challenging. In addition, the uncertainties

of renewable sources pose a new challenge for the electricity generation and distribution

sectors.

In this thesis, several intelligent approaches for efficiently solving various DED and

bidding problems are developed. Firstly, a self-adaptive differential evolution (DE) and

genetic algorithm (GA) for solving thermal-based DED problems are proposed. To en-

hance their performances, a heuristic technique for repairing infeasible individuals while

solving a DED problem is implemented. Then, to solve an uncertain DED problem, a

scenario-based DED model that periodically implements its resources on successive days

with uncertain wind speeds and load demands is proposed. A set of scenarios is gen-

erated based on realistic data to characterize the random natures of load demands and

wind forecasting errors. In order to solve uncertain dispatch problems, the self-adaptive

DE and GA, with a new heuristic are used. The heuristic enhances the convergence rate

xv
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by ensuring feasible load allocations for a given hour based on the uncertain behaviors

of the wind speed and load demand. Then, a general EA framework, called GA-DE,

which automatically configures the better EA from the two considered during the evo-

lutionary process for solving a wide range of DED problems, is proposed. In it, the GA

and self-adaptive DE are performed under on two sub-populations, with the number

of individuals in each dynamically varied in every generation based on the algorithms’

performances during previous generations. Finally, the bidding problem of an energy

market is formulated as a bi-level optimization one in which, in the lower level, the com-

munity’s social welfare is maximized by solving a dispatch problem while, in the upper

level, the profits of individual bidders are maximized. In this problem, instead of using a

set of discrete bidding strategies, as is usual, the continuous functions are considered as

strategies. To solve it, a co-evolutionary (CE) approach that detects multiple solutions

(i.e., multiple Nash equilibria) in a single run is implemented.

The effectiveness of all the proposed approaches are evaluated by solving a number

of bidding and DED problems considering the uncertainties of renewable generators

and forecasted load demands. The simulation results are compared with each other

and those from state-of-the-art algorithms. The major findings of this thesis can be

summarized as: (1) the proposed methods obtain much better solutions than the state-

of-the-art algorithms, with the heuristic greatly improving their quality; (2) the self-

adaptive mechanism in the DE leads to much better solutions and savings in time;

(3) a real-coded GA with a non-uniform mutation operator performs much better than

ones with other mutation operators while solving a DED problem; (4) the heuristic for

uncertain DED problems facilitates the scheduling of renewable generators in a periodic

order on successive days; (5) for a wide range of problems, the proposed framework

(GA-DE) obtains higher-quality solutions than those from the single EA developed and

the state-of-the-art algorithms; (6) for a given stopping criterion, GA-DE performs best

followed by DE and GA; (7) for a bidding problem, the proposed CE approach obtains

a higher-quality solution than those from traditional methods; (8) the CE approach

obtains the desired multiple solutions in a single run; and (9) the computational time of

the proposed CE method is 77% less than those of traditional ones.
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Chapter 1

Introduction

This chapter presents a brief background to the research conducted in this thesis. It

describes the importance of solving various power system optimization problems in the

electricity generation and distribution sectors, states the research objectives and provides

the contributions to scientific knowledge. The organization of this thesis is also provided.

1.1 Background

The electricity industry is the largest industrial sector in the world [1]. It is a vast system

for interconnecting many generators, transmission networks and consumers. Its secure

and economical operation for transferring electricity to end-consumers with a remarkable

degree of reliability is a challenging task. The major concern of an energy market is to

guarantee adequate generation to meet variable load demands at different time periods,

not only under a system’s normal operating conditions but also after it is subjected to

a disturbance in any of its interconnected systems. As the operating costs of different

generating units vary significantly, it is a challenging problem to schedule the right mix of

generation from a number of units to serve variable load demands at minimum cost while

satisfying the numerous constraints emanating from different directions. This scheduling

problem is known as a dynamic economic dispatch (DED) problem that determines the

amount of generation required from each generator to meet hourly load demands for a

cycle of T hours (usually 24 hours) [2]. Its objective is to minimize the overall operating

cost of the participating generators by optimally allocating the load demands to those

generators.

Depending on the generators involved, a DED problem can be thermal, hydro-

thermal, wind-thermal or solar-thermal. Thermal-based DED problems are very com-

mon as most of the costs of electricity production costs involve the operation of ther-

mal generators. As the use of fossil fuels in electricity generation has been increasing

1
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environmental pollution, the growth and development of renewable energy generation

systems has been fostered. Therefore, mixed DED problems, such as hydro-thermal,

solar-thermal and wind-thermal ones, are now widely used in practice. Although the

operating costs and gas emissions of renewable sources are negligible, their uncertain

natures present a new challenge for their economical operation in the power generation

industry as their availability fluctuates greatly which makes it difficult to determine their

exact output power in advance. Therefore, a DED is a challenging optimization problem

for scheduling the right mix of generation from a number of renewable and thermal units

to serve a daily load demand at minimum cost [3].

Sometimes, the minimization of the production cost is not adequate for an energy

market as it requires the economic proficiency is to be maximized. To achieve this, many

countries around the world have changed their electricity markets from monopolies to

oligopolies to increase competition with the aim of improving their overall economic

efficiency by maximizing the individual profits associated with a market. In an oligopoly

market, all participants, such as generating companies (GENCOs) and consumers (e.g.,

distributor sectors and large industries) maximize their profits through a bidding process.

In it, they simultaneously submit their bids to an independent system operator (ISO)

which determines the market price and power production of each by solving a dispatch

problem [4]. To ensure its maximum profit, each bidder optimizes its bidding behavior

with respect to those of its competitors and power system constraints. An excessively

high bid from a bidder may not be selected by an ISO while a lower one may not be able

to cover the bidder’s full costs. Therefore, selecting an optimal bid for a bidder is crucial

and is known as a bidding problem in an energy market. A common solution of this

problem is to determine a Nash equilibrium (NE) that ensures the maximum profits of

each participant [5]. A NE is based on the strategies of all bidders in which one cannot

increase its payoff by changing its own strategy while the others’ strategies remain the

same [6].

Both DED and bidding problems have been studied extensively and solved using

different optimization techniques. They are represented as constrained nonlinear opti-

mization problems. These problems involve numerous numbers of decision variables, and

constraints including linear and nonlinear with equality and inequality types constraints.
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The size of the problem increases significantly with the number of power sources. In ad-

dition, the cost function of large fossil fuel based generator is nonlinear, non-convex and

multimodal characteristics [7]. Therefore, solving these problems are very challenging.

However, once they are solved efficiently, significant benefits could be provided to the

society; for example, decision for operating the most effective generation units first, then

the inferior ones later, that leads to lower fuel usage as well as reduction in greenhouse

gas emissions. The economic benefits of solving these problems are also remarkable; for

example, a study in the United States’ Department of Energy demonstrated that efficient

algorithms for solving DED problems could deliver savings ranging from $30 million to

more than $900 million [8] and, for bidding problems, increase average revenue by up to

60% over that obtained from conventional marketing systems [9].

During the last few decades, various optimization methods, involving both conven-

tional optimization (CO) and computational intelligence (CI) techniques, have been de-

veloped to solve different DED and bidding problems [10]. Fig. 1.1 presents an example

of current research regarding dispatch problems which shows that the number of articles

published each year has significantly increased between 2005 and 2016 (from data as on

29 August, 2016) according to the database accessed in Scopus (https://www.scopus.com/)

with the search field set to ‘economic dispatch’ in ‘Article Title’. As the data is recorded

for those already published but not released in the press, the number of articles in 2016

is slightly less than those in 2013 and 2014.

For solving the DED and bidding problems, although CO methods are usually com-

putationally efficient, their main drawback is that some of their mathematical proper-

ties, such as convexity, continuity and differentiability, must be satisfied. To do this,

researchers and practitioners simplify the actual optimization problems by considering

several assumptions, such as the cost function is considered as quadratic, nonlinear

power transmission losses are ignored, etc. [3]. On the other hand, CI algorithms are

simple in concept, do not require specific mathematical properties to be satisfied, are

robust to dynamic changes, can handle evaluating solutions in parallel, have the capabil-

ity to self-organize and have broader practical applications [11]. During the last decade,

many CI algorithms have been widely used to solve different types of DED and bidding
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Fig. 1.1: Number of articles related to DED problems published from 2005 to 2016

problems. Despite numerous research studies, there is still a great deal of room for im-

proving the approaches to solving these problems; for example, as most DED problems

are solved without considering the uncertainties of renewable sources, their solutions to

realistic DED problems are inferior [12]. Also, most existing algorithms find it difficult

to meet the large number of equality constraints in these problems which, sometimes,

cannot converge to the global optimal and prematurely converge when dealing with a

multi-modal objective function [3]. In addition, there is no well-accepted single algo-

rithm that can produce good-quality solutions for a wide range of DED and bidding

problems, that is, one algorithm may be very efficient for one but perform poorly for

another [3]. Moreover, most current methods for solving a bidding problem aim to find

a single solution whereas detecting multiple ones is more practical but challenging [13].

Therefore, designing an efficient approach which could solve a wide range of DED and

bidding problems would be an interesting and worthwhile contribution to both the power

system and computer science fields.
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1.2 Problem Description

The efficient operation of an electricity market is a challenging task with two important

optimization problems, DED and bidding ones, greatly influencing its economic profi-

ciency. The objective of a DED problem is to minimize the overall operating cost of the

operated units and it is to maximize the economic profits of the market in a bidding

problem subject to the load balance, ramp limits and generation capacity constraints.

As previously mentioned, a DED problem can be one of many types depending on

the generators considered in its planning; for example, if it is used to schedule thermal

generators for a number of periods, it is known as a thermal-based DED problem. Its

objective is to minimize the fuel cost of the operated thermal generators while satisfying

the hourly load demand, capacity, transmission loss and ramp constraints. The decision

variables are the output power to be generated from each thermal generator in each time

interval [14].

A hydro-thermal DED problem considers both thermal and hydro generators. It

is a constrained optimization problem with the objective to minimize the fuel cost of

the thermal generators, by maximizing the use of hydro power, while satisfying several

hydraulic and thermal constraints [15]. The constraints are the load balance, water

reservoir balance, capacity limits, ramp limits, water discharge rates, and initial and

final amounts of water availability. The decision variables are the electricity output

generated from the thermal generators and water flow rate from the hydraulic reservoirs.

Both solar-thermal and wind-thermal DED problems are solved under uncertainty

due to the stochastic outputs from wind and solar units [16]. The objective is to minimize

the fuel cost of the committed thermal generators by fully utilizing the available solar

and wind powers in the planning horizon. These renewable sources offer a number

of additional constraints such as wind speed for wind sources and solar radiation for

solar sources along with traditional technical constraints. The decision variables are

the outputs from the thermal, wind and solar generators. These problems are usually

represented as mixed-integer non-linear optimization models in which, being continuous

for the thermal generators and integers (binary) for the renewable ones, when a renewable

unit is scheduled, the available electricity is fully utilized.
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To reduce greenhouse gas emissions in electricity generation, sometimes, the DED

problem is formulated as a bi-objective dynamic economic and emission dispatch (DEED)

one that simultaneously minimizes both the operating costs and gas emissions. However,

its computational process is even more complex than that of a single objective DED prob-

lem because both objectives are non-linear, multi-modal and non-smooth characteristics

[17].

The bidding problem is another difficult problem that is usually formulated as a bi-

level optimization problem in which, in the lower level, the community’s social welfare

(CSW) is maximized by solving a dispatch problem while, in the upper level, the profits

of individual bidders are maximized. The decision variables in the lower level are the

usual variables of a dispatch problem, that is, the output from the operated generators,

while those in the upper level are the bidding parameters of the bidders. If the bidder is

a GENCO, the variables are the per unit generating cost of the generators and per unit

electricity price for consumers. Each decision entity independently optimizes its own

objective but is affected by the actions of others in a hierarchy. Therefore, this bi-level

problem is a challenging optimization one because it contains a nested optimization task

within the constraints of another optimization problem. Also, it becomes more complex

in the presence of non-standard mathematical properties, such as multi-modality, non-

convexity and non-differentially. This problem is inherently more difficult to solve than

traditional optimization problems, as pointed out in [18].

1.3 Motivation and Objectives

As discussed in the background section, in spite of having numerous successful research

works for the DED and bidding problems, there still remain many interesting and chal-

lenging issues for exploration. Most of the earlier works dealt with the fossil fuel based

power plants ignoring renewable sources. But, in the current scenario, all power system

scheduling involves renewable sources, such as solar or wind sources. Besides that, the

uncertainty of availability of those sources, sudden demand change, unexpected weather

change or even outage of any traditional sources, required a reliable scheduling approach

such as a real time based power system scheduling. For solving such DED and bidding
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problems, although existing CI methods, such as evolutionary algorithms (EAs), per-

form best, no single algorithm performs consistently over a wide range of these problems.

Also, they are inefficient when solving a DED problem due to its large number of equal-

ity constraints, and multi-modal and non-convex objective functions. As most current

methods solve the bidding problem sequentially (bidders bid one after the other), they

may take too long to identify a solution in the presence of many bidders. Also, they

detect a single NE from a number of equilibria which is not adequate for a player to

make a decision [19]. Motivated by those obvious facts, the overall goal in this thesis

is to develop a reliable and dynamic approach based on EAs for solving a wide range

of DED and bidding problems that involves both traditional and uncertain renewable

sources.

To achieve the primary objective of this study, the following sub-objectives are

considered:

• Reformulating the DED and bidding problems by considering real-life constraints

such as power loss, day-ahead ramp limits, and uncertainties of the renewable

sources and forecasted load demands .

• Analyzing the performances of different EAs for solving different DED, DEED and

bidding problems;

• Developing evolutionary computation based algorithms that would be empowered

with a new repairing technique for efficiently solving thermal-based DED problems;

• Extending the proposed algorithms to solve renewable-based DED problems with

uncertain renewable energy generations and variable load demands;

• Proposing an evolutionary framework based on multiple EAs for solving both de-

terministic and uncertain DED problems;

• Developing a new co-evolutionary (CE) technique for solving game-based bidding

problems;

• Extending the CE method to find multiple solutions (Nash equilibria) to the bid-

ding problems;
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• Testing all the proposed methods by solving appropriate test problems for DED,

uncertain DED, bi-objective DEED and bidding problems; and

• Comparing the performances of the algorithms with those of each other and state-

of-the-art algorithms.

1.4 Contributions to Scientific Knowledge

This thesis develops a number of intelligent algorithms to solve various power system

optimization problems and bidding problem in the context of marketing electricity. To

accomplish it, several scientific contributions to the literature in the areas of power

systems, optimization, and evolutionary computation are made, as discuss below.

• EAs for thermal-DED problems: two EAs based on the algorithms: (i) self-

adaptive DE and (ii) GA, are developed. In their designs, a new heuristic technique

is introduced to guide infeasible solutions towards the feasible space. Moreover, a

constraint-handling mechanism, a dynamic relaxation for equality constraints and

a diversity mechanism are applied to improve the performances of the algorithms.

The effectiveness of the proposed approaches is demonstrated on a number of DED

problems for a cycle of 24 hours. Their simulation results are compared with those

of each other and state-of-the-art algorithms which reveals that they have merit

in terms of the quality and reliability of their solutions.

• EAs for wind-thermal DED problems: for the continuous operation of vari-

able wind generators in a periodic order on successive days, the traditional mathe-

matical formulation of an uncertain DED model is reformulated as a scenario-based

DED one. To avoid any unwanted electricity shortfall due to a sudden disruption

of the wind generators and an increase in load demands over those forecast, a few

constraints are incorporated in the model. Two new solution techniques based

on a (i) self-adaptive DE and (ii) GA, with a heuristic technique, are developed.

They schedule the generators based on the scenarios of wind speeds and load de-

mands over a one-week period those generated using a Gaussian distribution with

means and standard deviations found in historical data. In this process, as the
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algorithms consider the scenarios of the operating and forthcoming days, the com-

mitted generators are scheduled for a day in such a way that they can also satisfy

uncertain load demands on subsequent days. The heuristic technique enhances the

convergence rate of the algorithms by ensuring feasible load allocations for a given

hour under the variable wind speeds and load demands. The proposed methods

are tested on two uncertain wind-thermal DED problems, with the simulation re-

sults demonstrating their feasibility and effectiveness in terms of solution quality

compared with those of other optimization methods in the literature.

• An evolutionary framework for DED problems: to solve a wide range of

single- and bi-objective DED problems, such as thermal, hydro-thermal, solar-

thermal and wind-thermal, considering their uncertainties, a general evolutionary

framework which automatically configures the better EA from the two considered

(i.e., GA and DE) during the evolutionary process is proposed. The proposed

algorithm (GA-DE) begins with a single initial population in which half the in-

dividuals are evolved by GA and the rest by DE. In each generation, the success

rate (SUR) of each EA is calculated based on its success in generating better off-

spring than its parents. Then, the number of individuals evolved by each EA is

updated for the next generation. This process is continued for a predefined num-

ber of generations (Ngc), with the better-performing algorithm selected to evolve

the entire population for subsequent Ngc generations. Then, both the DE and GA

are run in parallel in the next cycle and the procedure repeated until an overall

stopping criterion is met. Moreover, self-adaptive mutations and crossover mech-

anisms are used in DE to automatically configure the best control parameters in

each generation. The convergence rate of the proposed algorithm is further im-

proved by including a heuristic which ensures feasible load allocations for an entire

operational cycle for DED and DEED problems. The results obtained by the pro-

posed approach are compared with those from recently published state-of-the-art

algorithms. Also, the effects of different components on their performances are

analyzed and demonstrated that the proposed GA-DE method outperforms those

of all the other algorithms with which they are compared.
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• Co-evolutionary approaches for bidding problems: to maximize the prof-

its of participants in an energy market, a bidding problem is represented as a

non-cooperative game in which the bidding strategies are considered the contin-

uous functions of the bidders instead of a set of known discrete strategies, as is

usual. In this model, both GENCOs and consumers act as independent players

that maximize their own profits considering the interactions of their rivals. To

solve this complex problem, two CE approaches based on (i) a real-coded GA and

(ii) self-adaptive DE are designed. In both, each bidder’s strategies are evolved in

a sub-population with information exchanged among the sub-populations to find

the overall best solutions. As the CE algorithms simultaneously determine the bid-

ding actions using N−sub-populations for N−players, the computational time is

significantly reduced. The performances of these CE approaches for solving several

well-known benchmark problems are compared with those of two conventional it-

erative ones and results from the literature. The effects of different components on

their performances are analyzed and it is found that these CE methods outperform

all the others with which they are compared.

• Enhanced co-evolutionary algorithms to determine multiple solutions

for the bidding problems: the CE framework is further extended to determine

multiple solutions, i.e., multiple NEs in a single run for the competitive energy mar-

ket. To achieve this, N sub-populations for N competitive players are considered.

Each sub-population contains each player’s actions which are updated by either

a self-adaptive DE or GA operator during the optimization process. The payoff

for the individuals of a player (sub-population) is evaluated considering the best

actions of the other players determined using a new ranking technique called Nash

non-dominated sorting (NNDS) driven from a well-known non-dominated sorting

algorithm [20]. Two propositions that are proven validate that the best solutions

obtained from the NNDS are the NEs. The performances of the proposed CE al-

gorithms for solving four standard test functions and three well-known real-world

energy markets are compared with those of two conventional ones.
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1.5 Organization of Thesis

This dissertation has seven chapters and is organized as follows.

• Chapter 1: Introduction

• Chapter 2: Background Study and Literature Review

• Chapter 3: EAs for Thermal-DED Problems

• Chapter 4: EAs for Renewable Energy based DED Problems

• Chapter 5: Evolutionary Framework for DED Problems

• Chapter 6: EAs for Bidding Problems in Energy Market

• Chapter 7: Conclusions and Future Research

Chapter 1 presents an introduction to this thesis which includes its background,

problem description, motivations and research objectives, scientific contributions to the

literature and organization.

Chapter 2 provides a comprehensive review of the literature on the topics consid-

ered in this thesis. Firstly, it describes different power system optimization problems,

including DED and bidding ones, and then presents various solution approaches for

them.

Chapter 3 discusses the importance of solving a thermal-based DED problem in

electricity generation, describes the problem and its mathematical formulation, and

presents an overview of existing solution approaches. Then, after stating the motivation

for developing new algorithms, it presents two new algorithms, a self-adaptive DE and

GA, with a new heuristic technique. Finally, details of the experimental study and

outcomes are provided.

In Chapter 4, the importance of solving renewable-based wind-thermal DED prob-

lems and the difficulties of their continuous operation due to the uncertainties of the wind

generator’s output are discussed. Then, the problem description and its mathematical
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formulation, and an overview of existing solution approaches are provided. Subsequently,

the proposed algorithms for determining a periodic scheduling of wind and thermal gen-

erators on successive days are presented. Finally, details of the experimental study and

its outcomes are highlighted.

Chapter 5 presents the importance of solving different types of DED and DEED

problems, such as thermal, hydro-thermal, wind-thermal and solar-thermal, and their

uncertainties in power system operations. Then, the descriptions and mathematical

formulations of these problems are provided. Subsequently, an overview of existing

solution approaches, the motivation for developing a new algorithm to solve a wide range

of DED and DEED problems, the proposed evolutionary framework, and experimental

results and outcomes are presented.

In Chapter 6, the significance of a bidding problem in an energy market is dis-

cussed. Then, a bidding problem, its mathematical formulation and an overview of

existing solution approaches with their drawbacks are provided. Subsequently, two CE

solution approaches for this problem, one based on a GA and the other DE, and their

experimental results, parametric analyses and outcomes are presented.

Finally, Chapter 7 discusses the conclusions drawn from the research conducted for

this thesis, provides a summary of its findings, presents several of its technical contribu-

tions to the literature and recommends some possible directions for future research.



Chapter 2

Background Study and Literature

Review

This chapter provides an overview of the fundamentals of the topics considered in this

thesis. It firstly describes various power system optimization problems, including dis-

patch and bidding ones, and then conventional optimization (CO) and computational

intelligence (CI) techniques for solving them.

2.1 Energy Market

The energy market is one of the largest industrial systems created by humans. It consists

of three major sectors: (i) generation; (ii) transmission; and (iii) distribution. In the

generation sector, generator companies (GENCOs) produce an optimal level of electricity

from each generator to meet the daily load demands while minimizing the total operating

cost. The second sector refers to the responsibility to carry that electricity from its place

of origin to those of consumption using transmission lines (TLs). Finally, distributors

distribute the electricity to end-users safely, securely and economically [21].

In recent years, energy markets around the world have become a vertical marketing

system in which generation, transmission and distribution companies work together in

a unified manner [22]. One of the primary objectives of all three sectors is to reduce

operational costs and increase overall profits. To achieve this, an energy market’s op-

erator often solves different power system optimization problems (PSOPs), with more

effective solutions obtaining greater profits. Of various PSOPs, economic dispatch (ED)

and bidding problems are significant and challenging for an energy market [3]. The

former is used in the generation sector to determine the economic scheduling of different

power plants to minimize their total production cost while satisfying their numbers of

technical and environmental constraints [23]. The bidding problem is relatively new

13
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and used in a deregulated energy market in which the participants, such as GENCOs

and consumers, compete and determine their best bidding actions for maximizing their

own profits compared with those of others. However, proper competition among par-

ticipants is a challenging task, usually formulated as a ‘bidding problem’ which aims to

optimize the profit of each bidder in an energy market by satisfying its technical and

social constraints [24].

In the following sections, different ED and bidding problems of an energy market

and their challenges are discussed.

2.2 ED Problems

As electrical power generation is a complicated process, there has been significant interest

within the research community in managing it efficiently to ensure affordable and reliable

electricity services to end-consumers at a minimum cost. In practice, there are many

types of electric power generators, such as thermal, gas turbine, diesel engine, hydro,

tidal, solar and wind. Their per unit generation costs differ significantly, for example,

the operating cost of a hydro plant is low compared with that of a thermal one as water is

regarded as a renewable resource. Also, as generators are not at the same distance from

the load center, their wheeling costs vary. As the demand for electricity is much greater

than the amount a plant with a low operating cost can produce, it is necessary to also run

some other costly and inferior options, such as thermal plants, from a distance. Since

generators are interconnected in a national grid and their total generation capacities

under normal operating conditions are greater than actual load demands with losses, it

is necessary to mix them correctly so that there is an overall minimum cost. To achieve

this, the two optimization problems of unit commitment (UC) and ED are performed

by a power system operator. A UC problem, which precedes an ED one, determines a

generators’ on/off status for certain time periods while an ED one establishes the actual

generations from each unit operated in each interval which minimizes the production

cost as it assumes that the regulated units are predetermined by the solution to the UC

problem [25]. The simple formulations of both problems are the same except that the
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decision variables of a UC one are discrete (‘1’ and ‘0’ for on and off, respectively) and

continuous for an ED one [26]. A simple representation of an ED problem is as follows.

Minimize: FCi =
N∑
i=1

Ci (2.1)

Subject to:
N∑
i=1

Pi = PD + Ploss (2.2)

Ploss =
N∑
i=1

N∑
j=1

PiBijPj +
N∑
i=1

B0iPi +B00 (2.3)

Pmini ≤ Pi ≤ Pmaxi i ∈ N (2.4)

where N is the number of operating generators, PD the load demand, Ploss the wheel-

ing transmission loss, and B and B0 its coefficients, Pi the optimal generation of the

ith generator, with its minimum and maximum generation limits of Pmini and Pmaxi ,

respectively, and Ci the cost function of the ith generator that is primarily represented

as the quadratic function:

Ci = ai + biPi + ciP
2
i i ∈ N (2.5)

where ai, bi and ci are the cost coefficients of the ith generator, and their units dollars

($) per hour (h), $ per megawatt hour (MWh) and $ per MW 2h, respectively.

This simple formulation assumes that the cost function is quadratic while ignoring

the valve point effect (VPE) and prohibited operating zones of a thermal generator with

a multiple fuel option [23]. However, due to this assumption, the solutions obtained from

an approximated formulation may result in a monetary loss of up to millions of dollars

per year [27]. In real life, a large steam generator has a multi-fuel option, with some

ripple appearing in the cost function while the steam is admitted through a valve, which

is known as the VPE [28]. As a result, the cost function of the optimization problem

develops non-smooth, non-convex and multi-modal characteristics, as shown in Fig. 2.1
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Fig. 2.1: Cost function with and without VPE

[29, 30]. The non-convex cost function is obtained by accumulating a rectified sine wave

to the conventional quadratic function of Eqn. (2.1) as [30]:

Ci = ai + biPi + ciP
2
i +

∣∣∣di sin
{
ei
(
Pmin
i − Pi

)}∣∣∣ i ∈ N (2.6)

where di($/h) and ei(rad/MW ) are the valve point coefficients of the ith thermal unit.

2.3 Dynamic ED

Previously, the dispatch problem was formulated as a static ED (SED) one assuming that

the system was scheduled to serve a particular load level for an hour [2, 31]. Although

such scheduling may be beneficial for a particular hour, it may not work for the next

one (or the next few) depending on demand because the generation from a unit may

not change significantly from one operating hour to the next due to ramp limits. The

ramp is defined as the rate of change in the output from a plant over time and is usually

expressed in MW/h [3]; for example, in Fig. 2.2, if a unit generates P MW in the tth

hour, and its upward and downward ramp limits are UR and DR, respectively, in the

next (t+ 1)th hour, it can produce maximum and minimum of (P +UR) and (P −DR)
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Fig. 2.3: Typical electricity demand in NSW, Australia, on 4 September 2016 [32]

MW, respectively. Therefore, for large variations in demand, such as are shown in Fig.

2.3 [32], a conventional ED may not work as the demand instantaneously changes up to

thousands of MW.

To overcome this problem, the dynamic ED (DED) problem, which schedules gen-

erators for an operational cycle in a time horizon divided into multiple periods while

taking into account the intrinsic links between two hours of the ramp limit of a thermal
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generator, was introduced [14]. Its objective is to minimize the total production cost of

the generators operating over the time period considered by satisfying the generation

capacity and ramp limits as well as the customer loads forecast over a multi-period time

span. Although this problem is usually formulated for the dynamic scheduling of a load

cycle of 24 hours with a time interval of 1 hour, it can be used for any T− hour [3]. A

simple representation of a T−hour DED problem is as follows.

Minimize Fd =
T∑
t=1

N∑
i=1

Ci,t (2.7)

Ci,t = ai + biPi,t + ciP
2
i,t +

∣∣∣di sin
{
ei
(
Pmin
i − Pi,t

)}∣∣∣ i ∈ N, t ∈ T (2.8)

Subject to:
N∑
i=1

Pi,t = P tD + P tloss t = 1, 2, . . . , T (2.9)

P tloss =
N∑
i=1

N∑
j=1

Pi,tBijPj,t +
N∑
i=1

B0iPi,t +B00 t = 1, 2, . . . , T (2.10)

Pmini ≤ Pi,t ≤ Pmaxi i ∈ N t = 1, 2, . . . , T (2.11)

DRi ≤ Pi,t − Pi,t−1 ≤ URi i ∈ N, t = 1, 2, . . . , T (2.12)

where Pi,t represents the ith generator’s electricity production at the tth hour, and URi
and DRi its upward and downward ramp limits, respectively.

Although a DED is a more realistic problem than an ED one, its computational

process is more complicated because of its large number of decision variables and chain

of equality constraints that means the chronological balance of electricity generation

and demand, as shown in Eqn. (2.9). Also, a real-life power system encounters some

unexpected events, such as unit faults and changes in demand. To counter this, a

spinning reserve (SR), usually the largest unit’s capacity, is maintained in scheduling
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to increase system reliability (as explained in section 2.5) and, subsequently, derives a

solution from its optimal point because a cheaper unit cannot run at its full capacity [28].

Therefore, as finding an optimal scheduling for a DED is not an easy task, it remains a

challenge in the fields of computer and electrical engineering.

2.4 DED with Emission Limitations

Over the last few decades, the rapid increase in the use of fossil fuels has led to a

consequent worldwide reduction in this resource while fossil fuel-based thermal power

plants release several contaminants, such as nitrogen oxides (NOx), sulfur oxides (SOx)

and carbon dioxide (CO2), into the atmosphere. As, due to public awareness regarding

protecting the environment and the Clean Air Act Amendments of 1990 [17], power in-

dustries are now required to reduce their pollution levels during electricity production,

they have taken several steps, such as (i) installing pollution-cleaning equipment, (ii)

using low-emission fuels, (iii) switching to alternative renewable sources, such as hydro,

wind and solar, and (iv) formulating a DED problem as a bi-objective one to simulta-

neously minimize both the fuel costs and gas emissions [33]. The first two approaches

are expensive, and the third and fourth are discussed in the following sub-sections.

2.4.1 Hydro-thermal DED

With the rapid development of societies and technologies, the demand for electricity has

been increasing daily. However as, to produce a large amount of electricity from conven-

tional thermal generators, while the use of fossil fuels has been significantly reduced but

emissions into the environment have increased, an alternative to thermal power plants

has become highly desirable. A hydro plant is a power source that, essentially, does

not incur running costs and its environmental pollution is negligible. In a common one,

river water is stored in a reservoir using a dam and then released to a spinning turbine

which results in a generator becoming active and generating electricity. However, as de-

mand for electricity is much greater than the amounts hydro plants can produce alone,

it is necessary to run some other costly and inferior options, such as thermal plants.

Therefore, mixed hydro-thermal systems have been widely studied in the literature and
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practice. As previously mentioned, the operating cost of a hydro plant is comparatively

low as water is regarded as a renewable resource whereas that of a thermal one is high.

Therefore, a challenging decision problem is to schedule all the plants under consider-

ation to minimize the total cost while satisfying the demand, generation capacity and

technical constraints. This issue is known as a hydro-thermal ED problem for single-hour

scheduling and a hydro-thermal DED for T-hour scheduling [17].

Despite the numerous advantages of using a hydro-thermal system, it is one of the

most difficult optimization problems in terms of the economical operation of a power

system. This is mainly because it involves a number of difficult hydro constraints that

must be met on a real-time basis; for example, the amount of electricity produced from

a hydro plant depends on the water inflow rate and amount of water reserved, i.e.,

the water reservoir. At the same time, the water available in each time cycle of a

dispatching time horizon depends on that used in the previous cycle. Therefore, it is

necessary to develop a dynamic relationship among operational decisions over the entire

time horizon. Using minimal water in each cycle, the objective of a hydro plant is to

release an optimal amount of water from each reservoir for maximum hydro generation

so that the total fuel cost of a hydro-thermal DED system over a dispatching period

can be minimized. This problem is formulated as a large-scale, non-linear, non-convex

and dynamic optimization one, with the significance of the economical operation of a

hydro-thermal system well recognized as being that an optimal dispatch must reduce

not only costs but also environmental pollution [17].

2.4.2 Wind-thermal DED

As previously mentioned, the widespread use of fossil fuels in electricity generation

has increased environmental pollution. Therefore, alternatives to thermal sources have

emerged with the introduction of renewable energy, with wind one source now being used

more widely, particularly in Australia, the United States of America (USA) and Europe

[34]. In fact, some European countries such as Denmark have an ambitious goal to

shortly produce 50% of their total electricity from wind power generators (WPGs) [12].

The USA and Australia also have plans to use as much green energy as possible, with

their research related to WPGs accelerating significantly [12]. The operating principle
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of a wind generator is simple. It uses a turbine installed 100 feet or more above the

ground which has two or more of its blades connected to the rotor of a generator which

spins, as the blades rotate according to the wind speed, and generates electricity.

Although wind energy is a promising alternative for electricity generation because

of its significant environmental and social benefits and no major running costs, as its

availability fluctuates greatly, it is difficult to accurately determine it in advance. There-

fore, to schedule the right mix of generation from a number of wind and thermal units

to serve a daily load demand at minimum cost is a challenging, uncertain optimization

problem known as a wind-thermal DED problem [35].

2.4.3 Solar-thermal DED

Based on recent ongoing improvements regarding replacing fossil fuel-based thermal

sources with emerging renewable ones, solar energy is now widely used because of its

lower production cost and environmentally friendly characteristics [36]. As solar energy

cannot be used directly, electricity can be obtained from it in two main ways, through so-

lar photovoltaic (PV) generation and concentrating solar thermal power (CSP) whereby

thermal energy uses sunlight to generate electricity [37]. However, the primary problem

associated with incorporating solar energy in an ED model is the uncertainty of solar

radiation levels during an entire day.

For long-term operation, uncertainty is a serious issue in a solar-thermal DED prob-

lem. Based on the North American Electricity Reliability Council (NERC), the electric-

ity output from a PV-based solar power plant changes on a ±70% daily basis. However,

it is manageable for short-term scheduling as its hourly forecasting errors are much lower

than its daily forecasting ones [38]. Therefore, for a solar-thermal power system, it is

more appropriate to adopt dynamic scheduling for a T-hour planning horizon with a

one-hour interval. The DED model can achieve an hourly optimal schedule for a partic-

ular time horizon taking into account intrinsic links between systems at different times,

such as the ramp rate of a thermal generator.

A solar-thermal DED problem is generally represented as a mixed-integer non-linear

problem (MINP), where the solar unit is a binary variable and the thermal unit a
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continuous one [39], with the binary variable representing the status of the solar unit’s

turning on ( = 1) and off ( = 0). As a result, a solar energy unit would be fully used in

a DED model as it’s cheaper than a conventional thermal one [39]. The binary variable

of a solar source represents the status of the solar unit as turning on (= 1) or off (= 0).

As a result, the solar energy would be fully utilized in a DED model as it’s a cheaper

unit comparing to a conventional thermal one [39]. Therefore, solving a solar-thermal

DED problem is a challenging optimization problem that requires an efficient algorithm

[39].

2.4.4 Bi-objective DED

Formulating a dispatch problem as a bi-objective optimization one with the aims of

simultaneously minimizing both the fuel cost and gas emissions is another approach for

reducing greenhouse gas emissions in the environment [40]. This is called a dynamic

economic and emission dispatch (DEED) problem, where the two conflicting objectives,

fuel cost and gas emissions, are simultaneously minimized by satisfying a number of

equality and inequality constraints. A simple representation of a bi-objective DEED is

as follows [41].

Minimize (fuel cost): Fd =
T∑
t=1

N∑
i=1

Ci,t (2.13)

Minimize (gas emissions): FE =
T∑
t=1

N∑
i=1

Ei,t =
T∑
t=1

N∑
i=1

(
αi + βiPi,t + γiP

2
i,t + ηie

λiPi,t

)
(2.14)

subject to Eqns. (2.9) to (2.12), where αi(ton/h), βi(ton/MWh), γi(ton/MW 2h),

ηi(ton/h) and λi(1/MW ) are the emission coefficients for the ith thermal unit and FE
the total emission effect of the thermal units for a single day of operation with one-hour

intervals. As the fuel cost function, the characteristic of the gas emission function, is

quadratic, multi-modal and non-convex [42]. The presence of multiple non-linear objec-

tives, dynamic ramp limits and non-linear equality constraints in a DEED problem make

it more complicated than a single-objective dispatch one [42]. Therefore, determining
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the optimal use of fossil fuels in power generation which has a minimum impact on the

environment is still a challenging research topic [43].

2.5 DED with Uncertainty

As high amounts of uncertain renewable sources are currently used in DED and DEED

models, it is necessary to comprehensively consider their uncertainty factors, such as

sudden and unexpected changes in load demand and intermittent generations from solar

and wind generators. A common method for addressing them has been to maintain

the reserve requirements as, according to the Western Electricity Coordinating Council

(WECC) [44], a standard electricity market must maintain certain reserves. The sample

distribution of a conventional source presented in Fig. 2.4 shows that the generator is

dispatched to maintain sufficient reserve requirements for automatic gain control (AGC)

and contingency reserves. AGC is used to adjust production based on small changes

in electricity demand due to customer needs; for example, one person turning on his

or her household appliances while another is turning them off. Contingency reserves,

which are used to maintain the balance in a system when there is a forced outage of a

generator and/or any forecasting errors, can be SR or non-SR. In SR, online generators

are automatically synchronized to the reserve requirements according to their capacities

and ramp limits; for example, a generator dispatching 200 MW with lower and upper

limits of 100 and 500 MW, respectively, and a ramp of 50 MW can generate 200 + 50 =

250 MW if balancing is required. On the other hand, non-SR is the total reserve capacity

for generators not currently operating but ready for emergency requirements.

However, as maintaining a reserve is a challenging task in terms of both cost and

quantity, researchers have begun to incorporate uncertainty in DED and DEED models

to address the uncertainties of wind and intermittent solar generations. In the literature,

several approaches have been developed to address the impact of random parameters of

the dispatch models, one of which is a stochastic one, with its main goal to minimize

the reserve cost for uncertainty along with the production cost, and is formulated as an

uncertain wind-thermal DED problem as [45]:
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Min: Fd =
∑
t

∑
i

Ci,t(Pi,t)︸ ︷︷ ︸
fuel cost for thermal units

+
∑
t

∑
w

Cw,t( ˆWw,t)︸ ︷︷ ︸
operating cost for wind gen.

+

∑
t

∑
w

Ctp,w(W t
ac,w − Ŵw,t)︸ ︷︷ ︸

penalty cost for underestimation

+
∑
t

∑
w

Ctr,w(W t
ac,w − Ŵw,t)︸ ︷︷ ︸

penalty cost for reserves

(2.15)

Pmini ≤ Pi,t ≤ Pmaxi t ∈ T (2.16)

0 ≤ Ŵw,t ≤W t
R,w t ∈ T (2.17)

∑
i

Pi,t +
∑
w

Ŵw,t = P̂D,t t = 1, 2, . . . , T (2.18)

where Ŵw,t and Cw,t are the random variables of the uncertain output of the wth wind

source in the tth hour and its cost, respectively, Ctp,w and Ctr,w the penalty and reserve

costs, respectively, W t
w,ac the actual available power from the wth wind source and P̂D,t

another random variable for the variable power demand at the tth hour. Ŵw,t and P̂D,t
are determined using the Weibull and Gaussian probability density functions (PDFs)
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from the stochastic wind speeds and natural electricity consumptions, respectively. The

objective function in Eqn (2.15) involves the production costs of thermal and wind gen-

erations as well as the penalty ones. The first penalty cost for the under-estimation

of wind generation, the 3rd factor in Eqn. (2.15) indicates that, if the wind genera-

tion available is greater than the actual amount dispatched, as the surplus energy could

be wasted, it is necessary to compensate the wind producer for any economic loss in-

curred. Meanwhile, when a system operator under-estimates the amount of wind energy

it could actually produce, as additional reserves are required to overcome the scarcity

of power, this results in a higher operational cost. Therefore, the penalty cost of reserve

requirements is added to the objective function as the 4th term in Eqn. (2.15).

However, this uncertain DED problem is a very challenging optimization one due to

increasing penetrations of these uncertain renewable sources which have high degrees of

volatility and deviation in dispatch problems. Consequently, it faces uncertainty in the

net demand and needs to retain a predetermined high amount of reserve generation to

ensure feasibility which may yield a sub-optimal solution.

2.6 Deregulated Energy Market

In a traditional electricity market, a DED problem is used to minimize the production

cost by maintaining an adequate level of supply. However, as this system does not fa-

cilitate any competition among both suppliers and consumers, its overall profit is not

adequate. In order to increase economic proficiency and reduce production costs, the

energy markets in several countries, such as Chile (1978), the United Kingdom (1990),

the USA (1999), Norway (1991), Colombia (1993), Argentina (1992), Australia (1993),

New Zealand (1994), Finland (1997), Brazil (1997), Spain (1998), Sweden (1996) and

Germany (1999), have become more decentralized and deregulated [46]. Note that the

year in brackets indicates when the electricity market in that country became deregu-

lated. In this environment, markets are no longer monopolistic but are becoming open

to competition among both suppliers and consumers [47, 48]. Implementing this new
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Fig. 2.5: Electricity markets before and after deregulation

strategy, the overall profits of these markets have increased significantly, by approxi-

mately 20% in the USA [49], and it has also been proven that, subsequently, electricity

prices have fallen and customer services improved [49].

The differences between current (or future in some countries) and past electricity

markets are illustrated in Fig. 2.5 in which it is clear that a conventional market was a

monopoly with no commitment among generators and consumers. On the other hand,

a deregulated market introduces competition everywhere, with generators, distributors

(retailers) and independent system operators (ISOs) working in a unified system [50]. In

it, suppliers, i.e., GENCOs and consumers (e.g., large industries, retailers, distributor

companies, residential loads, etc.) are required to submit their bids to a third party

known as an ISO that determines the market clearing price (MCP) and the amount

of electricity required of each winning bidder by solving a DED problem considering

the power-flow constraints through TLs. Note that, when a dispatch problem is solved

considering the transmission congestion (TC) constraints, the problem is known as an
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Fig. 2.6: Bidding process

optimal power flow (OPF) one, where the aim is to determine an optimal operating

point of a power system by maximizing its community social welfare (CSW) subject to

its network and physical constraints [51]. The CSW is defined as the difference between

the profits obtained by providing electricity to consumers and the expenses of purchasing

it from GENCOs.

However, in order to maximize the profit of a bidder, it is necessary to determine its

optimal bid in advance as bids are generally submitted a day before the actual delivery

of electricity. This is a challenging optimization problem known as a bidding problem

of an energy market[52], as described below.

2.6.1 Bidding Problem

In a bidding problem, each participant in an energy market submits its own bid to the

ISO which then runs an OPF problem to determine the status of each bidder, with the

winning one informed of its MCP and allocated quantity of electricity. Fig. 2.6 shows

the competition in a typical market in which each participant submits its own bid, with

its profit calculated based on its actual cost and revenue as:

πi = λiPi − (ai + biPi + ciP
2
i )∀i ∈ N (2.19)

where πi and λi are the profit and MCP, respectively, of the ith ∈ N bidder. Note that,

when TCs are ignored, the MCPs of all bidders are the same but, if they are considered,

the MCPs vary significantly from location (or node) to location which is called the
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Fig. 2.7: Example of LMP calculations without considering TC

locational market price (LMP) [53]. The LMP is calculated at each node in the system

based on the last MW dispatched plus 1 MW at each node selected to provide power;

for example, LMP calculations with and without considering the TC, are shown in Figs.

2.7 and 2.8, respectively. In both cases, the system has two nodes, both of which have

four GENCOs each with a capacity of 200 MW, and the per unit generation costs of the

units are different, as shown in Fig. 2.7. If the total load demand of the system is 1189

MW, in Fig. 2.7 in which the TC is ignored, the optimal dispatches are 200, 200, 200,

200, 200, 189, 0 and 0 MW from the cheapest to most expensive units. Since there is no

TC on the TL, the additional 1 MW of both nodes can be obtained from the 2nd unit of

node 2 and then the total line flow through the TL is 501 MW and the LMPs of both

nodes the same, i.e., $42/MWh. On the other hand, in Fig. 2.8, in which the maximum

capacity limit of the TL is set to 300 MW, the optimal dispatches of the GENCOs are

changed to 200, 200, 199, 0, 200, 200, 190 and 0 MW, and as the additional 1 MW of

each node comes directly from its own node because the line flow is already congested of

300 MW, the LMPs of nodes 1 and 2 are different, i.e., $38 and $48 /MWh, respectively.

Therefore, it is clear that TC has a significant impact on both the market price and

profit of each individual bidder.

Moreover, as the profit of a bidder depends on both its own submitted bid and

those of its rivals, it plays a game by optimizing its own bidding behavior based on

those of its competitors as well as power system constraints. An excessively high bid
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Node 1 Node 2
300 MW

Capacity 

constraints =300 MW

LMP=$38/MWh LMP=$48/MWh

200 MW @ 

$35/MWh

200 MW @ 

$36/MWh

200 MW @ 

$38/MWh

200 MW @ 

$40/MWh

200 MW @ 

$40/MWh

200 MW @ 

$42/MWh

200 MW @ 

$48/MWh

200 MW @ 

$50/MWh

Load 

300 MW

Load 

891 MW

200200 200 199+1 200 190+1

Total demand=1189 MW

Fig. 2.8: Example of LMP calculations considering TC

by a player may not be selected by the ISO while a lower one may not cover its own

costs. Therefore, selecting appropriate bids to maximize the profits of all bidders is a

challenging optimization problem.

2.7 Overview of Solution Approaches

In this section, an overview of approaches for solving the different types of ED and bid-

ding problems, which can be broadly categorized as CO and CI techniques, is presented.

2.7.1 Conventional Optimization Techniques

In this sub-section, a few CO methods based on different mathematical programming

(MP) techniques, such as linear programming (LP), dynamic programming (DP), quadratic

programming (QP), and gradient based as well as Newton and interior point (IP) meth-

ods are discussed.

LP is a simple method widely used to solve an optimization problem that is min-

imized by treating its objective function and constraints in a linear form with non-

negative variables. The simplex method is widely used for solving a LP problem. It is

very reliable, fast and accurate for a linearized model of any engineering problem [54].
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The DP-based method is popular for solving both the linear and quadratic functions

of an optimization problem. In it, the problem is divided into a large number of simple

sub-problems with possible solutions to each evaluated. A single solution, which must

be selected in each sequential sub-problem, may affect its succeeding one. Once all the

sub-problems are solved, a solution that combines the best ones of all the sub-problems

is obtained. However, a major drawback of this approach is that it can only be used for

some specific types of problems [55].

QP is a special form of non-linear programming (NLP) in which the objective func-

tion is quadratic and the constraints in a linear form. It has better accuracy than an

LP-based method for solving an optimization problem, particularly one with a quadratic

objective function. Solving some real-world problems as a series of quadratic problems

is known as sequential QP (SQP) [54]. A simple SQP solves a problem sequentially con-

sidering that the constraints in each sequence in the sub-problem are linear. However,

if the problem is unconstrained, it solves it using the Newton gradient-based method.

An IP method is widely used to solve both linear and non-linear optimization prob-

lems. In each iteration, it generates one or more search directions in the interior while

keeping the position of the current solution in the center of the interior and finding a

better direction for the next move, with the solution iteratively moved to the optimal

direction. Once the optimal step size of an iteration is chosen, an optimal solution is

achieved in a few iterations. It is known as an interior method because it improves the

search directions in the interior of the feasible space. For constrained problems, it con-

siders some slack variables to transform the inequality constraints into non-negativities

which are further replaced with a logarithmic barrier to the objective function. The

advantage of this approach is that it restricts the starting point to within the interior

of the inequalities and the barrier stops a variable reaching a boundary. For equality

constraints, a penalty function using a Lagrange multiplier is incorporated with the ob-

jective function and, subsequently, the barrier problem is solved using Newton’s method

[56].
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2.7.2 Computational Intelligence Techniques - An Overview

Over the last few decades, meta-heuristic-based optimization techniques, such as genetic

algorithm (GA) [57], differential evolution (DE) [58], particle swarm optimization (PSO)

[59], evolutionary programming (EP) [60], evolutionary strategy (ES) [3], artificial bee

colony (ABC) [61], artificial immune system (AIS) [62] and bat-inspired algorithms,

have been widely used to solve different types of PSOPs. Their main steps are similar

while their chromosome representations and ways of generating new individuals from

old ones vary as they encode individuals in different ways, e.g., with binary, integer, real

and string values. In order to generate a new individual from existing ones, common

operators, such as recombination (crossover), mutation and selection, are used. The new

individuals, which are called offspring, only survive to the next generation if their fitness

values (FVs) are better than those of their parents. These steps are repeated until a

stopping criterion is met [11].

In the following sub-section, some meta-heuristic-based optimization techniques are

discussed.

A Genetic Algorithm

The GA is a population-based algorithm which use different operators, including crossover,

mutation and elitism-preserving techniques [57]. Crossover is the process of exchanging

chromosome material to create new offspring. Elitism encourages the convergence prop-

erties to achieve global optimal results while a mutation operator guarantees no early

convergence of a solution. GA has been successfully applied to many difficult real-world

problems, has the capability to handle both continuous and discrete variables. It is well

suited to parallel computing and can deal with the optimization of incredibly complex

fitness landscapes [11]. Its primary operators are described below.

A.1 Genetic Representation

Depending on the nature of the problem, its genetic representations can be binary,

permutations and real-valued in which the chromosomes are represented as either 0 or
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1, a sequence up to a certain number and real values, respectively. Although a binary

representation works well, its computational cost is high while permutation ones are

usually used in order problems, such as the traveling salesman problem (TSP) or task

ordering one, and a real-valued one in the continuous domain, such as DED problems

[11].

A.2 Crossover

To generate new offspring from parents, a crossover operator, which exchanges genetic

materials among the chromosomes, is performed. Over the decades, depending on a

problem’s characteristics, a number of crossover operators, such as single-point, multi-

point, uniform, blend, intermediate, simulated binary, uni-modal distribution, simplex,

parent-centric and triangular crossovers, have been introduced [11], each of which has

its own pros and cons when applied to solving evolutionary problems. Of them, the

simulated binary crossover (SBX) is widely used for many test problems [63]and, as it

generates child solutions by avoiding arbitrary closeness to the parents, the diversity of

the solutions is inherently preserved. Also, it does not require any additional mating

restriction scheme for achieving better performance and is very popular for a problem

with an unknown solution boundary and a multi-modal one which may have multiple

optima [11]. To generate new offspring from parents, firstly, a pair of parents, (x1 and

x2) is selected from the population, then two offspring (y1 and y2) generated as:

y1
j = 0.5

[
(1 + βqj)x1

j + (1−βqj)x2
j

]
, ∀j = 1, 2, ..., Nx (2.20)

y2
j = 0.5

[
(1− βqj)x1

j + (1 + βqj)x2
j

]
j = 1, 2, ..., Nx (2.21)

where βqj is calculated as:

βqj =


(
2uj

)1/ηc+1 if uj ≤ 0.5(
1

2(1−uj)

)1/ηc+1
if uj > 0.5

(2.22)
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where ui is a uniform random number in the range [0, 1] and ηc a user-defined parameter

called the SBX distribution index.

A.3 Mutation

To avoid a problem becoming trapping in local optima, a mutation operator is applied

to maintain genetic diversity from one generation to the next. There are many muta-

tion schemes, such as polynomial, uniform, non-uniform, power and boundary [63]. Of

them, a non-uniform mutation is widely used for a continuous constrained optimization

problem (COP) [11]. In it, the step size of the mutation operator is decreased with

increasing numbers of generations so that it conducts a uniform search in the initial

stage of evolution and little searching in later stages [11], with a child mutated as:

´yj,g = xj,g + δj,g (2.23)

δj,g =



(
xmaxj − xj,g

)1− u

(
1− g

NG

)bq

g

 if u ≤ 0.5

(
xminj − xj,g

)1− u

(
1− g

NG

)bq

g

 if u > 0.5

(2.24)

where ug ∈ [0, 1] is a random number, and g and NG the current generation number

and maximum number of generations, respectively. The speed of the step length can be

controlled by choosing different ‘bq’ values [11].

A.4 Selection

A selection operator selects the best individual from a parent and its child based on

their FVs. Of the different ones available, the feasibility-based selection [64] technique,

in which (i) feasible individuals are always preferred over infeasible ones, (ii) of two

feasible individuals, the better-fitted one is chosen and (iii) of two infeasible individuals,

the one with a lower constraints violation is selected, is very popular for COPs. Also,

in a GA, the best individuals in a generation are kept unchanged in the next one, which
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is called elitism that helps to increase the convergence rate. However, if there are many

elite solutions, the diversity decreases.

B Differential Evolution

DE is another variant of an evolutionary algorithm (EA) introduced by Storn and Price

[58]. Its solutions are presented in vector form and, to construct a new vector from

existing ones, mutation, crossover and selection operators are used. It is consistent and

reliable for solving many real-life non-linear COPs, such as those of communication,

power and chemical systems, and pattern reconciliation [65]. Its structure and main

operators are described below.

B.1 Mutation

Unlike a GA, DE uses a mutation operator before crossover. In a simple mutation,

three candidates are randomly selected and a mutant vector generated by multiplying

an amplification factor (F ) as [11]:

~yp,,j = ~xr1,j + F × (~xr3,j − ~xr3,j) j = 1, 2, . . . , Nx (2.25)

where rk ∈ [1, Nx] , k = 1, 2, 3 are three random integer numbers such that p 6= r1 6= r2 6=

r3, Nx the number of decision variables and F > 0 a control parameter of the mutation

operator. The variant shown in Eqn. (2.25) is called ‘DE/rand/1’ [11] while many other

variants are presented in the literature [11].

B.2 Crossover

Two simple crossover operators usually used in DE are exponential and binomial. In

the former, firstly, two integer values (l and L) within the decision space are randomly

chosen so that l ≤ L ∈ [1, Nx] act as starting and ending points, respectively, to exchange

elements between the target and donor vectors. Once l and L are decided, a trial vector

is generated as:
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vp,j =


yp,j for j = l : L

xp,j otherwise
(2.26)

In the very simple binomial crossover, if a random number is less than the crossover

rate (Cr), the particular value of the target vector is replaced by its parent as:

vp,j =


yp,j if rand ≤ Cr or j = jrand

xp,j otherwise
(2.27)

where rand ∈ [0, 1] and jrand ∈ [1, 2, . . . , Nx] are randomly chosen to ensure that at

least one value is obtained from the offspring [11].

B.3 Selection

Like a GA, DE also uses a selection operator to choose a vector from the donor and trial

ones for later exploration based on the best FVs.

C Particle Swarm Optimization

PSO is also a population-based algorithm introduced by Kennedy and Eberhart [66]

based on the social behavior of flocks of birds and schools of fish. In it, the initial

individuals called particles are randomly assigned and move around the N−dimensional

search space based on the values of their FVs. Unlike a GA, it has no mutation or

crossover operators but uses a velocity vector to update the current position of each

particle in the swarm (e.g., the population), with this position updated based on the

particle’s own experiences (i.e., local best) and those of its neighbors (i.e., global best)

in previous generations. The general outline of a basic PSO is:

1. an initial particle is randomly assigned and distributed in the design space;

2. similarly, random initial velocities of all the particles are generated;
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3. for each particle, its fitness function is evaluated and, subsequently, the local (x∗)

and global (x∗∗) best particles based on the FVs of the current and all particles,

respectively, are determined; and

4. in the following generations, the particles are updated as:

xg+1 = xg + vk+1 (2.28)

where the velocity vector (v) is calculated as:

vg+1 = w × vg + c1r1
(
x∗g − xg

)
+ c2r2

(
x∗∗g − xg

)
(2.29)

where c1 and c2 are the positive constants, r1 and r2 two random numbers between 0

and 1, and w the inertia weight (also called the acceleration factor) for controlling the

exploration properties of the algorithm, with the lower and higher values facilitating

local and global behaviors, respectively.

D Evolutionary Programming

EP is also a global optimization technique that starts with a random population. Then, a

new population is obtained from the old one using a mutation operator which perturbs

each component of every individual in the population with a random number. The

process of generating a new individual from an existing one in a classical EP is [11]:

~xg+1
k = ~x+ ~ηg+1

k ×Nj (0, 1) (2.30)

ηg+1
k = ηg+1

k × e

(
τ×N(0,1)+τ ′×Nj(0,1)

)
(2.31)

where N(0, 1) is a Gaussian random number with a zero mean and variance of 1, and

the subscript j in Nj(0, 1) indicates that the random number is newly generated for each

value of j [11]. The learning rates (τ and τ
′) are set to be equal to ϕ∗√

2
√
D

and ϕ∗√
2D ,

respectively, where ϕ∗ is the expected rate of convergence.
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2.8 Solving ED and Bidding Problems: A Review

In this section, the abovementioned methods for solving different types of conventional

thermal-based and renewable energy-based ED problems, such as hydro-, wind- and

solar-thermal ones, and then bidding problems in deregulated electricity markets, are

discussed.

2.8.1 Conventional Thermal-based ED Problems

These problems have been solved using both CO and CI methods, as described below.

A Conventional Optimization Methods

Due to the excellent advancements in MP-based methods, the previous efforts for solving

traditional ED problems shown in Eqns. (2.1) to (2.4) have been employed based on

different ones, such as simplex [67], lambda iteration [68] and the IP [69]. Although

they are very fast to obtain a solution, they are only applicable for solving static ED

problems in which a single-period demand is considered.

To solve a DED problem, several researchers used an iterative technique in which

a T− hour DED problem was decoupled into a T− number of SED sub-problems, each

of which had a single-hour load demand [70]. Initially, the generation capacity limits of

each sub-problem were estimated based on its actual capacity and ramp limits. Then,

each sub-problem was solved using the lambda iterative method to iteratively update its

generation capacity limits. Wood [71] conducted similar work but also considered SR

and Ploss constraints. However, both methods obtained only sub-optimal solutions [3].

As ramp limits are one of the challenging constraints in a DED problem, if they are

neglected, this problem can be represented as a set of SED ones which can be solved

independently. Several researchers [72, 73] used this technique to split a DED problem

into a number of SED sub-problems and then used a gradient projection method with

a conjugate search [72] and LP-based method [73] to solve each sub-problem. Both

methods used an additional penalty function with the primary objective of minimizing
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the cost to tackle ramp violations because solutions with lower ramp violations were

preferred over others in this cost minimization problem. In [74], a Lagrange multiplier

for the equality constraints and a penalty function for ramp violations were used to solve

a DED problem which was reformulated as a dual optimization one with an iterative

approach used to update the Lagrange dual variables [3]. Although the solution was

superior to others, it took a long computational time to obtain a feasible one. Han

et al. [75] analyzed each constraint of a DED problem and concluded that the reason

for the long time required to obtain a single feasible solution was the chain of equality

constraints with ramp limits. Later, by ignoring the ramp limits, they developed two

approaches for solving a DED problem in which the first was used to obtain a feasible

solution from an infeasible one and the second to improve the quality of feasible solutions

but neglecting the ramp constraints was a large flaw. Also, most of the above methods

considered linear equality constraints without taking account of the non-linear Ploss term

in the power balance constraints.

Recently, the power system industry has been emphasizing security in its operations

whereby the electricity flow through a TL is strictly maintained. Then, the standard

DED problem is formulated considering the additional Ploss constraints of a TL and sub-

sequently solved using different conventional methods, such as constrained relaxation[76],

IP [77], gradient projection [78], and re-dispatch [67]. In the constrained relaxation tech-

niques in [76], a dual revised simplex algorithm with a decomposition technique was used

to solve a DED problem in which the coupling constraints (ramp limits) were taken into

account while, in the gradient projection method in [78], the coupling constraints were

relaxed and the T − hour DED problem decomposed into T − numbers of sub-problems

solved using a priority list technique or simply one to T-hours consecutively. Lagrange

multipliers were used for the equality and inequality constraints and a penalty function

for the coupling ones. Then, the Lagrange variables were updated using a gradient-based

method, with a solution considered optimal when the variables were no longer updated.

An IP method was also applied to solve this variant of a DED problem considering the

Ploss constraints [77] and was found to be much faster than a simple LP method. Later,

several classes of IP methods, such as quadratic IP [69], homogeneous IP [79] and linear

IP [77] were used to solve different DED problems. However, as most treated constrained

DED problems as unconstrained ones, whereby the constraints were aggregated with the
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objective function using a penalty function technique, maintaining their feasibility was

a serious issue. A modified Han-Powell algorithm with a sparseness technique for the

construction and updating of the Hessian matrix of the Lagrange function was used to

solve a DED problem [80]. In [67], a similar method with a re-dispatch technique based

on QP was used to solve another DED problem which was decoupled into a number of

SED sub-problems by relaxing the coupling constraints (ramp ones). However, as these

sub-problems were solved separately, the overall computational time for a DED problem

was too high.

Also, the abovementioned MP-based techniques dealt mainly with convex cost func-

tions without considering the VPE [81] and, as a cost function with the VPE is non-

smooth, non-convex and has multi-modal characteristics [29, 31], they were unable to

generate good-quality solutions [82]. To solve this non-convex DED problem, although

a few authors used QP, SQP and IP methods [82–84], their final results depended on

the initial given solutions. In fact, in most cases, they converged to a local solution even

after adopting a number of assumptions.

Recently, a few researchers [14] developed a mixed-integer quadratic programming

(MIQP) approach for solving non-convex DED problems considering the VPE of the cost

function. In their model’s formulation, they obtained an approximation by linearizing

the piece-wise convex cost function, whereby the excessive number of linear segments in a

large generator introduced many integer variables and additional constraints. Therefore,

the quality of solutions from this method was not guaranteed.

B Use of Computational Intelligence Methods

Conventional MP-based optimization methods need to approximate the actual DED

problem by assuming that the cost function is smooth. Meta-heuristic-based optimiza-

tion techniques, such as EAs and swarm intelligence (SI) methods, do not require certain

mathematical properties of the objective function to be satisfied and have been success-

fully applied to solving many complex real-life COPs. During the last decade, several

of them, such as a GA, DE, PSO and EP, have been effectively used to solve various

single-objective DED problems [3], as discussed below.
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B.1 Genetic Algorithm

Due to the flexible features of GA, many researchers have been attracted to using them

to solve different types of generator scheduling problems. Initially, GAs were used to

determine the on/off status of generators in UC problems; for example, Arroyo and

Conejo [25] developed a modified GA for that purpose and used a hybrid parallel model

to avoid premature convergence and improve computational efficiency. Compared with

two conventional methods, it was proven that this GA was the best algorithm for UC

problems but it was only validated for a small-scale one. A binary-coded GA (BCGA)

with a constraint-handling technique for satisfying the equality constraints, and the in-

equality constraints represented as a penalty function added to the objective function,

was applied in [85] to solve large-scale UC problems. Although this method was suc-

cessfully performed for up to 10 units with a 24-hour time span, its computational time

was high. To reduce this time, Damousis et al. [86] proposed an integer-coded GA to

decrease the string size of the BCGA. In it, instead of using a penalty function to handle

the inequality constraints, some constraints were directly managed in the chromosome

representation and, subsequently, the efficiency of the algorithm was greatly improved

despite the ramp constraints being ignored.

To solve a DED problem considering the ramp constraints, some specialized search

operators of GA were used in [87] to help improve the efficiency of the algorithm with

its mutation probability dynamically updated depending on its performance. However,

this was applicable for only the specific problems tested. Another practical UC problem

with Ploss in which two constraint-handling mechanisms were used to repair infeasible

individuals to feasible ones, was solved in [88]. However, both approaches obtained sub-

optimal solutions for a practical 12-unit system and their computational times were long

due to their low rates of convergence. To improve the convergence rate, a deterministic

GA, in which a deterministic annual crossover and selection procedure were applied,

was proposed in [89]. Its performance was improved by exchanging information between

individuals through an annual crossover and repairing mechanism. It was superior to

the traditional GA and obtained a sub-optimal or near-optimal solution very quickly. To

obtain global optima, an improved GA with an intelligent mutation operator and scaling

function for the selection operator was used to solve generator scheduling problems
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Units 1 2 3 4 5 . . . T

1 0 0 1 1 0 . . . 1

2 1 0 0 1 1 . . . 0

. . . . . . .

. . . . . . .

. . . . . . .

N 0 1 0 0 1 0

Fig. 2.9: Solution to UC problem using binary coding [90]

[90], with the constraints handled effectively using a repair technique. This approach

obtained high-quality solutions with lower computational times than those of others in

the literature. However, it was tested on only small-scale problems with 10 and 20 units

in a 24 hour time horizon.

In each of the abovementioned methods, a chromosome was represented as a vector

of binary variables, where ‘1’ and ‘0’ meant that a unit was on and off, respectively, with

a sample chromosome representation in a UC problem for T-hour scheduling presented in

Fig. 2.9 which shows that this problem determines only the on/off status of a generator

not its actual output.

As previously mentioned, the actual generation from committed units is determined

using an ED problem in which the decision variables regarding the output from a genera-

tor can be discrete or continuous. A number of approaches based on GAs for solving such

problems have been developed; for example, Walters [31], Chen et al. [91] and Sheble et

al. [92] employed three different variants of a GA to solve thermal-based ED problems

with the aim of finding better solutions than other optimization algorithms. Of them,

Chen et al. [91] developed a new encoding technique for representing a chromosome

which contained only the normalized system’s incremental cost, λ (the slope of the ob-

jective function), rather than the actual cost of power generation. The main advantage

of using λ was that, as it was independent of the number of active units, its number

of decision variables was significantly less than those required in other techniques. In

that GA, a chromosome’s λ was represented using binary variables, with the precision

of a solution dependent on the number of bits. When more bits were considered, the

quality of a solution increased but the efficiency decreased. Chen et al. [91] considered
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Fig. 2.10: Encoding scheme of λ [91]
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Fig. 2.11: n−bit concatenated encoding scheme [93]

the 10-bit encoding presented in Fig. 2.10 in which the value of λ was determined by

decoding an encoded chromosome, as:

λ =
10∑
k=1

(
dk × 2−k

)
dk ∈ [0, 1] (2.32)

where d represents the binary bits as either 1 or 0. This approach made the proposed

GA attractive for large systems for which other methodologies had failed to achieve

an economic scheduling. However, determining λ is not an easy task for a modern

power system in which the objective function is non-differentiable (see Eqn. (2.6)) [47].

Ongsakul et al. [93] proposed a parallel micro GA based on merit-order loading solu-

tions for solving a large-scale ED problem to reduce computational time. The decision

variables were encoded using binary strings with their sizes dependent on the number

of units (N) each of which had n bits, as presented in Fig. 2.11.

To determine the decimal values of each chromosome, the function used was:

Pi = Pmini + Bi ×
[
Pmaxi − Pmini

]
2n − 1 , i = 1, 2, . . . , N (2.33)

where Bi is the decimal integer value of the binary string of the ith generating unit. As,

in this method, the chromosomes were represented in binary format, with the actual

generation determined using a decoding approach, the computational time was long for

a large system.
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A few authors, such as Zhao et al. [94] and Lee et al. [95], proposed real-coded

quantum-inspired GAs in which quantum bits (α and β, where α2 + β2 = 1) were used

to encode chromosomes. In it, the quantum bits, α and β, such that, α2 + β2 = 1

were used to represent the chromosome. Firstly, the probabilistic variable (H) was

defined as Hg =
{
Qg1, Q

g
2, . . . Q

g
NP

}
, where NP is the size of the population and Qgl =

{qg1 , q
g
2 , . . . , q

g
N} , l = 1, 2, . . . , NP , q

g
i i ∈ N the binary coding of the generation volume

of the ith generator as:

qgi =

 αg1

βg1

∣∣∣∣∣∣∣
αg2

βg2

∣∣∣∣∣∣∣
· · ·

· · ·

αgm

βgm

∣∣∣∣∣∣∣
 , i = 1, 2, . . . , N (2.34)

where m is the length of the quantum chromosome. To evaluate the fitness function, the

chromosome was again decoded by some state observations. This approach was faster

than previous binary-based GAs because the quantum chromosome carried information

about multiple states which helped to generate better offspring. However, a continuous

GA is inherently faster than a binary or quantum one because, in it, the chromosomes

do not have to be decoded prior to evaluation of the cost function. Elsayed [96] proposed

a new GA with a multi-parent crossover (GA-MPC) and diversity operator for solving

a wide range of engineering problems, including SED and DED ones. The chromosomes

were represented as the actual real values of the power output of each generator as:

~xp = [P1, P2, . . . , PN ] , p = 1, 2, . . . , NP (2.35)

To solve mixed-integer DED problems, some discrete decision variables were repre-

sented as continuous ones by being rounded. Although their algorithm obtained better

results than state-of-the-art methods for solving small-scale thermal-based DED prob-

lems, it was not guaranteed to perform consistently for a large system because it took a

long time to satisfy the equality constraints.

B.2 Differential Evolution

As DE performs consistently for solving continuous COPs, it has been widely used to

solve different types of ED problems [97]. Unlike many GAs, it does not require encoding
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and decoding schemes to represent solutions as it deals directly with the continuous

values of the decision variables, as shown in Eqn. (2.35). However, its performance is

greatly influenced by its control parameters, such as F and Cr. Many research studies

have been conducted to determine the best set of F and Cr for solving a problem; for

example, Balamurugan and Subramanian [98] used an adaptive DE algorithm to solve a

DED problem in which the decision variables were represented as continuous ones of the

actual power generation and F dynamically updated during the evolutionary process as:

Fg+1 =


Fl + rand1 × Fu if rand2 < τ

Fg otherwise
(2.36)

where randk ∈ [0, 1] , k = 1, 2 were the random values, g the current generation number,

τ the probability for adjusting the F , and Fl and Fu the lower and upper values of F set

to 0.1 and 0.9, respectively. However, setting the value of t was not an easy task for a

wide range of DED problems and this approach was tested on only small-scale problems

(up to 10 units).

To improve the exploitation capability of a DE algorithm in the search space and

enhance its convergence property, Lu et al.[99] and Chen et al. [100] developed an

improved one based on a chaotic search operator for solving DED problems. Its con-

vergence rate was further improved by introducing a heuristic crossover technique and

gene swap operator. A chaotic sequence-based tent function [101] was applied to obtain

the dynamic parameter settings of F and Cr as:

Fg+1 =


2Fg if 0 < Fg < 0.5

2 (1− Fg) if 0.5 < Fg < 1
(2.37)

Crg+1 =


2Crg if 0 < Crg < 0.5

2 (1− Crg) if 0.5 < Crg < 1
(2.38)

under the initial conditions (F0, Cr0) ∈ {0, 1} and (F0, Cr0) /∈ {1/4, 1/2, 2/3, 3/4}. Al-

though their results were superior to those of other algorithms, their approach was

expensive in terms of computational time.
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Leandro et al. [102] developed a chaotic DE for solving ED problems in which

a chaotic sequence was used to update its parameters, with F updated based on two

logistic maps as:

Approach 1: Fg+1 = µ× Fg−1 × (1− rand1) (2.39)

Approach 2: Fg+1 =
[
(f2f − f2i)

g

NG
+ f2i

]
× [µ× Fg−1 × (1− rand1)] (2.40)

where rand1 ∈ [0, 1], µ = 4 and NG the maximum number of generations. For the

incremental use of F , the settings of f2i, and f2f were were 1.5 and 0.5, respectively

and, for the decremental approach, 0.5 and 1.5, respectively. This method outperformed

state-of-the-art algorithms for solving various DED problems with up to 40-unit thermal

systems. However, as these problems considered a single-period demand (i.e., SED), they

did not have as many decision variables as a common DED one and their computational

times were of great concern.

Another modified DE was tested by solving a practical Taiwan power company’s

15-unit SED problem [103] in which F was updated based on the 1/5 success rule of ES,

such as:

Fg+1 =


cd × Fg if pgS < 1/5

cj × Fg if pgS > 1/5

Fg if pgS = 1/5

(2.41)

where pgg represents the frequency of a successful mutation occurring in terms of ob-

taining fitted individuals. Initially, F was set to 1.2, cd = 0.82 and cj = 1/0.82, with

cd and cj adjusted after a certain number of generations, following a 10b rule where b

was a constant value. Although the proposed algorithm was successful for solving the

problem, it was difficult to expect that it would perform as well for large-scale DED

ones and it also introduced new parameters.
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Since a DED problem involves a number of equality and inequality constraints, Yuan

et al. [104] adopted a DE algorithm with a feasibility-based selection comparison tech-

nique [64] and heuristic search rule for effectively handling its constraints. Compared

with traditional penalty function approaches, it obtained better-quality results. How-

ever, as it used fixed control parameters, it might be inferior to other algorithms for

solving different classes of DED problems.

As no single DE algorithm performs consistently well for a wide range of optimization

problems, Elsayed et al. [105] developed a DE algorithmic framework for solving a wide

range of real-life problems, including ED ones, in which multiple search operators were

used under multiple sub-populations, the sizes of which were adaptively updated in each

generation based on the success of the evolution during previous generations. In it, they

used four different variants of mutation strategies, ‘rand/3’, ‘best/3’, ‘rand-to-current/

2’ and ‘rand-to–best and current/2’. Although the proposed framework was found to

be superior to state-of-the-art algorithms for solving static ED problems, there was no

guarantee that it would perform well for large-scale DED ones.

B.3 Particle Swarm Optimization

Over the last two decades, PSO techniques have been used to solve many real-world

optimization problems due to their simple structures and reliable performances, with

most focusing on improving their performances using different empirical analyses of

their parameters. However, the best set of parameters for one problem may not work

for another.

To solve DED problems using PSO, many researchers attempted to determine the

best set of parameters; for example, in [106], a PSO approach with time-varying ac-

celeration coefficients was designed to solve non-convex DED problems in which the

acceleration factor dynamically decreased over generations to improve performance and

avoid premature convergence. It was validated by solving five test systems and outper-

formed traditional PSO algorithms. However, its convergence rate was reduced in later

stages of the search process due to its lower values of the acceleration coefficients. To

improve the speed of convergence, a selective PSO (SPSO) method, in which a refined
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search operator was used to eliminate the particles with poor FVs and emphasize those

with promising ones, was designed [107]. It was tested on simple DED problems but ig-

nored the VPE of the cost function. Considering the VPE, the authors in [108] and [42]

proposed modified PSO (MPSO) and random draft PSO (RDPSO) techniques, respec-

tively, both of which used a dynamic penalty function to handle the equality constraints

as:

Min: F =
N∑
i=1

Ci +Kg

∣∣∣∣∣
N∑
i=1

Pi − PD − Ploss

∣∣∣∣∣ (2.42)

where Kg is the penalty coefficient which increases over generations from a predefined

value. Although this approach outperformed others, selecting the values of Kg in each

generation is a difficult task. Moreover, satisfying the chain of equality constraints for

a DED problem using this penalty function technique is very time-consuming.

Park et al. [108] dynamically reduced the search space over generations to accelerate

the convergence of a PSO. Sun et al. [42] modified the movements of particles based

on a trajectory analysis which indicated that the performance of the algorithm could be

improved when a particle converged to local optima. When compared with some state-

of-the-art algorithms, the results from both these algorithms were superior although

they were tested on only small-scale SED problems.

An adaptive PSO algorithm for solving large-scale DED problems, in which the

control parameters were dynamically updated at every stage in the search process, was

designed [109] while Yuan et al. [110] developed an improved PSO (IPSO) one for

solving the same problems. Both used a heuristic for a priority-based scheduling that

efficiently handled the equality (power balance) constraints, where the cheaper genera-

tors delivered first and the more expensive ones later. The algorithms were tested on

DED problems with up to 30 units and produced better results than state-of-the-art

algorithms. However, since allocations of the load demand were started from the first

hour when the demand was usually low (i.e., off-peak hours, see Fig. 2.3), the cheaper

generators might not have operated at their full capacities in peak hours due to ramp

constraints [3], while, conversely, the expensive ones were fully used to meet peak de-

mands. Consequently, the overall production cost for a problem might have been high,
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that is, the algorithm could have produced a biased solution in which the FVs (costs)

were inferior.

B.4 Evolutionary Programming

An EP method is very suitable for effectively solving the non-smooth, non-continuous

and non-differentiable objective functions of an optimization problem, such as an ED

one [111]; for example, a classical EP technique was used in [111] to solve a few ED

problems considering their non-smooth and non-differentiable objective functions, with

its results better than those from state-of-the-art algorithms. Hong-Tze et al. [112]

and Venkatesh et al. [113] also used classical EP approaches to solve non-convex ED

problems and their results compared with those from other algorithms, including a GA,

indicated that they were superior but required longer computational times [3].

A fast EP method based on a Cauchy mutation was employed to solve an ED

problem in [114], in which new individuals were generated from existing ones as:

~xg+1
k = ~x+ ~ηg+1

k ×Hj (2.43)

where Hj is a Cauchy random variable. Compared with a classical EP, fast EP provided

a near-global solution quickly because a Cauchy mutation has the capability to jump

towards global optima by escaping many local minima. Although this jump is beneficial

when solutions are far from the global optima, it is difficult to determine a global point

during the search process.

B.5 Hybrid Techniques

Several hybrid methods, which combined two or more approaches have been widely used

to efficiently solve non-smooth DED problems; for example, Aziz et al. [115] used a

classical EP, Victoire et al. [30] a modified EP (MHEP) and Attaviriyanupap et al. [82]

a hybrid EP (H-EP) combined with a CO method such as SQP. In all these approaches,

EP techniques were used for the global search, and SQP for fine tuning the EP solutions.



Chapter 2 Background Study and Literature Review 49

Although these algorithms obtained relatively higher-quality solutions than state-of-the-

art algorithms, their computational times were very long.

An improved DE with a gradient-based local search, in which the algorithm improved

by introducing a new crossover operator called the center-based differential exponential

crossover (CBDEX), was proposed in [116]. In it, a few best individuals were stored

in an archive population that participated with another population to generate a new

individual while the control parameter was set in a probabilistic way. This algorithm was

superior to state-of-the-art ones for solving the CEC-2011 test problems that included

an ED one. However, as it used a local search technique to improve the convergence

rate, it might be computationally expensive for solving large-scale DED problems.

To solve large-scale DED problems, some other hybrid methods, such as the bee

colony optimization (BCO) and SQP (BCO-SQP) [117], EP-SQP [82], and PSO-SQP

[83], have also been applied. In such approaches, the equality constraints in Eqn. (2.2)

were usually satisfied using the penalty function technique shown in Eqn. (2.42). How-

ever, since there were too many equality constraints in a DED problem (e.g., T for a

T− hour one) that were mutually coupled (i.e., t−hour’s constraint depends on that

of a (t− 1)−hour), although a feasible solution was obtained in the long run, it may

have become infeasible after evolving crossover and mutation, for example, in a GA. As

a result, the convergence rate was indigent and returned to a local solution.

B.6 Multi-method Techniques

Multi-method EAs integrate two or more optimization techniques in order to combine

their strengths and overcome each other’s weaknesses to solve optimization problems.

This idea has been used for solving many optimization problems; for example, both

Spears [118] and Eiben et al. [119] developed adaptive GA frameworks with multiple

crossover operators for solving unconstrained problems. They divided a population into

a number of sub-populations, each of which used a particular crossover operator, with

their sizes updated according to the success of their crossovers. Elsayed et al. [120] pro-

posed a multi-operator evolutionary framework using GA and DE for solving constrained

and unconstrained optimization problems, with the experimental results demonstrating
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its superiority to state-of-the-art methods. Elsayed et al. [121] also developed a gen-

eral framework for combining several EAs (e.g., GA, DE, ES, EP) each of which used

multiple operators with an individual sub-population, the size of which was adaptively

updated. This framework was applied to solve two sets of constrained problems and it

was determined that it outperformed single operator-based single-algorithm approaches.

Similar works are found in ref. Skolicki [122] and Skolicki et. al. [122] in which popula-

tions were divided into sub-populations, each of which used a different EA but shared

information between the two algorithms differently.

However, to the best knowledge, adopting such approaches to solve highly complex,

constrained and real-world electrical power generator-scheduling problems, such as DED

ones, has not yet been explored.

2.8.2 Solving Renewable-based DED Problems

In this section, a review of different methods for solving renewable-based DED problems,

such as hydro-, wind- and solar-thermal ones, is presented.

A Hydro-thermal DED

In a hydro-thermal system, the aim is to schedule the mixed-power plants under con-

sideration to minimize the total cost while satisfying the demand, generation capacity

and many hydro constraints such as water storage and discharge. This problem is much

more challenging than a conventional thermal-based DED one because the hydraulic

constraints change over time [7].

Over the last few decades, several optimization methods have been successfully

applied for solving different types of hydro-thermal DED problems, with conventional

ones, such as Lagrange multipliers [123], DP [124], dual programming [125], mixed IP

[126] and primal-dual IP [127], used for smaller-scale SED problems with single-hour

load allocations.

To solve large-dimensional hydro-thermal DED problems, several population-based

algorithms have been successfully applied; for example, Gil et al. [128] developed a GA



Chapter 2 Background Study and Literature Review 51

for solving a 24-hour DED problem considering binary representations of the decision

variables. Although their results showed that this approach obtained better solutions

than conventional ones, it was validated on only small-scale problems. To address large-

scale hydro-thermal DED problems, an enhanced GA with a priority-list heuristic for

handling the equality constraints, where the allocation of production was performed on

a priority basis which meant that the cheaper ones were dispatched first and the inferior

ones later, was developed [129]. This method was validated by solving a simple hydro-

thermal DED problem considering the convex cost function but ignoring the VPE. A

non-smooth, non-convex hydro-thermal DED problem with the VPE was solved using

both a real-coded GA (RCGA) and BCGA [130], with the results obtained demonstrating

that the RCGA outperformed the BCGA but, as these algorithms were not compared

with other state-of-the-art ones, it was not clear if they would perform better.

In [131], although a conventional DE outperformed other state-of-the-art algorithms

for solving hydro-thermal DED problems, its computational time was long. To tackle

this drawback, in [132], a dynamic reduction in the population size of DE and, in [15], a

parallel DE were developed, both of which analyzed the DE’s parameters and determined

that their selection had a significant influence on their performances. To randomly

control those parameters, a DE for solving a hydro-thermal DED problem was proposed

in [133]. However, as the control parameters were randomly updated in each generation,

there was room to improve the solution quality by updating them more logically.

Also, several researchers tested various versions of PSO algorithms for solving hydro-

thermal DED problems; for example, Yu et al. [134] applied different variants and found

that the local versions outperformed other algorithms as the diversity of the population

in a local one was maintained throughout the search process. Jadoun et al. [135]

developed an enhanced PSO (E-PSO) in which the control parameters were dynamically

updated using the exponential functions for better exploration. Their method obtained

better results than a conventional PSO for two hydro-thermal DED problems but its

computational time was longer than those of conventional and other state-of-the-art

methods.

Moreover, several meta-heuristic-based approaches for solving different hydro-thermal

DED problems, such as GA, DE, PSO and EP, have been successfully applied, with most
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of them trying during the process to find their best set of control parameters for better

performances. However, there is still a great deal of potential to obtain better-quality

solutions by improving an algorithm’s performance. Also, the problem itself can be

improved by considering the uncertainty factors of hydro sources.

B Wind-thermal DED

As previously discussed, wind energy is a promising renewable source currently used

extensively in power systems to meet many electricity demands. However, as it is only

imprecisely predicted for the long term, a method for solving an uncertain wind-thermal

DED problem is one of the challenging issues in the operation of a power system. Re-

cently, several researchers developed different approaches for solving non-smooth, multi-

modal and non-convex wind-thermal DED problems, with most using different meta-

heuristics for their stochastic characteristics, for example, Jadhav et al. [136] applied

a modified ABC algorithm to solve a wind-thermal DED problem. In it, the best indi-

vidual always participated in generating offspring which resulted in a greatly improved

convergence rate and, although it was trapped in a local minimum as the diversity of the

population was not properly maintained, this algorithm performed better than state-of-

the-art ones. To maintain diversity, Peng et al. [137] introduced a bi-population chaotic

DE (BCDE) algorithm for solving a wind–thermal DED problem and a chaotic quantum

GA (CQGA) was developed in [95]. Both methods used a chaotic mutation based on

chaotic sequences which helped to increase diversity among the population. A hybrid

PSO with a gravitational search algorithm (GSA), in which PSO was used to explore

the decision space and GSA to fine tune the solutions, was developed in [35]. Although

this method had a fast convergence speed for obtaining a local solution, its total compu-

tational time was too long. Moreover, in the above methods, wind power was considered

deterministic based on forecasted scenarios with the uncertainty of wind speeds ignored.

Considering uncertainty, researchers formulated stochastic DED models which in-

corporated a random variable for the wind speed. Then, several solution approaches,

such as a neural network [138], fuzzy optimization [139], and Weibull distribution ap-

proach [140–143], were used to solve stochastic wind-thermal DED problems. In the

fuzzy method, the wind speed was considered a fuzzy variable and the fuzzy set theory
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used to represent a DED problem. Two parameters of the Weibull distribution, scale

and shape, were determined from historical data and then converted into a probability

DED model [144]. A few authors, such as Mondal et al. [145] and Peng et al. [137]

used penalty function approaches to determine the impacts of inaccurate estimations of

the wind’s energy caused by its uncertain nature; for example, a probabilistic analysis

of cases in which the expected values of wind power generation were over- and under-

estimated [146]. As the penalty function sometimes has a great impact on a system’s

operation, it’s difficult to choose an appropriate one for a certain system.

To overcome the drawbacks of penalty functions, researchers recently used scenario-

based probabilistic DED models in which the scenarios represented the stochastic be-

haviors of variable load demands, intermittent generations from wind power and failures

of generators [147, 148]. However, in these methods, Monte Carlo (MC) sampling was

often used to generate scenarios of wind speeds which was a very expensive approach

because of its heavy computational burden [149]. Therefore, Markov chains [150] with a

roulette wheel mechanism [34, 139] were used to generate appropriate predictive values

of the wind speeds and load demands over a 24-hour time period. In this approach,

many scenarios were initially generated using a Markov transition matrix determined

from large amounts of historical data. Each scenario involved data of hourly wind speeds

and load demands which had one-to-one relationships with the time intervals. Moreover,

each scenario had a certain normalized probability, with those with lower probabilities

deleted based on a simultaneous backward scenario reduction technique [150] because a

large number of scenarios would increase the computational burden.

Later, a probabilistic DED model, in which each scenario was solved using various

optimization methods, such as MILP [151], the branch and bound algorithm [152] and

the 2m-point estimated method (PEM) [139], was formulated. Although conventional

algorithms were chosen due to their fast searching features, the VPEs of their cost

functions increased the difficulties of solving a wind-thermal DED problem with non-

smooth, non-linear and non-convex characteristics [34, 153]. For this kind of complex

problem, solution approaches based on MP may fail to reach the global optimum, a

shortcoming which motivated the development of alternative methods, such as EA and

SI techniques [34].
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Therefore, several meta-heuristic methods, such as DE [137], GA [154, 155], and

PSO [34], were successfully applied to solve wind-thermal DED problems based on a

single period of load demand. However, work on implementing them to solve a multi-

period, high-dimensional complex uncertain wind-thermal DED problem is still limited,

with the major obstacle that a problem may lose diversity [150].

C Solar-thermal DED

As the penetration of solar power in power systems has significantly increased, its in-

teractions with conventional thermal units need to be investigated. For the better co-

ordination of solar-thermal power, a DED problem with an efficient solution method

is required to determine the optimal dispatch scheme that can reliably and effectively

integrate solar energy [38]. Recently, a few solar-thermal DED models and their solu-

tion approaches, most of which used different meta-heuristic algorithms, were developed;

for example, an RCGA in [36] and harmony search (HS) in [33] were applied to solve

non-smooth solar-thermal DED problems considering the VPE of the cost function for

a thermal generator. However, both these algorithms suffered from premature conver-

gence and became trapped in local minima. Jeddi et al. [33] proposed a new mutation

operator based on the roulette wheel mechanism for HS, with its performance inves-

tigated by solving some solar-thermal DED problems. Although the results indicated

that this operator could improve the quality of solutions, the method was tested on only

small-scale problems.

Other EAs, such as GA, DE and EP, were also used to solve different solar-thermal

DED problems [3], with most using penalty function techniques to handle constraints.

Although these approaches were easy to implement, as maintaining feasible solutions

throughout the whole evolutionary process was very difficult, to obtain optimal solu-

tions, high computational costs were incurred. On the other hand, a few of them [3]

used a feasibility-based selection technique, as previously discussed, to select individuals

from the parents and offspring. Although it was widely used for COPs, satisfying several

equality and dynamic ramp constraints in a solar-thermal DED problem is still a chal-

lenging task. Moreover, the abovementioned methods did not consider the uncertainty

of solar irradiation which was a big assumption for this problem.
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ElDesouky [16] formulated a stochastic solar-thermal DED problem in which the un-

certainty of solar irradiation was determined based on the Weibull PDF that was solved

using a conventional PSO with a Newton-Raphson (NR) method used to meet/satisfy

the non-linear equality constraints. Although this PSO-NR method obtained a feasible

solution quickly, it took a long computational time to reach a high-quality one. Khan

et al. [39] proposed another variation of an uncertain solar-thermal DED problem in

which the uncertainty of solar irradiation was considered an objective function and ag-

gregated to the cost function. Then, they applied a binary PSO to a practical test

problem taken from the Islamabad Electric Supply Company (IESCO). However, the

performance of this algorithm was not clear as it was not compared with those of any

other state-of-the-art algorithms.

2.8.3 Bi-objective DEED Problems

So far discussed, DED problems with and without uncertainties have been solved by

minimizing the fuel cost both with and without considering emission reductions as a

constraint. However, as minimizing gas emissions into the environment is now vital,

these problems can be solved as bi-objective DEED ones.

Over the last few years, different methods for solving bi-objective DEED problems,

such as thermal, wind-thermal, solar-thermal and hydro-thermal, have been developed.

Several researchers reformulated a bi-objective DEED problem into a single-objective

optimization one, with the objective set as a linear combination of two objectives [43].

In the literature, this type of objective is also known as a composite one [43]. To solve

a composite problem, different EAs, such as GA [43], DE [99], PSO [156] and binary

PSO (for a solar-thermal problem) [39] were used to produce a single solution. However,

when solving a bi-objective DEED model as a composite objective, as it was difficult to

generate a Pareto frontier with a uniform distribution of solutions [157], it was necessary

to solve the models many times to produce a set of trade-off solutions. Moreover, for a

linear combination of two objectives, it was very difficult to select an appropriate penalty

factor for normalizing the scales of those objectives.
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Recently, a few researchers began using different multi-objective EAs (MOEAs),

which are capable of obtaining a set of Pareto optimal solutions instead of a single one

in composite problems, to solve bi-objective DEED problems. In contrast to obtaining a

single optimal solution to a composite objective problem, the solutions to multi-objective

problems are presented as a set of alternative solutions that forms a Pareto frontier.

These are known as Pareto-optimal solutions, where no one can be considered better

than the others, and it is usual practice to produce them for multi-objective optimization

problems [20].

During the last decade, various EAs, such as the multi-objective GA (MOGA),

niched Pareto GA (NPGA), non-dominated sorting GA (NSGA), NSGA-II, multi-objective

DE (MODE) and multi-objective PSO (MOPSO) have been studied. The basic idea of

Pareto-based EAs was to find a set of solutions in a population that were not dominated

by the rest of the population, assign them the highest rank and eliminate them from

further contention.

Of various multi-objective EAs, a NSGA-II [20] has been widely used to solve con-

strained multi-objective problems; for example, Purkayastha et al. [158] applied one

with an adaptive crowding distance mechanism to improve diversity when solving a

bi-objective DEED problem. Although this proposed method was tested on a 40-unit

test problem, the results were not compared with any others, even those of the tradi-

tional NSGA-II. Also, when the modified crowding distance was applied, the solutions

with lower crowding distances were rejected as survivors for the next generations and, al-

though diversity was improved, the convergence rate decreased. To tackle this drawback,

an NPGA with a clustering technique, in which the tournament size for the crossover was

adaptively set, was developed in [159, 160]. The algorithm started with a large popula-

tion and the clustering technique was used to determine the manageable non-dominated

solutions from the population members. This method was tested on a 6-unit static prob-

lem, with the results indicating that it obtained a wider set of Pareto solutions than

other state-of-the-art algorithms. Later, the same authors developed the MOPSO to

solve the same problem [161] using the abovementioned clustering technique to update

the set of non-dominated solutions. A comparison of the NPGA and MOPSO methods

showed that the latter performed better in terms of the quality of the non-dominated
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solutions obtained. However, both were tested on only a small-scale problem with a

single-hour load demand. Basu [162] developed a MODE for solving a 24-hour DEED

problem in which a non-dominated sorting technique [20] was used as a selection opera-

tor in a DE algorithm. It was the best of several other MOEAs but, since its parameters

were arbitrarily set, it might not work well for other DEED problems.

However, multi-objective mixed DEED problems, such as hydro-, wind- and solar-

thermal ones, have not been fully studied in the literature. Recently, a few attempts were

made to solve mixed bi-objective DEED problems using MOEAs, such as a NSGA-II

and MODE for hydro-thermal [17, 163], and MOPSO for wind/solar-thermal [16, 164].

Although these methods had the capability to generate the entire trade-off solutions in

a single run, to handle a large number of equality constraints, they required extensive

computational time and some also simplified the DEED formulations by ignoring ramp

constraints.

2.8.4 Bidding Problems

As previously mentioned, the bidding problem is another important optimization one in

an energy market. An extensive review of different solution techniques related to this

problem in the literature is presented in this section.

During the last decade, the numerous techniques designed to solve bidding problems

with the aim of determining the optimal bids of each participant in a deregulated energy

market can be broadly categorized as two types, non-game- and game-based [165]. In

a non-game-based method, this problem is solved for a particular player while ignoring

other players’ bidding behaviors [47]. In this process, a GENCO or consumer first

forecasts the MCP and rivals’ bids, and then solves a profit maximization problem using

an appropriate algorithm, such as a dynamic, fuzzy linear or stochastic DP one [22].

However, estimating the MCP and rivals’ bids is very difficult and, even after doing so,

the actual profits may vary significantly from predictions as it is assumed that the LMP

is independent of players’ submitted bids [166].

On the contrary, in a game-based method, a player optimizes its choices, called

bidding strategies, by investigating the interactions of its rivals. In it, a GENCO or
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retailer is represented as a player, economic benefits constitute payoffs and players’

options are treated as strategies. Then, a game is formed by several players, each of

which ultimately chooses one strategy from a set of known ones that has a payoff assigned

to it based on the profit function each wishes to maximize [24]. The profit of a player

depends on its own and its rivals’ actions that rely on the respective players’ interests

but are not specified [13]. Once all players have chosen their actions by maximizing their

individual profits with respect to the actions of others, the optimal bidding strategies of

all the players in a deregulated electricity market are obtained [167, 168].

Game-based bidding problems are broadly categorized as two types based on the

players’ characteristics, (i) cooperative and (ii) non-cooperative [169]. In the former,

the participants coordinate their strategies to maximize their profits while, in the latter,

a player maximizes its profit regardless of those of its rivals, with no commitment to

coordinating their strategies [170]. However, the non-cooperative model is more appeal-

ing due to its realistic characterizations of the strategic variables which reflect real-life

bidding rules in an electricity market [47, 171].

In a non-cooperative bidding problem, each player has a set of bidding strategies,

one of which is submitted to obtain the maximum profit and is known as its payoff. A

player obtains a maximum payoff when its best strategy is selected with respect to the

strategies of its rivals. Once all the players find their best strategies, an outcome called

the Nash equilibrium (NE) is reached. An NE is a stable state in a game in which a

player cannot improve its profit unilaterally if the actions of its rivals remain unchanged

[13].

The most popular method for determining an equilibrium of a non-cooperative game

is the concept of finding an NE [172]. If s, is a strategic profile of S, the best strategic

profile (s∗) is an NE when no player has anything to gain by changing only its own

actions or strategy. Let πi be a profit value of player i ∈ N and a set of the best

strategies of its rivals s∗−i; then s∗ is an NE, when no strategy of a player is profitable

except s∗, that is if, for all players i ∈ {1, . . . , N} and all the strategies sij ∈ Si (sij is

the jth strategy of player-i) satisfy the inequality constraint, as [172]:
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πi(sij , s∗−i) ≤ πi(s∗), i ∈ N, j = 1, 2, . . . , NSi (2.44)

where NSi is the number of strategies of player i ∈ N .

Determining the NEs in a competitive electricity market is a challenging optimiza-

tion problem which is even more difficult when more than one NE are determined. Based

on the number of NEs, a game can be called a pure or mixed strategy if it has a single

or multiple NEs, respectively. For a mixed strategic game, at least one player has an al-

ternative action available to obtain the same profit [173]]; for example, in the two-player

prisoners’ dilemma game [174] with two different payoff matrices illustrated in Fig. 2.12,

where the rows of matrices correspond to the profits of the possible actions for player

A and the columns those for player B. It can be seen that the left matrix has only one

equilibrium point of (0, 0) while the right has two different ones of (8, 7) and (7, 8). In

a pure strategy, each player has a specific action to play to obtain its maximum profit

while a mixed strategy is an assignment of the probability of the equilibria. Several

methods based on different conventional and meta-heuristic approaches for determining

a single or multiple NEs have been developed, as discussed below.

A Computing Nash Equilibria

Computing either a single or multiple NEs for solving an N− player game is difficult

and an NP-hard problem [175]. It becomes even more challenging if the characteristics

of the game are continuous instead of traditional discrete ones. In a discrete game, each

player has a set of discrete strategies, with the size of a payoff matrix dependent on

the permutations of all possible discrete strategies while, in a continuous one, a player

has a mathematical function with the variables defined within a range and the size of
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the payoff matrix becoming infinite. Most methods in the literature aimed to find an

NE for a discrete game; for example, the bi-matrix approach developed by Lemke and

Howson [176] for finding one equilibrium for a two-player discrete game which was later

generalized to solve N− player games [177].

Then, many researchers inspired by the Lemke-Howson algorithm developed several

modified bi-matrix games; for example, Shapely [178] presented a geometrical repre-

sentation of the Lemke-Howson algorithm for a non-degenerate case while Eaves [179]

developed a modified bi-matrix game for a degenerate one. The difference between de-

generate and non-degenerate games is that, in the latter, there must be a few solutions

with the same profits for some players while, in the former, the constraint is not neces-

sary [19]. Anne Balthasar [180] developed a modified bi-matrix game which was shown

to be better than the actual Lemke and Howson bi-matrix one. In [181–183], the authors

proposed three different algorithms, a Newton, iterative approximation and decomposi-

tion, respectively, to determine an NE in an N− person discrete game. Although their

methods successfully identified NEs for up to 12 players, their computational times were

long.

An alternative approach for efficiently finding an NE for a discrete game was for-

mulated as a non-linear optimization problem in [184] in which it was proven that an

optimal solution with a zero FV of the model was exactly the same as the NE of a given

game and was called a zero-sum game. However, the method in [184] obtained a local

solution for a non-convex game. Later, some EAs, such as GA [185] and DE [186], were

developed to determine the global NE of zero-sum and non-convex games. Furthermore,

N − player games were efficiently solved using a hybrid technique which combined both

bi-matrix and zero-sum game techniques [187] in which a hierarchy technique was used

whereby zero-sum games were applied at the beginning and general bi-matrix ones at

the end. Although this method was useful for determining an NE for even a large game,

it was only applicable for discrete ones.

On the other hand, most real-world problems are in the form of a continuous game,

such as the game-based model of a bidding problem [188] which can be formulated

into four equilibrium models, the (i) Bertrand, (ii) Cournot, (iii) Stackelberg and (iv)

supply function equilibrium (SFE) [167, 168]. In the Bertrand game, the market price is
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considered a bidding variable in which it is assumed that all the players have a constant

unit cost, with capacity constraints ignored when competing on the price offered to

consumers. In both the Cournot and Stackelberg models, the amount of power to be

produced by each player is considered a strategic variable, with the difference between

these approaches being that the former allows the strategic variables of all players to be

simultaneously improved while, in the latter, the leader improves its strategic variable

first and then the followers sequentially change theirs. As a consequence, because all

players in the Stackelberg model do not choose their quantities simultaneously, the

largest one acts as the leader and can manipulate the market. In the SFE model, a

linear function is used for each bidder’s strategic variable, where the coefficients of the

supply function are simultaneously improved to reach the maximum profit [189]. Of

all these models, the non-cooperative SFE one is the most popular among researchers

and practitioners [47, 171]. An SFE model has been applied to the English and Welsh

wholesale electricity spot markets to analyze their competitive strategic bidding practices

[168]. In the following section, different solution methods for a SFE model are discussed.

B Solving SFE model

Recently, solving a non-cooperative SFE model of a bidding problem has attracted a

great of attention, and it has been formulated as a bi-level optimization problem in which

each player maximizes its profit in the upper level while the ISO’s CSW is maximized

in the lower level by solving a non-linear OPF optimization problem [4, 169]. However,

as this bi-level problem contains a nested optimization task within the constraints of

another optimization problem [169] and becomes more complicated in the presence of

its difficult mathematical properties, such as multi-modality, non-convexity and non-

differentiability [169], conventional methods for solving it are inefficient. Subsequently,

different EAs, such as GA [24, 190–192], EP [188] and a bat-inspired algorithm [41, 47],

for solving these problems are now generating interest in the research community; for

example, Azadeh et al. [24] applied a GA to determine the optimal bidding strategies of

GENCOs in both cooperative and non-cooperative electricity markets. In [192], another

GA was used to solve a scenario-based bi-level strategic game in which a player optimized

its bidding strategy by predicting the possible bidding scenarios of its rivals determined
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from historical data. However, as there were risk factors associated with assuming

opponents’ bids when a player optimized its own, an information-gap decision theory

(IGDT) was used to formulate a risk-based optimal bidding strategy optimization model,

with a modified PSO (MPSO) used to solve it [53].

In the abovementioned methods, game-based bidding strategies were used with the

bids represented as discrete quantities, such as high, medium and low. The payoff

matrices were determined by computing all possible combinations of the strategies and,

subsequently, an equilibrium state of the bidding game corresponding to the optimal

bidding strategies was obtained. Moreover, in many of these methods, consumers were

considered non-strategic and the number of players reduced to the number of GENCOs

while customers could buy only predefined amounts of electricity from the market.

Conversely, a strategic customer is one that can participate in the bidding process,

thereby increasing the number of players in that game. Considering a strategic consumer

in a game, the SFE model was solved using four different types of bidding parameters,

intercept, slope, slope-and-intercept, and slope intercept, with the slope and intercept

one of the bidding curve a strategic variable in order to achieve a definite equilibrium

[189, 193]. To obtain the NE for a competitive energy market, iterative (IT) solution

approaches based on a GA [5] and bat-inspired algorithm [47]], in which the bidding

strategy of a player was iteratively updated while the other players retained their bidding

strategies as their best ones, were used. Once all the players updated their best bidding

strategies in a hierarchy, the NE was found. However, as the bidding strategy of each

player was updated sequentially in each iteration, approaching the NE was very time-

consuming even for a small problem and required a long computational time for a large

one.

The co-evolutionary (CE) algorithm that uses an individual sub-population for each

player is an alternative approach for simultaneously determining the optimal bidding

strategies of all players and results in a significant reduction in the computational time

required compared with those of iterative methods. In the literature, the following

CE approaches for solving different competitive energy markets have been successfully

applied.
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C CE-based Solution Methods for SFE model

Over the last two decades, a few CE-based approaches for solving the SFE model of the

bidding problem have been applied [1, 6, 194]; for example, a CE one based on a GA

was developed to determine the multi-period optimal bidding strategy for an oligopoly

electricity market [195]. In it, there were different sub-populations, each of which used

a reinforcement learning algorithm to increase a player’s profit from one trading period

to the next based on experience from past trading hours. Chen et al. [165] developed a

CE approach based on a GA for solving the real-world electricity market in which two

different SFE models, the affine and piece-wise affine cost functions, were solved and an-

alyzed, with the solution rapidly converging to the affine one. In order to obtain an NE,

another CE-based solution approach was tested in two different competitive electricity

markets, spot and settlement, with the simulation results indicating its effectiveness for

finding optimal strategies in both markets [196].

In most of the abovementioned approaches, an EA was used on the upper level

to determine the optimal bidding strategy of a bi-level problem, with simple LP or

Lagrange multipliers used to solve the lower level to determine the dispatch quantity

and LMP of each player. Since the lower-level problem contained a non-convex and non-

linear objective function, conventional techniques failed to identify optimal solutions and,

consequently, the upper-level solution might have been a local one [197]. Considering TC

in the model, the optimization space became discrete which meant that the problem had

multiple NEs [24]. Although most of the abovementioned approaches were successfully

used to find a single NE of a continuous or discrete game, they were not applicable for

solving games which may have had multiple equilibria. They could not guarantee to

converge to the optimal solution when there wasn’t an NE or provide a local solution in

the presence of multiple NEs [198]. However, multiple solutions to mixed strategic games

can be different in terms of profit, stability and commitment, with a single equilibrium

maybe not capable of providing adequate information for a player to make a decision.

To obtain all the equilibria of a mixed strategic game is a very challenging problem

often formulated as a non-convex and non-smooth optimization one [13], with different

CI methods used to solve it [19], most of which required multiple runs to obtain multiple
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equilibria. Also, it was not guaranteed that an algorithm could converge to a previously

detected NE. To obtain multiple equilibria in a single run, three CI methods, covariance

matrix adaptation evolution strategies (CMA-ES), PSO and DE, employing a multi-start

and deflection technique were developed in [13]. Their algorithms obtained more than

one local minimum of the objective function of the optimization problem which were

multiple NEs of the game. However, as they were developed for only discrete games,

extending them to solve continuous ones, such as energy market equilibrium problems,

is not straightforward and, to the best of our knowledge, determining multiple NEs of

an energy market game has not yet been explored.

2.9 Chapter Summary and Research Directions

In this chapter, an introduction to different ED and bidding problems and their im-

portance in the energy market was presented. Numerous techniques for solving these

problems, including CO and CI methods, were briefly discussed.

Based on the literature review, it was found that EAs are very popular for solving

both ED and bidding problems due to their stochastic searching feature, with an adaptive

EA outperforming a simple one. However, they suffered from their inability to handle

a large number of equality and inequality constraints, manage the uncertainties and

improve the convergences of DED problems, and determine multiple NEs of a bidding

problem in a relatively low computational time. These research gaps are considered

in the following chapters, with a self-adaptive EA and efficient heuristic technique for

handling large numbers of constraints when solving many DED problems proposed.



Chapter 3

EAs for Thermal-DED Problems

This chapter discusses the importance of solving the dynamic economic dispatch

(DED) problem, describes the problem, presents its mathematical formulations, provides

an overview of existing solution approaches and presents the algorithms developed and

the motivation. The design of two algorithms: a self-adaptive differential evolution

(DE) and genetic algorithm (GA) with a new heuristic technique are discussed in detail.

Finally, the experimental study and outcomes are provided.

3.1 Introduction

As discussed in Chapter-2, the main objective of a power system’s operation is to supply

electrical energy to consumers at a minimum production cost which depends directly on

the fuel cost of electricity generation. Therefore, power industries are now focusing on

generating electricity at the lowest possible fuel cost.

In practice, a power system has several power plants which vary significantly in

terms of their operating costs and generation capabilities. A system operator needs to

appropriately schedule the available generators in the most profitable way. To do this,

an economic dispatch (ED) problem that schedules them to meet the load demand for

an hour at the minimum production cost by satisfying operational and environmental

constraints is often used. Although the solution to an ED problem may be beneficial

for an hour, it may not work for the next or following few hours, depending on demand,

because the generation from units may not change significantly over these operating

The following article has been published based on this Chapter:
[1]. M. F. Zaman, S. M. Elsayed, T. Ray and R. A. Sarker, "Evolutionary Algorithms for Dynamic
Economic Dispatch Problems," in IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1486-
1495, March 2016.
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hours due to ramp limits. A ramp limit is defined as the rate of change in a unit’s

production between two consecutive hours.

The DED model can achieve hourly optimal scheduling for a certain time horizon

(usually 24 hours) taking into account the intrinsic links among components of the sys-

tem at different times, such as the ramp rate of a thermal generator. The DED problem

is one of the significant real-world important optimization problems that ensures reliable

and economical operation in power system. However, its computational process is more

complex than that of a conventional ED because of its large number of decision variables

and chain of equality constraints. Moreover, in many real-life situations, the scheduling

of generators has to be updated with changes in the data and availability of new in-

formation. For a DED problem, updated scheduling is obtained using a rolling horizon

approach in which the generators are rescheduled when the demand and operational

data are changed for a period within the planning horizon [199]. Therefore, solving a

real-time DED problem is very challenging and an important research topic in terms of

power system operation.

A DED problem can be categorized as thermal, wind-thermal, hydro-thermal and

solar-thermal based on the types of generators involved. In this Chapter, the thermal-

based DED problems are considered (the others are discussed in following Chapters) as

most of the production costs in a power system are related to thermal generators.

Solving thermal-based DED problems has a long history. However, as most current

solution approaches are inefficient for solving a real-time one because of its dimension-

ality, non-convexity and multi-modality, in this Chapter, an efficient solution method is

developed.

3.2 Description of Thermal-DED System

In this section, a thermal-based DED problem is described.

The DED problem is a non-convex, non-smooth, constrained optimization one, with

its objective to minimize the operating cost by scheduling the available generators to

meet load demands over a cycle of T hours. Although, traditionally, the cost function
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is considered quadratic, in real life, large steam generators have a multi-fuel option and

some ripple appears on the cost function while steam is admitted through a valve which

is known as the valve-point effect (VPE) [28]. Subsequently, the cost function becomes

non-smooth, non-convex and multi-modal characteristics, as shown in Fig. 2.1.

As the equality constraints mitigate the load demands over the specified time hori-

zon, if a DED system performs for T hours, there are T equality constraints while the

inequality constraints involve the overall generation capacity as well as the ramp limits.

Also, a real-life power system encounters some unexpected events, such as unit faults

and demand changes. To counter this, a spinning reserve (SR), usually the largest unit’s

capacity for scheduling, is considered an inequality constraint to increase the system’s

reliability.

The decision variables of this problem are the electricity output from each generator.

Since the DED problem schedules the generators for T hours, the number of decision

variables is T ×NT , where NT is the number of thermal units.

The typical power system network shown in Fig. 3.1 depicts four thermal generators,

each with a specific capacity limit and different per unit cost, and six loads. The objective

of the DED problem is to schedule these generators to serve the loads over a time horizon
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of T hours at the minimum cost while satisfying the ramp, capacity and SR constraints.

The mathematical formulation of this DED problem is discussed in the following section.

3.3 Mathematical Formulation

In this section, the mathematical model of a thermal based DED system is presented. It

is assumed that a given number of generators will be considered by a unit commitment

(UC) problem and that these generators will be operated for certain time periods (T ).

3.3.1 Objective Function

In a DED problem, the objective function is to minimize the sum of all fuel costs for the

thermal power plants under consideration which can be expressed as:

Minimize FC
(
PTi,t

)
=

T∑
t=1

NT∑
i=1

Ci,t (3.1)

where NT is the number of thermal power plants, T the operational cycle and Ci,t the

fuel cost of the ith thermal generator at tth time. The characteristic curve of C is usually

expressed by a quadratic function. However, the sudden opening of the intake valve of

a steam turbine may cause a VPE which can be reflected by integrating a rectifying

sinusoidal wave in the main function. The fuel cost function, including the VPE of each

thermal unit, can be expressed as [14]:

Ci,t
(
PTi,t

)
= ai + biPTi,t + ciP

2
Ti,t

+
∣∣∣di sin

{
ei
(
Pmin
Ti,t
− PTi,t

)}∣∣∣ ∇i, t ∈ T (3.2)

where ai, bi, ci, di and ei are the cost coefficients of the ith thermal generator, and

Pi,t the electricity output of ith generator at tth time interval which is also the decision

variable for the thermal-based DED problem.
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3.3.2 Constraints

In this research, a number of constraints, both equality and inequality types, some of

which are nonlinear and some dynamic in nature are considered, as discussed below.

A Power Balance Constraints

Since electricity cannot be stored economically, its generation must meet demand on

a real-time basis which means that the total generation planned must be equal to the

demand in a given load period as:

NT∑
i=1

PTi,t = PDt + Plosst t ∈ T (3.3)

Plosst =
Nt∑
i=1

NT∑
j=1

PTi,tBi,jPTj,t t ∈ T (3.4)

where PD,t the electricity demand at tth hour, and Ploss and B the power loss and its

coefficients, respectively.

B Generator Capacity Constraints

Each generator has a capacity bound as:

Pmin
i ≤ PTi,t ≤ Pmax

i i ∈ NT , t ∈ T (3.5)

where Pmini and Pmaxi are the minimum and maximum thermal power limits, respec-

tively.
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C Generating Unit Ramp-rate Constraints

Although many studies of DED have simplified their models by assuming that a unit’s

generation output can be adjusted instantaneously, this does not reflect the actual op-

erating conditions of generating units. The ramp rate is described as a unit’s power-

response capability in terms of accommodating power changes in a specified time inter-

val. The operating ranges of all on-line units are restricted by their ramp-rate limits as

expressed by:

PTi,t − PTi,t−1 ≤ URi i ∈ NT t ∈ T (3.6)

PTi,t−1 − PTi,t ≤ DRi i ∈ NT t ∈ T (3.7)

where URi and DRi are the upward and downward ramp limits of ith thermal generator,

respectively.

D Spinning Reserve Requirements

In real life, a power system network suffers a number of unexpected events, such as load

changes and failure of a certain large operating unit. In order to increase its reliability

and avoid errors, three safety factors included in this model are:

NT∑
i=1

Pmax
Ti
− (PDt + Plosst + SRt) ≥ 0 t ∈ T (3.8)

NT∑
i=1

min
(
Pmax
i − PTi,t , URi

)
− SRt ≥ 0 t ∈ T (3.9)

NT∑
i=1

min
(
Pmax
i − PTi,t , URi/6

)
− SRm

t
≥ 0 t ∈ T (3.10)
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where SRt and SRmt are the hourly and 10-minitues spinning reserve (SR) requirements,

respectively. Constraints in Eqns. (3.7) and (3.9) are frequently applied in DED prob-

lems to satisfy the one-hour SR requirements, and constraint on Eqn. (3.10) used to

satisfy the SR requirements for the operated generators in each time within 10 minutes

which is related to the ramp-up rate constraint of that unit
(
URi

6

)
.

3.4 Solution Approaches

As discussed in Chapter-2, all the approaches for solving DED problems in the literature

can be categorized as: i) conventional optimization methods; and ii) meta-heuristic-

based optimization techniques [14]. Although the former are computationally efficient,

they deal mainly with convex cost functions [81] and, as the cost function with the VPE

is non-smooth and non-convex, they are incapable of generating good-quality solutions.

On the other hand, as meta-heuristic-based optimization techniques do not require

certain mathematical properties of the objective function to be satisfied and have been

successfully applied to many complex practical optimization problems, they have become

more popular than conventional ones [200].

3.4.1 Motivation

As previously mentioned, meta-heuristic algorithms are widely used to solve thermal-

based DED problems. In many of these methods, the equality constraints are typically

handled using a penalty function technique and the problem solved as an unconstrained

one. Although this may obtain good objective values, it does not ensure feasibility [201]

and selection of the penalty factor is very challenging. Conversely, some researchers

used a feasibility-based selection operator [20] with a meta-heuristic algorithm to solve

DED problems, with an individual with a lower constraint violation (CV) preferred.

As a DED problem has many equality constraints, those that are mutually coupled af-

fect the capability of an algorithm to reach a feasible solution. Even after obtaining

a feasible individual in many generations, it is challenging to maintain its feasibility

after applying search operators with a meta-heuristic algorithm, such as a GA, because
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Fig. 3.2: A sample set of solutions for a 5-unit DED problem

sometimes, a feasible individual may then move away from the feasible area to an in-

feasible space. To demonstrate this, an experiment is performed using the simulated

binary crossover (SBX) and non-uniform mutation (NUM) operators of GA, with the

probability of crossover, distribution index and probability of mutation set to 0.9, 3 and

0.1, respectively. After solving a 5-unit DED problem, the numbers of feasible individ-

uals (out of 100) before and after applying these search operators are presented in Fig.

3.2. It is clear that the first feasible solution is obtained after 877 generations while

approximately 50% of the individuals become worse (according to their CVs) when both

crossover and mutation operators are applied.

Also, it was found that EAs might suffer from premature convergence and become

trapped in local solutions [3], with their performances highly dependent on their control

parameters, population diversity and constraint-handling mechanism. Therefore, in this

Chapter, special care is taken in the designs of an efficient GA and DE algorithm for

solving complex DED problems, as discussed in the following section.
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3.5 Proposed Algorithm

In this section, two proposed algorithms incorporating a new heuristic technique are

presented. The first is called the enhanced GA (E-GA) and the second the enhanced

DE (E-DE). Both begin with an initial population in which NP individuals are randomly

generated using Latin Hyper-cube (LHS) sampling [202]to ensure that they are evenly

distributed over the optimization area. Then, in subsequent generations, new individuals

are generated using the search operators of either the GA or DE. To avoid difficulties

in selecting the best set of control parameters for the DE, a self-adaptive approach is

employed while, to increase diversity among the individuals in the GA, a non-uniform

mutation operator is used. To evaluate the individuals, firstly, their CVs are calculated

using Eqn. (3.32), with an infeasible individual repaired using the proposed heuristic

described in section 3.5.4. Then, the fitness values (FVs) and CVs of the individuals

are determined, based on which the individuals are ranked using the selection operator

presented in section 3.5.5. In order to improve the performances of both the E-GA and

E-DE, a diversity mechanism and ε−constrained method [203] are used to skip from

premature convergence.

The steps of both E-GA and E-DE are provided below:

• Step 1: Generate an initial population based on Eqn. (3.11).

• Step 2: Satisfy system constraints (Eqns. (3.1) to (3.10)) using the heuristic

described in section 3.5.4.

• Step 3: Evaluate the fitness values using the formula in Eqn.(3.1).

• Step 4: Create child populations using the crossover and mutation operators de-

scribed in section 3.5.2 and 3.5.3 for GA and DE, respectively.

• Step 5: Select the best individuals from both the parent and child populations

using the selection process described in section 3.5.5.

• Step 6: Modify the infeasible individuals (if any) to satisfy the constraints using

the proposed heuristic 3.5.4.
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• Step 7: If required, apply the diversity mechanism stated in section (3.5.6).

• Step 8: If a stopping criterion is met, stop; otherwise, go to step 3.

The description of each step is discussed in the following subsections.

3.5.1 Representation and Initial Population

The chromosome or representation of decision variables for both GA and DE can be

expressed as follows:

xp = [PT1,1 , PT2,1 , . . . , PTNT ,1 , PT1,2 , PT2,2 , . . . PTNT ,2 , . . . , . . . , PTNT ,T
] (3.11)

where xp is the decision variable for the P th individual at p ∈ Np with NP population

size. The number of decision variables for a DED problem is Nx = T ×NT .

In general, an evolutionary algorithm (EA) starts with a randomly generated popula-

tion. As the DED problem has a bounded feasible region with many equality constraints,

the individuals in the initial population are generated as per the following equation:

xi,j = xmini + (xmaxi − xmini )LHS(1, Nx) (3.12)

i ∈ Nx and j = 1, ..., NP

where xmin and xmax are the upper and lower bounds of each variable x that can

be found from each generator’s limits. LHS(1, Nx) represents Nx random individuals

are generated using LHS rules. As the initial values of x are highly significant, to

achieve better-quality solutions in later stages of the evolutionary process, random x are

generated using LHS which ensures that each probability distribution is evenly sampled

within the area of optimization [202].
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3.5.2 GA search operators

Of various GA search operators, SBX and NUM are used as they showed better perfor-

mance in comparison with other operators [63].

A Simulated Binary Crossover

In SBX, child populations are generated from two parents those determined using a

tournament selection. Tournament selection is a process to select an individual from

NP individuals. In it, depending on the tournament size, several random individuals

among NP individuals are chosen, and the winner (the one with best fitness value) of

each tournament is selected for crossover. When a larger tournament size is chosen, it

means the weak individuals have a smaller chance to be selected which results to the

algorithm has to converge quickly but possibility prematurely. If the larger tournament

size is chosen, the algorithm has a great diversity, but the convergence rate to be slow.

Therefore, it is chosen depending on the problem nature. For example, the DED problem

involves several non-trivial equality and inequality constraints, for solving this problem,

a great diversity among the individuals is required. Therefore, the tournament size is

chosen as two. The process of generating offspring from their parents is described in

Eqns. (2.20) and (2.21).

Once the two winner individuals, x1
j , x

2
j , j = 1, 2, ..., Nx are selected, the two chil-

dren y1
j , y2

j , j = 1, 2, . . . , Nx are generated as:

y1
j = 1

2
[
(1 + βqj)x1

j + (1−βqj)x2
j

]
, j = 1, 2, ..., Nx (3.13)

y2
j = 1

2
[
(1− βqj)x1

j + (1 + βqj)x2
j

]
j = 1, 2, ..., Nx (3.14)

where βqj is calculated as:

βqj =


(
2uj

)1/ηc+1 if uj ≤ 0.5(
1

2(1−uj)

)1/ηc+1
if uj > 0.5

(3.15)
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where ηc is a distribution index of SBX and ui a random number between 0 to 1.

B Non-uniform Mutation

The NUM is chosen that decreases the step size and increases the probability that the

amount of mutation will decrease as the number of generation increases. This prevents

the population from stagnating in the early stages of evolution and then allows the GA

to fine-tune the solution in later stages. In it, a child is mutated as:

´yj,g = xj,g + δj,g (3.16)

δj,g =



(
xmaxj − xj,g

)1− u

(
1− g

NG

)bq

g

 if u ≤ 0.5

(
xminj − xj,g

)1− u

(
1− g

NG

)bq

g

 if u > 0.5

(3.17)

where g andNG are the current generation number and maximum number of generations,

respectively, and bq the speed of the step length to control the mutation percentage. In

this research, the value of bq is set to 5 as per ref. [121].

3.5.3 DE Search Operators

As discussed, DE is another variation of EAs, and also a powerful algorithm for real

parameter optimization, with its performance highly depends on the control operators

of the search operators [120]. Also, it is proven that no single mutation operator can

perform well for a wide range of test problems. Therefore, in this research, two mutation

operators are considered, such as ‘DErand’ and ‘DEbest’. The first one facilitates the

population diversity while the second one improves the convergence rate [204]. Regarding

crossover operator, it has been found that binomial is better than exponential crossover

while, in the selection operator, an offspring is selected if it is better than its parent.

A new offspring is generated from its parents as follows.



Chapter 3 EAs for Thermal-DED Problems 77

~yp =


~xr1 + Fp

(
~xr2 − ~xr3

)
if rand1 ≤ Crp and rand2 ≤ prob1

~xp + Fp
((
~xr1 − ~xr2

)
+
(
~xbest − ~xp

))
if rand1 ≤ Crp and rand2 > prob1

~xp otherwise

(3.18)

where ∀p = 1, 2, ..., NP , {r1, r2, r3} ∈ [1, NP ] , p 6= r1 6= r2 6= r3, and Fp and Crp

are the amplification factor and crossover rate for mutation and crossover operators,

respectively for the pth individual, prob1 a predefined probability (here, it is set to a

value of 0.5) of choosing the mutation operators (eitherDErand orDEbest) for generating

new individuals from the current one. The values of Fp and Crp are very important for

algorithm’s performance and calculated in every generation self-adaptively as described

in the next section.

A Updating F and Cr

As mentioned, a DE’s performance depends on its control parameters but selecting

them is a combinatorial optimization problem. Therefore, a self-adaptive mechanism is

deployed in this research [205].

Initially, for each individual in the population, two sets of control parameters, Ḟ ∈

N(0.5, 0.1) and Ċr ∈ N(0.5, 0.1) are generated using normal distributions with mean and

standard deviation values of 0.5 and 0.1, respectively. Then, to generate new offspring

as per Eqn. (3.18), Fp and Crp are calculated as follows:

Fp =


Ḟr1 + rand1(Ḟr2 − Ḟr3) if (rand2 < τ1)

rand3 otherwise
, p ∈ NP (3.19)

Crp =


Ċrr1 + rand4(Ċrr2 − Ċrr3) if (rand5 < τ1)

rand6 otherwise
, p ∈ NP (3.20)

where ∀randk ∈ [0, 1], k = 1, 2, ..., 6, and τ1 = 0.5, as per [205]. Once the values of Fp
and Crp are calculated using the above two Eqns. (3.19) and (3.20), the values should
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be between 0.1 to 1. However, if they are less than 0.1 or larger than 1, fixed to 0.1 and

1, respectively.

Based on the selection criteria (discussed in next section), if an offspring is better

than its parent, the parent’s Fp and Crp replaced by its offspring’s Fp and Crp, and vice

verse. This process is repeated until all NP individuals are selected, which means at the

end of the current generation, the better-performing F and Cr are survived to the next

generation.

3.5.4 Heuristic for DED constraints

It has already been mentioned that DED is a nonlinear constrained optimization prob-

lem involving a number of equality and inequality constraints. The solutions generated

by EAs may not satisfy all constraints, especially equality (demand balance) and dy-

namic (ramp limits) ones. Even if a feasible solution is obtained in one generation, it may

become infeasible after crossover and mutation in another generation. This situation be-

comes even worse when many equality constraints are involved. A great deal of research

has been undertaken into dealing with equality constraints, including penalty function

integration [206], slack generation consideration [28] and local search consideration [201].

However, these approaches are not adequate for handling a chain of equality constraints,

as is the case in DED problems. A few researchers have used SQP to deal with equality

constraints and increase the convergence rate [201] but, although this approach returns

a feasible solution after a long run, it loses significant diversity.

In this thesis, a new heuristic is proposed to transform the infeasible individuals

into feasible ones. In the process, the 24 hours load cycle is divided into 24-hourly sub-

problems, and allocate production to meet the load demand in each hour starting from

different random hours. Although the allocation can be started from the first hour of the

operational cycle, as done in [206], the allocation can be infeasible at a later stage due

to ramp constraint and any significant changes in demand (i.e., peak demand period).

Note that the generation limit in any hour depends on the generation of the immediate

past hour. The heuristic consists of the following steps.

Step 1: Arrange the decision variables (x) into a matrix form as:
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P =



PT1,1 PT2,1 · · · PTNT ,1

PT1,2 PT2,2 · · · PTNT ,2
...

... . . . ...

PT1,T
PT2,T

· · · PTNT ,T


(3.21)

Step 2: Randomly select an hour t ∈ T and its generation Pt ∈ P . Start the forward

process.

Step 3: Set, Pmaxi,t = Pmaxi and Pmini,t = Pmini .

Step 3.1: Check Pmini,t ≤ Pi,t ≤ Pmaxi,t ∀i and, if a unit is infeasible, fix it using Eqn.

(3.26).

Step 3.2: Check feasibility at the tth hour as follows.

∣∣∣∣∣∣
NT∑
i=1

Pi,t − (PDt + Plosst)

∣∣∣∣∣∣ ≤ ε (3.22)

Here, ε a tolerance limit which has a large value at the early stages of evolutionary

process and is reduced to 1e − 06 (an acceptable limit as of [14]) over the generations

[203] such as:

εg =


ε0
(
1− g

NGc

)
if 0 < g < NGc

1e− 6 otherwise
(3.23)

where, ε0 = σ ∗ CV (3.24)

where ε0 is a constant that determines the initial preserving CV, and g and NGc(0 <

NGc < NG) the current and cut-off generations, respectively. The cut-off generation

indicates that there are no infeasible solutions after that generations.

If the solution is feasible, go to step 3.4, otherwise, go to the next step.

Step 3.3: Obtain a random permutation of NT and generate a random sequence of the

operating units as Rs = {r1, r2, ....rNT
} to satisfy the equality constraints. Now,
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choose the first generator (r = r1) as the slack generator to balance the residual

load, as decided by the rest of the generator’s known output, as:

Pr,t = (PDt + Plosst)−
NT∑
i=1
i 6=r

Pi,t (3.25)

Pr,t =


Pminr,t if Pr,t < Pminr,t

Pmaxr,t if Pr,t > Pmaxr,t

r ∈ i ∀i = 1, 2, ..., NT (3.26)

Check feasibility using Eqns. (3.22), (3.26) and the look-ahead demand constraint

which determines the (t+1)th hour generation range that must satisfy the (t+1)th hour

load demand and can be mathematically formulated as:

NT∑
i=1

Pmini,t+1 ≤ (PDt+1 + Plosst+1) ≤
NT∑
i=1

Pmaxi,t+1 (3.27)

where i ∈ NT , t ∈ T and

Pmaxi,t+1 = min
[
Pmaxi , (P ti,t + URi)

]
(3.28)

Pmini,t+1 = max
[
Pmini , (P ti,t −DRi)

]
(3.29)

If the solution of Pi,t i = 1, 2, . . . , NT is still infeasible, recalculate Eqn. (3.25)

considering the next random slack generator (r = r2 ) from the Rs vector. This process

is repeated until a feasible solution which satisfies Eqns. (3.22), (3.26) and (3.27) is

found. Then, the new operating range at the hour is updated using Eqns. (3.28) and

(3.29), and set to t = t+ 1 .

Step 3.4: Repeat steps 3.1 to 3.3 and obtain a feasible solution at the tth hour. As

this process is repeated until t = T , the P matrix is updated from the t to T hours

and the rest of the hours determined using the backward process which is applied

to obtain feasible solutions at the (t− 1)th to 1st hour as follows.
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Step 4: Set t = t − 1 and update the capacity range of Pi,t∀i using Eqns. (3.30) and

(3.31), as:

Pmaxi,t−1 = min
[
Pmaxi , (P ti,t + URi)

]
(3.30)

Pmini,t−1 = max
[
Pmini , (P ti,t −DRi)

]
(3.31)

Step 4.1: Calculate the feasible solution at the tth hour using the process described

in steps 3.1 to 3.3 and then repeat steps 4 and 4.1 until t = 1.

Step 5: Reconstruct from the calculated matrix (~x) using Eqn. (3.11).

Step 6: Return a feasible ~x to the algorithm.

As this proposed heuristic does not place any priority on a unit or particular hour, it will

help to maintain the diversity of solutions expected in EAs. Although it is highly likely

that an infeasible solution is transformed into a feasible one (i.e., CV=0) after applying

the heuristic, some may still infeasible. However, their CVs are indeed improved.

3.5.5 Selection Process

Once the offspring are generated using either GA or DE search operators from their

parents, the infeasible one are repaired using the heuristic and subsequently the FVs

and CVs of the individuals are evaluated using the Eqns. (3.1) and (3.32), respectively.

CVi =
K∑
k=1

max (0, Gk (−→xi)) +
E∑
e=1

max (0, He (−→xi)− εg) ∀i ∈ NP (3.32)

where −→xi represents the ith individual of a sub-population, G and H the inequality

and equality constraints, respectively, K and E the numbers of inequality and equality

constraints for a DED problem, respectively, and εg the relaxation factor of the equality

constraints in the gth generation which is dynamically updated using Eqn. (3.23). An

individual is called infeasible when the value of CV < 0, otherwise, it is called feasible.
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For selecting an individual from a parent and its child, a greedy selection scheme is

followed that uses one of the three scenarios:

1. between two feasible candidates, the fittest (according to FVs) is selected;

2. a feasible point is always better than an infeasible one; and

3. between two infeasible solutions, the one with a smaller CV is chosen.

This can be mathematically expressed in Eqn. (3.33) as [20]:

~xg+1 =



~yg+1 if FV (~yg+1) ≤ FV (~xg) and CV (~yg+1) ≤ CV (~xg)

~xg if FV (~yg+1) ≤ FV (~xg) and CV (~yg+1) ≥ CV (~xg)

~xg if FV (~yg+1) ≥ FV (~xg) and CV (~yg+1) ≥ CV (~xg)

~yg+1 if FV (~yg+1) ≥ FV (~xg) and CV (~yg+1) < CV (~xg)

(3.33)

This process is repeated until all the individuals are selected which lead to survive

better generations at the end of the current generation for evolving in the next gener-

ation. Moreover, during the selection process, the selected individuals’ F and Cr are

also considered for next generation evaluation. As a result, at the end of the current

generation, the only better-performing individuals and their corresponding F and Cr

are placed for the next generation evaluation.

3.5.6 Diversity Mechanism

In fact, any EA can become stuck in local solutions, especially those for DED problems.

To tackle this, if the average fitness function of the current population does not improve

for a predefined number of generations, some individuals are randomly replaced as:
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if |min(fg − fg−κ)| < ζ (3.34)

´yi,j =


ymini,j + (ymaxi,j − ymini,j )rand if rand ≤ φ

yi,j otherwise

∀i = 1, 2, ..., Nx,∀j = NP /2, NP /2 + 1, .....NP

EndIf

where fg and fg−k are the best fitness values at gth and (g−κ)th generations, respectively,

κ and ζ the tolerance factors tolerates a kth(assume 100) number of generations by

changing the fitness value within ζ (assume 0.001), and φ a constant (set it to 20%) to

represent the number of individuals to be randomly replaced.

3.6 Experimental Study

For our experimental study, a number of problems from the literature are considered

that involve up to 150 thermal units for a 24-hour planning horizon with a one-hour

long time period. Based on the availability of data (shown in Appendix A.1), these

problems can be solved both with and without consideration of power-loss constraints.

The problems are solved briefly described below.

Case 1 : a 5-unit problem without Ploss [206];

Case 2 : a 5-unit problem with Ploss [206];

Case 3 : a 10-unit system without Ploss [14];

Case 4 : a 10-unit system with Ploss [14];

Case 5 : a 30-unit system generated by combining three 10-unit systems of Case 3

without Ploss [14];

Case 6 : a 100-unit system generated by combining ten 10-unit systems without

Ploss [14]; and
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Case 7 : a 150-unit thermal system without Ploss [28].

For a fairer comparison, the same SRs as in [14] is selected, whereby the one-hour SR

is set to 5% of the load and the 10-minute one to 2/6× 5% of the load. The relaxation

factor of the equality constraints (ε) is set to 1e − 6 and the cut-off generation (NGc)

to 200. The GA parameters, the probability of crossover, distribution index (η) and

probability of mutation are set to 0.9, 3 and 0.1, respectively. The population sizes are

set to 100 for the 5−, 10− and 30−unit, and 200 for the 100− and 150−unit problems,

and the maximum number of generations to 4000 for all cases. Thirty independent

runs are performed for each test case and the solutions recorded and compared with the

results from the-state-of-the-art algorithms.

The algorithms are implemented on a desktop personal computer with a 3.4 GHZ

Intel Core i7 processor with 16 GB of RAM using the MATLAB (R2012b) environment.

The algorithm runs until the number of generations is higher than 4000 (criterion 1) or

the best and average fitness values are no longer improved in 100 generations (criterion

2).

3.6.1 DED with TL

As power TL cannot be avoided in a power distribution system, it is important to

consider it when scheduling generating units. In this research, due to data unavailability,

the TL is considered for only two cases (1 and 3). Their results are compared with those

from E-GA and E-DE as well as state-of-the-art algorithms. The solutions obtained for

the 5-unit and 10-unit problems with SR constraints using the proposed algorithms (E-

DE and E-GA) are presented in Tables 3.1 and 3.2, respectively, along with the results

from the state-of-the-art algorithms. It can be seen that the proposed algorithms can

obtain much better results than the state-of-the-art algorithms. Additionally, E-DE is

found to be better than E-GA.
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Table 3.1: Summary of solutions for 5-unit system with loss

Method Production cost ($) STDMinimum Average Maximum
SA [207] 47356 NR NR NR
APSO [208] 44678 NR NR NR
GA [200] 44862 44922 45894 NR
PSO [200] 44253 45657 46403 NR
ABC [200] 44046 44065 44219 NR
AIS [62] 44385 44759 45554 NR
H-PSO [206] 43223 43732 44252 274.95
E-GA 42528.9 42580.6 42638.4 30.16
E-DE 42528.7 42571.2 42664.5 36.9

Table 3.2: Summary of solutions for 10-unit system with loss

Method Production cost ($) STDMinimum Average Maximum
EP [82] 1054685 1057323 NR NR
EP-SQP [82] 1052668 1053771 NR NR
MHEP-SQP [83] 1050054 1052349 NR NR
DGPSO [83] 1049167 1051725 NR NR
IPSO [209] 1046275 1048154 NR NR
AIS [62] 1045715 1047050 1048431 NR
ECE [210] 1043989 1044963 1046805 NR
ABC [200] 1043381 1044963 1046805 NR
TVACIPSO [211] 1041066 1042118 1043625 NR
EBSO [212] 1038915 1039188 1039272 NR
CSAPSO [213] 1038251 1039543 NR NR
SAMFA [214] 1037698 1037938 1039199 NR
MTLA [215] 1037489 1037712 1038090 NR
MIQP [14] 1038376 NR NR NR
E-GA 1036460 1037020 1037430 251.83
E-DE 1036280 1036310 1036380 51.31

3.6.2 DED without TL

The 5-, 10-, 30-, 100- and 150-unit DED test problems without TLs are solved and the

results obtained from the proposed approaches along with those from some others in

the literature, are presented in Tables 3.3 to 3.7 in which it is clear that our algorithms

outperform all the others.

The computational costs of different approaches to different problems are presented

in Table 3.8 in which it can be seen that E-DE is better than E-GA for all problems

because it provides better quality solutions and requires less computational time. Note
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Table 3.3: Summary of solutions for 5-unit system without loss

Method Production cost ($) STDMinimum Average Maximum
E-GA 42524.4 42565.9 42630.8 26.77
E-DE 42523.6 42524.8 42621.6 28.87

Table 3.4: Summary of solutions for 10-unit system without loss

Method Production cost ($) STDMinimum Average Maximum
EP [82] 1048638 NR NR NR
SQP [82] 1051163 NR NR NR
EP-SQP [82] 1031746 1035748 NR NR
MHEP-SQP [83] 1028924 1031179 NR NR
AIS [62] 1021980 1023156 1024973 NR
GA [200] 1033481 1038014 1042606 NR
ABC [200] 1021576 1022686 1024316 NR
DE [99] 1036756 1040586 1452558 3225.8
CDE [99] 1019123 1020870 1023115 1310.7
MDE [104] 1031612 1033630 NR NR
CSDE [216] 1023432 1026475 1027634 NR
Hybrid DE [104] 1031077 NR NR NR
HS [217] 1046726 NR NR NR
HHS [217] 1019091 NR NR NR
CE [210] 1022702 1024024 NR NR
ECE [210] 1022272 1023335 NR NR
PSO [200] 1027679 1031716 1034340 NR
IPSO [209] 1023807 1026863 NR NR
ICPSO [218] 1019072 1020027 NR NR
PSO-SQP [219] 1027334 1028546 NR NR
ICA [220] 1018468 1019291 1021796 NR
H- PSO [206] 1018159 1019850 1021813 826.94
MIQP [14] 1016601 NR NR NR
E-GA 1016360 1016710 1016880 221.11
E-DE 1016160 1016260 1016420 69.93

that, for the 150-unit DED problem, the number of chromosomes is 3600 which means

it has a huge search space. Therefore, both GA and DE take a large computational

time. It is worth to mention here that the algorithms reach the stopping criteria of the

maximum number of generations before converging to a solution (local or global). It is

observed that their fitness values can be further improved with very slow convergence

rate which will consume a significant computational time with a very little improvement.
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Table 3.5: Summary of solutions for 30-unit system without loss

Method Production cost ($) STDMinimum Average Maximum
EP [83] 3164531 3200171 NR NR
EP-SQP [83] 3159024 3169093 NR NR
MHEP-SQP [83] 3151445 3157438 NR NR
DE [99] 3162997 3173102 NR NR
CDE [99] 3083930 3090542 NR NR
CE [210] 3086110 3088870 NR NR
ECE [210] 3084649 3087847 NR NR
IPSO [209] 3090570 3096900 NR NR
ICPSO [218] 3064497 3071588 NR NR
H-PSO [206] 3062144 3067277 NR 2177.6
MIQP [14] 3049359 NR NR NR
E-GA 3049110 3049550 3051150 879.62
E-DE 3046110 3046640 3046970 227.87

Table 3.6: Summary of solutions for 100-unit system without loss

Method Production cost ($) STDMinimum Average Maximum
GA [214] 10908741 11584628 11987675 NR
PSO [214] 10366076 10766385 11310279 NR
FA [214] 10197269 10419457 11216243 NR
SAFA [214] 10183819 10286043 10388958 NR
SAMFA [214] 10170104 10171876 10179061 NR
MIQP [214] 10170508 NR NR NR
E-GA 10170343 10174764 10180669 3978.57
E-DE 10158600 10165800 10168300 3362.58

Table 3.7: Summary of solutions for 150-unit system without loss

Method Production cost ($) STDMinimum Average Maximum
BA [28] 15287005 15291497 15296855 NR
SALBA [28] 15256663 15258781 15260355 NR
E-GA 15260000 15266300 15267100 2529.31
E-DE 15247900 15259800 15260100 1117.66

Table 3.8: Summary of computational cost for different problems

Problem size E-GA E-DE
Maximum
generation

CPU time
(min)

Maximum
generation

CPU time
(min)

5 units 665 4.7 635 2.8
10 units 1984 12.8 2652 11.7
30 units 1327 39.2 3126 83.2
100 units 2736 118.23 2354 112.43
150 units 4000 187.21 4000 157.03
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Table 3.9: Average fitness values obtained by GA and DE with and without heuristic

Algorithm Type of
heuristic

NP ×NG Fitness
values

GA
None 100 × 4000 Infeasible
HFS 100 × 4000 1018190
HRS 100 × 4000 1016360

DE
None 100 × 4000 1076540
HFS 100 × 4000 1017370
HRS 100 × 4000 1016160

3.7 Analysis of Different Components

In this section, the effect of different components of the algorithms such as heuristic, mu-

tation, self-adaptation, and selection process for our algorithms are extensively analyzed.

To do, a 10-unit problem of (case-3) as a representative case is considered.

3.7.1 Effect of Heuristic

The proposed heuristic transforms the infeasible solutions into good quality feasible

solutions. To demonstrate the effect of the proposed heuristic, the average of best

objective function values over 30 independent runs of each variant are recorded in Table

3.9. From this Table, it can be seen that GA without the heuristic does not find a single

feasible solution, even after 4k generations, and although DE is able to find a few feasible

solutions, the quality is poor. When the heuristic is applied starting from the first hour

(HFS), both algorithms are able to obtain feasible solutions, and the solutions are better

than the same for without heuristic if any feasible solution is obtained. However, with

the proposed heuristic that is with a random starting hour (HRS), the solutions are

better than those obtained with HFS.

3.7.2 Effect of Mutation

In this subsection, the performance of non-uniform, chaotic and polynomial mutation

operators with GA are analyzed by solving a sample 10-unit test problem (case -3). A

sample of 4000 generations with same parameters is set for all variants and the conver-

gence plots for the best fitness values of each variant are shown in Fig. 3.3. Although
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Fig. 3.3: Effect of non-uniform mutation in GA for a solving DED problem (case-3)

the non-uniform mutation variant has a slow convergence rate in early generations, it

can obtain better results at the end of the evolutionary process, i.e., GA with a non-

uniform mutation operator obtains an objective function value of $1016360 while, with

polynomial and chaotic mutation operators obtain $1017710 and $1017170, respectively.

In conclusion, non-uniform mutation is dominant over the other two mutation operators

for solving DED problems.

3.7.3 Effect of Self-adaptation

To demonstrate that the self-adaptation strategy used in this research provides better

results than that with fixed-parameters, a DE algorithm with two different mutation and

crossover rates are considered, and its results compared with those obtained from the

algorithm with the self-adaptive mechanism. In the adaptive process, initially, two sets

of control parameters, Ḟ ∈ N(0.5, 0.1) and Ċr ∈ N(0.5, 0.1) are generated using normal

distributions with mean and standard deviation values of 0.5 and 0.1, respectively. Then,

in subsequent generation, they are calculated as per Eqn. (3.18). After solving the

sample test problem (case-3) using three different scenarios, the average values, of best

objective solutions, obtained from 30 runs for each variant are shown in Table 3.10
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Table 3.10: Comparison of average fitness values for different types of mutation and
crossover rates for a solving DED problem (case-3)

Type of F and Cr Parameter values Objective value

Fixed F = 0.9, Cr = 0.1 1016380
F = 0.5, Cr = 0.5 1016570

Adaptive Ḟz = 0.5 ∼ 0.95, 1016160
Ċrz = 0.5 ∼ 0.95

1 2 3 4 5 6 7 8 22 23 24

2 3 4 5 6 7 8 9 23 24

3 4 5 6 7 8 9 10 24 25 26(=2*)

25(=1*)

Decisions for 

1 to 2 hours

Decisions for 

2 to 3 hours

Decisions for 

3 to 4 hours

Fig. 3.4: Concept of rolling horizon with 1 hour time periods and T = 24

in which it is clear that using the self-adaptive method to calculate DE parameters is

beneficial in terms of the objective values obtained.

3.7.4 Scheduling with Rolling Horizon

In this section, the use of the proposed algorithms for the scheduling of the DED problem

based on a rolling horizon basis [199] is presented. The scheduling based on a rolling

horizon is defined as the schedule is revised due to any changes take place in any input

at any point in time. In the process, at the beginning, the schedule is generated for 24

hours that is for 1 to 24 hours with an intention that only the production plan for period

one will be implemented. At the end of period 1, the schedule is generated for 2 to 25,

considering any changes/updates in data or input that may experience in period 1. At

the end of period 2, the schedule is generated for 2 to 26, and so on. Such a scheduling

process will provide a better operational plan, shown in Fig. 3.4.

To demonstrate the application of rolling horizon process, a 5-unit test problem is

considered, and subsequently generated random demands with 5% standard deviation

from the forecasted demand. The demand data is shown in Fig. 3.5. The generating

units are considered as committed for all runs. Based on the new data, the second and

subsequent runs are performed by our proposed methodology. The simulation has run

thirty times and the best fitness values are reported on Table-3.11. From the results, it

is seen that the E-DE has provided better results comparing to other algorithms for each
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Table 3.11: 5-unit test results obtained from the rolling horizon framework

Run (hour) Schedule
period (hour)

Fuel cost ($)
GA DE E-GA E-DE

at t = 0 1-24 55800.70 46691.60 42539.40 41943.10
at t = 1 2-25 51281.00 46817.30 43835.10 43289.10
at t = 2 3-26 50165.60 46565.90 43775.50 43169.20

run. From this experience, it can say that DED model can be dynamically implemented

in practice using rolling horizon framework as the procedure always uses most recent

information, while the data are updated at every single period. Hence, the proposed

approach in conjunction with rolling horizon framework will enhance the practice of

DED problem solving.

3.8 Chapter Summary

In this chapter, a self-adaptive E-DE and E-GA were demonstrated those exhibited su-

perior performances in solving DED problems. In this approach, a random sequential

technique was used to consider periodic simpler sub-problems to satisfy the equality

constraints and dynamic ramp constraints. A dynamic relaxation factor for the equality
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constraints was set to preserve a few marginally infeasible solutions to enhance the con-

vergence rate. A parametric analysis explicitly showed the effect of different components

used in this Chapter. Applications of both the E-GA and E-DE algorithms in a number

of test problems taken from recent literature, revealed their better performances. More-

over, based on the rolling scheduling horizon framework, it was seen that the solution

procedure could be implemented dynamically on consecutive hours in following days,

with the E-DE provided better results comparing to other algorithms.

Although the proposed algorithms were applied to solve a number of thermal-based

DED test problems, uncertain renewable sources-based ones are yet to be explored, with

the rolling horizon framework possibly not working immediately. In the next chapter,

the uncertain wind-thermal DED model is solved using a new solution technique that

can be periodically implemented on successive days.



Chapter 4

EAs for Renewable Energy based

DED Problems

Firstly, this chapter discusses the importance of solving renewable-based wind-

thermal dynamic economic dispatch (DED) problems and the difficulties of the con-

tinuous operation of wind generators due to their uncertainties. Then, it presents a

description of the problem and its mathematical formulation, an overview of existing so-

lution approaches and the algorithms proposed for its solution. Finally, the experimental

study and its outcomes are provided.

4.1 Introduction

As discussed in Chapter 3, solving fossil fuels-based thermal-DED problems is an impor-

tant research topic in the power system domain. However, during the last few decades,

the use of fossil fuels in the power industry has significantly increased, resulting in in-

creases in emissions of greenhouse gases into the environment. To reduce these emissions,

renewable sources, such as wind power, are increasingly being used for electricity gener-

ation for which a wind-thermal DED problem is used to schedule the wind and thermal

generators to serve a forecasted daily load demand at a minimum cost while satisfying

technical and environmental constraints.

Despite the numerous advantages of wind power generators (WPGs), their uncertain

nature presents a new challenge for their economical operation in the power generation

The following articles have been published based on this Chapter:
[1]. M. F. Zaman, S. M. Elsayed, T. Ray and R. A. Sarker, Evolutionary algorithms for power generation
planning with uncertain renewable energy, Energy, vol. 112, 1 October 2016, Pages 408-419.
[2]. M. F. Zaman, S. M. Elsayed, T. Ray and R. A. Sarker, A double action genetic algorithm for
scheduling the wind-thermal generators, Artificial Life and Computational Intelligence. Lecture
Notes in Computer Science, vol 9592. Springer, Cham. 2016. pp. 258-269.
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industry because, as the wind’s speed changes randomly, it is difficult to determine their

actual outputs for day-ahead scheduling [95].

Also, as discussed in Chapter 3, the solutions to a DED problem are generated

and repeatedly implemented over a one-day horizon by dividing the day into multiple

periods based on a rolling horizon approach. This assumption of periodicity is based

on the fact that the resources (generators) are fixed and demand periodic due to cyclic

consumption and seasonal changes [201]. However, the resources of a wind-thermal

DED problem fluctuate depending on the weather conditions. Therefore, for a periodic

implementation of wind and thermal generators for an uncertain DED system, there is

the possibility of an unwanted electricity shortfall occurring between the last hour of

one day and the first of the following one which is known as a transient ramp violation

(TRV) [201].

Consequently, the continuous operation of an uncertain wind-thermal DED problem

is still of great concern and attempts to solve it have led many researchers to propose

different approaches. Of them, a scenario-based probabilistic DED model is very popular

for handling the uncertainty of resources in which the scenarios represent the stochastic

behaviors of wind speeds and forecasted load demands [34]. However, existing methods

are only valid for a single-day static scheduling and not feasible for real-time continuous

operation. Therefore, in this chapter, an efficient solution approach for real-time wind-

thermal DED problems with uncertainties is developed.

4.2 Description of Wind-thermal DED System

This section describes an uncertain wind-thermal DED system. As a thermal DED

problem, an uncertain wind-thermal DED one is a constrained, non-convex, non-smooth

optimization problem used to schedule the available thermal and wind generators for a

time period of T hours. The objective is to minimize the fuel costs of the thermal

generators and, as the wind generators are regarded as renewable, their operational

costs are ignored.
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The uncertain behaviors of wind speeds and variable load demands are incorporated

in the DED model in which the mathematical formulation is re-formulated as a scenario-

based DED one. The scenarios are generated using the Gaussian distribution with their

means and standard deviations obtained from historical data. Each is considered an

individual DED problem in which the decision variables are the electricity output from

the committed thermal units which ensure that the available WPGs are fully utilized.

The equality constraints are the power balance and the inequality ones the capac-

ities, ramp limits and spinning reserves (SRs) of the thermal generators. Also, the

transient ramp constraints are considered to avoid an unwanted electricity shortfall be-

tween the last hour of one day and the first hour of the next for the continuous operation

of the available generators. However, if an electricity shortfall occurs in a certain case,

the penalty cost is added to the objective function. Therefore, the objective function

of the uncertain wind-thermal DED system is considered the summation of the fuel

costs of the thermal generators and penalty costs of an unexpected electricity shortfall

for scheduling the generators over a time horizon of seven days with one-hour time in-

tervals. Details of the mathematical model of this scenario-based wind-thermal DED

problem are presented in the following section.

4.3 Problem Formulation

In this section, a mathematical model of the DED problem for periodic implementation of

its resources on successive days, where the objective is to minimize the overall operating

cost while satisfying a number of equality and inequality constraints, is discussed below.

4.3.1 Objective Function

The main objective of a DED problem is to minimize the sum of all fuel costs for the

thermal power plants under consideration. The fuel cost function with valve-point effects

(VPE) is non-smooth, non-convex and multi-modal can be expressed as [14]:

Ci,t,s = ai + biPTi,t,s + ciP
2
Ti,t,s

+
∣∣∣di sin

{
ei(Pmini − PTi,t,s)

}∣∣∣ ∀i, t, s (4.1)
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where PTi,t,s and Ci,t,s are the ith thermal power output and its operating cost at tth

hour for sth scenario, respectively, and Ns the number of scenario considered. The fuel

cost for a number of given time periods of a day (or a scenario) is:

FCd
=

T∑
t=1

NT∑
i=1

Ci,t,s s ∈ NS (4.2)

where Fcd
is the daily operating cost and the total fuel cost for a number of given days

is:

FCT
= ∑ND

d=1 FCd
(4.3)

However, the overall cost for ND days is associated with the total fuel cost in Eqn.

(4.3) and penalty cost in Eqn. (4.5) for load shedding. Load shedding occurs mainly

when demands are too high and wind power too low compared with predictions. Also, it

arises when the demands of two consecutive hours including the last hour of a day and

the first hour of next day vary significantly as the ramp does not allow the generator’s

output to be changed rapidly, which is mathematically expressed as:

PSt,s =



PDt,s −
∑NT
i=1 min(PTi,t−1,s + URi, P

max
i )

if PDt,s >
∑NT
i=1 min(PTi,t−1,s + URi, P

max
i ),∑NT

i=1 max(PTi,t−1,s −DRi, Pmini )− PDt,s

if PDt,s <
∑NT
i=1 max(PTi,t−1,s −DRi, Pmini ),

0, otherwise

(4.4)

where PSt,s is the amount of unexpected electricity shortage, where the first term in

Eqn. (4.4) represents the power shortage of an hour arises if the demand is too high

than previous hour demand, while the second term represents the over-generation of an

hour causes demand is too low than the previous hour demand. The over or under-

generations are compensated using additional equipment (e.g. quick start-up diesel

generators) and/or planning the generators an intelligent way so that the PSt,s is become

zero. However, if the demand is still higher than the available generation capacity, then
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the residual demand is considered to be a load shedding, which leads to a large penalty

cost to the consumer, are:

FCL
= γ

ND∑
s∈d

T∑
t=2

PSt,s (4.5)

where FCL
is the penalty cost due to unexpected load shedding and γ its coefficients.

Then, the overall cost or the objective function for the DED model is:

FT = FCT
+ FCL

(4.6)

The Eqn. (4.6) is the objective function of the scenario-based wind-thermal DED model,

considering the ND−day operational cycle.

4.3.2 Constraints

As traditional DED model, the constraints of the uncertain DED system are discussed

below.

A Power Balance Constraints

It is assumed that the generation must meet demand on a real-time basis which means

that the total generation planned must be equal to the demand in a given load period

as:

NT∑
i=1

PTi,t,s = PDt,s + Plosst,s ∀t s ∈ NS (4.7)

where PDt,s and Plosst,s are the power demand and transmission loss at tth hour for the

sth scenario, respectively in which Plosst,scalculated as:

Plosst,s =
NT∑
i=1

NT∑
j=1

PTi,t,sBijPTj,t,s ∀t s ∈ NS (4.8)
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B Generator Capacity Constraints

Each generator has a capacity bound of:

Pmini ≤ PTi,t,s ≤ Pmaxi ∀i, t s ∈ NS (4.9)

C Generating Unit Ramp-Rate Constraints

Many studies of DED have simplified their models by assuming that the unit generation

output can be adjusted instantaneously. However, it does not reflect the actual oper-

ating conditions of generating units. The ramp rate is described as the power response

capability of a unit in terms of accommodating power changes with a specified time in-

terval. The operating ranges of all on-line units are restricted by their ramp-rate limits

as:

P tTi,t,s
− PTi,t−1,s ≤ URi ∀i, t s ∈ NS (4.10)

PTi,t−1,s − PTi.t,s ≤ DRi ∀i, t s ∈ NS (4.11)

D Spinning Reserve Requirements

In real life, a power system network suffers a number of unexpected events, such as

certain load changes and failure of a large operating unit. In order to increase its

reliability and avoid errors, three safety factors included in the model are:

NT∑
i=1

Pmaxi −
(
PDt,s + Plosst,s + SRt

)
≥ 0 t ∈ T s ∈ NS (4.12)

NT∑
i=1

min
(
Pmaxi − PTi,t,s , URi

)
− SRt ≥ 0 t ∈ T s ∈ NS (4.13)
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NT∑
i=1

min
(
Pmaxi − PTi,t,s , URi/6

)
− SRmt ≥ 0 t ∈ T s ∈ NS (4.14)

The constraints in Eqns. (4.12) and (4.13) are used to satisfy the one-hour reserve

requirements and Eqn. (4.14) describes the 10-minutes reserve requirements for any

temporary outages of a generator, in which the ramp in Eqn. (4.14) is arithmetically

considered as UR/6 [221].

E Transient Ramp Constraints

Although it is a general practice of a conventional DED problem to consider the ramp

limits between two consecutive hours over the 24 hours time period for a day (or a

scenario) shown in Eqns.(4.10) and (4.11), an unexpected electricity shortfall may be

appeared when the generators of a uncertain wind-thermal DED problem are scheduled

based on the forecasted daily load pattern assuming that the same scheduling (with or

without a deviation) will be repeated in a cyclic order. Because, there is a possibility

to arise TRV between the last hour of a day and the first hour of next day due to

uncertain characteristics of wind speed. This violation is even worse, when the output

of wind energy reduces and load demand increases. To overcome this issue, an additional

constraint is employed in a wind-thermal DED problem to represent the transient ramp

limits between the first and last hour generation of a scenario which is using for a day

or another possible scenario that to be used on next day, respectively, as [201]:

−DRi ≤ PTi,1,p − PTi,T,q
≤ URi, ∀p, q = 1, 2, ...NS i ∈ NT (4.15)

where p and q represent the relation with the transient ramp limits among scenarios.

4.4 Solution Approach

As discussed in Chapter 2, the uncertain wind-thermal DED problem has been solved

using a number of solution approaches in which some researchers applied different math-

ematical optimization-based methods due to their fast searching features [149]. However,
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the VPEs of their cost functions heightened the difficulties of solving this problem which

has non-smooth, non-linear and non-convex characteristics [34]. On the other hand,

several meta-heuristic methods, such as evolutionary algorithms (EAs), have been effec-

tively used because they are flexible, efficient and have a stochastic searching feature.

4.4.1 Motivation

As previously mentioned, meta-heuristic methods for solving the wind-thermal DED

problem have had a successful history. However, existing approaches experience difficulty

handling the uncertainties of wind speeds and load demands and this problem is even

more difficult when the generators are operated in a periodic order on subsequent days.

As shown in Chapter 3 (sub-section 3.7.4), the generators in a real-time DED problem

are scheduled based on a rolling horizon approach for 1 to 24 hours, assuming that the

daily load curve (Fig. 2.3) will be repeated in a cyclic order considering minor deviations

in electricity consumption. In such a case, once the scheduling for one day is completed,

it could be used on the following day. However, a technical deficiency may arise when

the optimal solution to a DED problem for a dispatch interval from 1 to 24 hours is

directly implemented even after assuming that the resources are unchanged.

An example of such a case is illustrated in Fig. 4.1, where it is assumed that a unit

has generation limits from 10 to 400MW and a ramp rate of 50MW for a sub-optimal

case in which it generates 20MW in the 1st hour, 350MW in the 23rd and 300MW in the

24th. If the same load pattern and resources are repeated on the following day, that unit’s

economic generation in the 1st hour is 20MW, as on the previous day. However, this unit

can generate between 250 and 350 MW in the 1st hour which may not be economical.

Therefore, the solution to this problem cannot be implemented for the following 24 hours

by merely repeating the rolling horizon approach because the transient ramp constraints

may be violated when the generating units are moved from the 24th − hour of one day

to the 1st of the next.

TRVs become even worse when uncertain wind sources are integrated into the DED

problem because of the assumption that these resources are no longer unchanged but
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Fig. 4.1: Potential technical deficiency of using present approach

fluctuating depending on the weather conditions. As a result, for a periodic implemen-

tation of wind-thermal generators, there is the possibility of an unwanted electricity

shortfall occurring between the last hour of one day and the first of the next. To over-

come this, several steps can be taken, such as: (i) committing additional generating units

for the following day’s scheduling; (ii) maintaining additional reserves; (iii) facilitating

an energy storage approach; or (iv) designing an effective method for scheduling. The

first three steps increase the operating cost as additional equipment needs to be added

to the system while the fourth is an intelligent solution approach in which the generators

are scheduled in such a way that no modifications are required to satisfy the subsequent

days’ load demands.

Therefore, in this chapter, two effective solution approaches for solving the uncertain

wind-thermal DED problem are presented below.

4.5 Proposed Algorithm

This section describes the proposed solution approach for uncertain wind-thermal DED

problems.

As previously mentioned, when wind and thermal generators are scheduled periodi-

cally, there is the possibility of an electricity shortfall occurring between the last hour of
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one day and the first of the next due to the uncertain characteristics of wind speeds and

load demands. To deal with this, the uncertain wind-thermal DED model is solved for

Ns practical scenarios over a one-week period in order to characterize these uncertain-

ties. It is assumed that the forecasted scenarios will be used in an operating day and

any of the Ns scenarios used on subsequent days. Each individual scenario is considered

a deterministic DED problem solved using the proposed enhanced genetic algorithm (E-

GA) and self-adaptive DE (E-DE) algorithm, both of which use a heuristic to maintain

feasibility for the entire operational periods. They schedule the committed generators

for a scenario in such a way that the generators can be implemented periodically over

a one-day period without violating any ramp limits between any scenarios. The general

framework of the proposed algorithms is shown below and their components described

in detail in the following sub-sections.

Step 1: generate Ns scenarios using the process described in sub-section 4.5.1.

Step 2: solve the forecasted scenario (called the basic scenario i.e., s = 1) that will be

used for an operating day’s scheduling as follows:

Step 2.1: generate an initial population based on Eqn. (4.18) in sub-section A;

Step 2.2: repair infeasible individuals to feasible directions using the heuristic de-

scribed in sub-section 4.5.3;

Step 2.3: evaluate the fitness value (FV) and constraint violations (CVs) of each

individual using Eqns. (4.6) and (3.32), respectively;

Step 2.4: create child populations using the crossover and mutation operators de-

scribed in sub-sections 3.5.2 and 3.5.3 for GA and DE, respectively;

Step 2.5: repeat steps 2.2 and 2.3 for child populations;

Step 2.6: select the best individuals from both the parent and child populations

using the process described in sub-section A; and

Step 2.7: if a stopping criterion is met, stop and determine the best solution for the

basic scenario, otherwise, go to step 2.4.
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Step 3: set, s = s + 1. Based on the solution in the last hour of the operating day’s

(basic scenario) scheduling, set P 1
Gi

= P TTi,s=1
∀i and calculate the new lower and

upper limits of first hour’s generation for the sth scenario, such as Pmin1
i,s and Pmax1

i,s

using Eqns. (4.24) and (4.25), respectively.

Step 4: based on the new values of Pmin1
i,s and Pmax1

i,s , solve the sth predicted scenario

using steps 2.1 to 2.7.

Step 5: repeat steps 3 and 4 until s = Ns.

Step 6: consider seven random scenarios, including the basic one, for a one-week oper-

ation and calculate the overall cost using Eqn. (4.6).

4.5.1 Process for Generating Scenarios

As, in the wind-thermal DED problem, the resources and load demands are uncertain,

the periodic implementation of its resources is very difficult unless the exact wind speeds

and load demands can be determined. However, accurate predictions of them are not

possible due to their random behaviors. Therefore, in order to make dispatch decisions,

in this DED model, their uncertain characteristics are considered in which load and

wind power forecasting errors are treated as random variables and different scenarios

generated using probability distributions [34].

As the wind speed and load demand can be assumed to be normally distributed

[222], the scenarios over the time horizon are generated based on the assumptions that

their mean values (µ) are the forecast wind speeds and load demands, and their standard

deviations (σ) depend on their forecasting errors. These errors are calculated based on

the fluctuation ranges of these two parameters in a time series covering the entire range

of real-life circumstances. The NS number of scenarios for the wind speeds and load

demands are generated as follows.

Step 1: set s = 1,

Step 2: set t = 0,
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Step 3: determine the ranges of wind speeds and load demands with their standard

deviations (forecasting errors) from historical data over the seven days period,

which can be found in ref. [223, 224],

Step 4: generate random NS samples of both the wind speeds (Vw,f ) and load demands

(P rD) using the truncated Gaussian distribution [225].

Step 5: determine the normalized probability of each random sample instant.

Step 6: calculate the expected wind power
(
P rwt,s

)
from the random wind speed using

the piecewise linear approximation modeled in Eqn. (4.16), as described in [226]:

P rWw,t,s
= Pmaxw,f



S1,w,f (V s
w,f − Vci,w,f ), if Vci,w,f ≤ V s

w,f ≤ V1,w,f ,

S1,w,f (V1,w,f − Vci,w,f ) + S2,w,f (V s
w,f − V1,w,f ),

if V1,w,f ≤ V s
w,f ≤ V2,w,f ,

S1,w,f (V1,w,f − Vci,w,f ) + S2,w,f (V2,w,f − V1,w,f )+

S3,w,f (V s
w,f − V2,w,f ), if V2,w,f ≤ V s

w,f ≤ Vr,w,f ,

1, if Vr,w,f ≤ V s
w,f ≤ Vco,w,f ,

0, otherwise

(4.16)

Step 7: since the available wind power will be fully utilized at each period, the actual

load demands to be dispatched by the thermal units are:

PDt,s = P rDt,s
−

NW∑
w=1

P rwt,s
∀t, s ∈ NS (4.17)

Step 8: if t < T , set t = t+ 1 and return to step 3,

Step 9: if s < Ns, set s = s+ 1 and return to step 2,

Once the possible scenarios of the load demand and wind speeds are generated for the

seven days scheduling, the optimization methods are applied to allocate the available

generators to satisfy all possible demands.
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4.5.2 Optimization Methodologies for the DED Problems

In this research, for solving complex uncertain wind-thermal DED problems, GA and

DE are considered because of their long and successful history [3]. The evolutionary

approaches for both GA and DE in solving uncertain wind-thermal DED system are

briefly described in the following subsections.

A Chromosome and Initial Generation

The chromosome or representation of the decision variables for both DE and GA is

expressed as:

xj = [P 1
T1,s

, P 1
T2,s

, ..., P 1
TNT ,s

, P 2
T1,s

, P 2
T2,s

, ..., P 2
TNT ,s

, ..., P TT1,s
, P TT2,s

, ..., P TTNT ,s
] (4.18)

s ∈ NS , j ∈ NP

where P tTi,s
is the power output of ith generator at tth time period of sth scenario, and

the number of decision variables for a DED problem (s ∈ Ns) is Nx = T × NT . The

initial generations of both EAs are generated randomly, and expressed as:

xji = xmini + (xmaxi − xmini )lhs(Nx) (4.19)

i ∈ Nx and j = 1, ..., NP

where xmin and xmax are the lower and upper bounds of each variable, respectively, that

can be found from each power plant’s limits, and the lhs(Nx) represents the Nxrandom

samples generated as usual LHS rule.
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B GA and DE Operators

As last Chapter, the SBX crossover and NUM mutation operators are used in GA while

a self-adaptive control parameters used in DE, those described in sections 3.5.2 and

3.5.3, respectively.

4.5.3 Proposed Heuristic

As previously mentioned, the wind-thermal DED is a nonlinear optimization problem

involving a number of equality and inequality constraints. The solutions from EAs

(either GA or DE) do not satisfy all these constraints, especially the equality (demand

balance) and dynamic (ramp limits) ones. Although a feasible solution may be obtained

after a long run, it is difficult to maintain feasibility after applying the evolutionary

operators. To overcome this deficiency, in the previous Chapter, a heuristic is developed

for deterministic DED problems which transforms an infeasible individual into a feasible

one by repairing the load allocation among the committed generators. In this process,

the daily load cycle is divided into 24-hour sub-problems and the operating generators

allocated to meet the load demand in each hour starting from different random hours.

In this Chapter, the heuristic is modified for the uncertain DED problem which

satisfies the equality, ramp and transient ramp constraints for any given hour. To repair

an infeasible individual for a given hour in a scenario, the heuristic uses a look-ahead

approach in which the possible load demand and wind speed in subsequent hours for

that and other scenarios are considered. As a result, as it has prior knowledge of possible

deviations in load demands and wind speeds in the upcoming hours, the generators are

scheduled for a certain hour in such a way that they are able to meet the load demands

in following hours without modification. The detailed procedure for obtaining a feasible

individual for a given hour from an infeasible one can be found in previous Chapter of

section 3.5.4, where the capacity limits of each generator at each time interval for each

scenario are updated in a different way, as described below.

For solving the forecasted (basic i.e., s = 1) scenario, the total ramp-ahead first and

last hour generations capacity limits are updated as follow.
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NT∑
i=1

Pmin1
i,s=1 ≤ min

(
P s=1
D,t=1, P

s=2
D,t=1, ..., P

s=NS
D,t=1 , P

s=1
D,t=T , P

s=2
D,t=T , ..., P

s=NS
D,t=T

)
(4.20)

NT∑
i=1

Pmax1
i,s=1 ≥ max

(
P s=1
D,t=1, P

s=2
D,t=1, ..., P

s=NS
D,t=1 , P

s=1
D,t=T , P

s=2
D,t=T , ..., P

s=NS
D,t=T

)
(4.21)

Equations (4.20) and (4.21) help keeping the first- and last-hour electricity genera-

tions of basic scenario within the limits so that the power generations in other predicted

scenarios can meet the load demands at those two hours.

The capacity limits of each generator at each time interval (excluding first and last

hour) for each scenario (including basic one) are updated as follows:

Pmini,t,s = max
(
Pmini , Pmin1

i,s − (T − t)DRi, Pmin1
i,s − (t− 1)DRi

)
∀i s ∈ NS (4.22)

Pmaxi,t,s = min
(
Pmaxi , Pmax1

i,s − (T − t)URi, Pmax1
i,s + (t− 1)URi

)
∀i s ∈ NS (4.23)

The all parameters of Eqns. (4.22) and (4.23) are predetermined, while the Pmin1
i,s

and Pmax1
i,s are calculated as follow.

For the basic (s = 1) scenario, set, Pmin1
i,s = Pmini and Pmax1

i,s = Pmaxi ∀i at starting

hour (P tstart
Ti,s

) to provide full flexibility, while the capacity limits at rest of the hours are

calculated using Eqns. (4.24) and (4.25), where P 1
Gi

= P tstart
Ti,s

∀i is considered. On the

other hand, set, P 1
Gi

= P TTi,s=1
∀i at entire operational periods for the predicted scenarios,

and calculate Pmin1
i,s and Pmax1

i,s as follows:.

Pmin1
i,s = max

(
Pmini , (P 1

Gi
− DRi

2 )
)
i ∈ NT , s ∈ Ns, (4.24)
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Pmax1
i,s = min

(
Pmaxi , (P 1

Gi
+ URi

2 )
)
i ∈ NT , s ∈ Ns, (4.25)

The values of Pmin1
i,s and Pmax1

i,s in Eqns. (4.24) and (4.25) are considered as half of

the ramp limits so that the ramp constraints between two scenarios are always satisfied

even in worst condition.

A Selection

In order to determine the best set of individuals from the both parents and offspring,

a selection process is used based on their FV s and CV s those calculated using the

Eqns. (4.6), and (3.32), respectively. Based on these values, a greedy selection scheme

described in section 3.5.5 is used so that a feasible solution is always considered better

than an infeasible one.

4.6 Experimental Study

For the experimental study, two test problems from the literature are taken that involve

both thermal and wind power plants and solved for a one-week planning horizon, con-

sidering the uncertainty effects of wind speeds and load demands. The uncertain wind

energy and variable load demand are included in both problems, with scenario-based

characterizations of the uncertainties associated with the load demand and wind speed

considered. As, in this Chapter, the main focus is on demonstrating the solution ap-

proaches for overcoming the TRV to implement the committed generators in a periodic

order on successive days, a smaller population sizes of 20 and 50 for the 5- and 10-unit

systems, respectively, is considered to reduce the computational burden, with NG = 100

set for both systems.

As previously mentioned, the control parameters of DE are set adaptively, the GA

parameters, the probability of crossover, distribution index and probability of mutation

are set to 0.9, 3 and 0.1, respectively. Thirty independent runs are performed for each

test case of each scenario and the solutions recorded and compared with each other along

with the results from state-of-the-art algorithms.
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Table 4.1: Wind speed data for 5 and 10 unit systems

Period 1 2 3 4 5 6 7 8 9 10 11 12

V 1
w,f (m/s) 13.25 13.9 12.8 12 12.5 14 11.75 12.75 12.8 12.2 15 13.25

V 2
w,f (m/s) 11.75 12 12.25 12.3 12.5 14 15 14.5 13 13.75 13.5 13.5

Period 13 14 15 16 17 18 19 20 21 22 23 24

V 1
w,f (m/s) 14.25 14.1 14.2 11.75 13.75 12.75 11.5 11.9 14.5 16 12.65 13

V 2
w,f (m/s) 12.8 12.25 11.25 11.5 11 11.25 11.2 11 11.3 11.8 11.8 12.25

Each algorithm runs until the number of generations is greater than the predefined

maximum number (criterion 1) or the best fitness value is no longer improved in 50 gen-

erations (criterion 2) or the average fitness value is no longer improved in 20 generations

(criterion 3).

4.6.1 Test Problems

In this section, the considered test problems are described. Firstly, two deterministic 5-

and 10-unit DED systems without Ploss shown in Appendix A.1.1 and A.1.2, respectively

are considered then modified by incorporating the variable wind speeds and fluctuating

load demands. To do, the first thermal unit of the 5-unit system is replaced by a wind

farm, which has 75×1-MW WPG. Similarly, the 10-unit system is modified by replacing

thermal unit 9 by 40× 2 MW and 10 by 55× 1 MW WPGs [34]. Wind speed forecasts

are depicted in Table-4.1, where V 1
w,f and V 2

w,f are used for the modified 5- and 10-unit

DED system, respectively. The forecasted load demands for both problems are shown

in Tables A.2 and A.5, respectively in Appendix A.1.

According to ref. [34], the parameters for wind power generation are calculated

as: Vci,w,f = 4m/s, Vr,w,f = 14m/s, Vco,w,f = 25m/s, V1,w,f = 7m/s, V2,w,f = 12m/s,

S1,w,f = 0.2/(V1,w,f − Vci,w,f ), S2,w,f = (0.96 − 0.2)/(V2,w,f − V1,w,f ), S3,w,f = (1 −

0.96)/(Vr,w,f − V2,w,f ). For the sake of simplicity, the same parameters are considered

for both wind generators. Based on realistic Australian wind speed [224] and load

demand [223] data, the variations in demands and wind powers on the subsequent seven

days after the initial operating day are considered as ±5% and ±100%, respectively.
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Table 4.2: Characteristics of an additional diesel generator

Pmin Pmax a b c UR DR T onmin T
off
min

(MW ) (MW ) ($/h) ($/MWh) ($/(MW )2h) (MW/h) (MW/h) (h) (h)

10 20 137.4 17.6 0.005 15 15 1 1

As in the reality some spare units always there to meet unexpected electricity short-

fall due to rapid demand changes or generation outage, here an additional quick start-up

diesel generating unit is also included in the model to remedy the TRV in (4.15), that re-

ported in Table-4.2 [21]. Note that, this unit is expensive comparing to other committed

units, and only operated when the existing units are unable to meet the load demand,

otherwise remains off-status. For example, if the wind speed suddenly falls to zero and,

conversely, the load demand significantly increases, the operating units may not be able

to meet that demand. In this extreme case, either the additional generator will help to

meet demands, or there must be load shedding to provide a high compensation to the

consumer. Based on the specifications of an Australian utility company [227, 228], the

penalty cost for load shedding is set to $2000/MW in this research.

4.6.2 Simulation Results

In this section, the experimental results for solving the above uncertain wind-thermal

DED systems is explained. Firstly, based on the scenario-generation process described

in section 4.5.1, 100 practical scenarios are generated and recorded. Then, starting with

the forecasted or basic scenario, all these scenarios are solved separately using both the

proposed and traditional approaches with two considered EAs, DE and GA. In addition,

for a fair comparison with GA and DE, an adaptive DE (JADE) [229] called JADE is

also implemented for solving both problems.

From the analysis of last Chapter, it is clear that the EAs without the heuristic are

inferior to those with the proposed heuristic. Of the approaches using a heuristic, the

traditional means the heuristic is proposed for a scheduling in 24 hours time horizon

for s specific scenario of the resources described in 3.5.4, while the proposed one for the

scheduling of continuous time-horizon that described in section 4.5.3. In other words,

the traditional ones neglect the transient ramp constraints (4.15) and subsequently solve
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Fig. 4.2: Load demands and wind speeds for 5-unit system over seven days

each scenario as a deterministic DED without considering the other possible scenarios’

information while the proposed ones consider these constraints and solve each individual

scenario using the information of wind speeds and load demands for the following sce-

narios. Therefore, when the algorithms use the heuristic for 24 hours, called simple GA,

DE, and JADE, while they use the proposed scenario based heuristic, called enhanced

GA (E-GA), DE (E-DE), and JADE (E-JADE), respectively.

Once the 100 scenarios are solved using the both approaches, seven random scenarios

including basic one are selected for seven days of operation, with their load demands and

wind powers of the 5-unit system illustrated in Fig. 4.2. From this figure, it is seen that

the load demand and wind power are widely varied within a range of 300 MW to 820

MW, and 0 to 75 MW, respectively, where these ranges for seven days were determined

based on the Australian real-life data [223, 224].

Tables 4.3 and 4.4 present the results obtained from seven days’ scheduling for 5-

and 10-unit uncertain DED system, respectively, in which the results involve the daily
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Table 4.3: Seven days scheduling out of 100 random scenarios for 5-unit system

Daily cost ($)= FCd
+ FCL

Traditional approach Proposed approach
Days JADE DE GA E-JADE E-DE E-GA
day-1 36783 36700 36900 38506 39700 38600
day-2 120443 95300 112100 42652 43000 43000
day-3 86045 170800 180800 42000 41800 41100
day-4 41297 72000 50140 41799 41300 40900
day-5 136125 129800 151500 42609 44200 43100
day-6 76829 93300 39800 40643 40700 40100
day-7 144060 45300 79400 43854 44900 44100
FT ($) 641582 643200 650640 292062 295600 290900
TRV 71.43% 57.13% 71.43% 0.00% 0.00% 0.00%
Time 14.8 sec 11.1 sec 13.0 sec 15.9 sec 11.2 sec 13.3 sec

Table 4.4: Seven days scheduling out of 100 random scenarios for 10-unit system

Daily cost ($)= FCd
+ FCL

Traditional approach Proposed approach
Days JADE DE GA E-JADE E-DE E-GA
day-1 854066 837000 840000 876333 883000 878000
day-2 884929 898000 944800 895136 894000 889000
day-3 900027 887000 959300 876681 881000 875000
day-4 1011005 946200 954700 904432 909000 897000
day-5 925531 1033000 984200 906403 930000 923000
day-6 890889 913000 909900 911237 862000 856000
day-7 937762 1007000 901700 922532 860000 863000
FT ($) 6404209 6521200 6494600 6292754 6219000 6181000
TRV 57.14% 79.24% 72.17% 0.00% 0.00% 0.00%
Time 45.2 sec 44.0 sec 55.05 sec 45.8 sec 44.2 sec 55.48 sec

fuel cost of the thermal generators which are the aggregation of daily fuel cost and

penalty cost for unexpected electricity shortfall due to TRVs, percentages of TRVs, and

run time per scenario. From these tables, it is seen that the TRV of a best economical

scheduling of a day found in traditional approaches are very high for both problems,

which indicate that the ramp limits between the last hour of that day and first hour

of following day are violated, and consequently a shortfall of electricity is appeared at

the early hours of following day which incurred a high penalty cost to the consumer.

On the other hand, the proposed approaches (E-JADE, E-DE and E-GA) solve the

problems based on operating day’s data in addition to seven subsequent days’ data,

and consequently found zero TRV which means all solutions are feasible with zero load

shedding at a minimum overall cost. As a result, the total daily operation cost (FT )
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Table 4.5: Sample weekly transient hour solutions for 5-unit system obtained from GA
and E-GA

Day Hour GA E-GA
P1 P2 P3 P4 P1 P2 P3 P4

1 1 20.00 30.00 89.16 225.53 47.48 30.00 124.91 162.30
24 20.00 55.61 129.09 222.89 77.28 50.00 127.34 162.96

2 1 46.13 75.08 116.19 90.16 67.30 33.32 87.65 136.39
24 36.82 107.02 111.54 135.28 72.65 47.05 130.88 140.04

3 1 20.00 30.00 138.73 145.92 47.28 30.00 118.09 139.28
24 20.00 30.00 165.49 183.71 75.35 30.00 130.88 162.96

4 1 99.66 30.00 151.21 139.77 77.28 50.00 130.40 162.96
24 75.26 46.43 162.16 135.85 77.28 50.00 129.46 162.96

5 1 20.00 30.00 142.94 143.18 62.28 30.00 105.88 137.96
24 41.55 30.00 124.91 193.04 77.28 30.00 125.31 156.92

6 1 27.09 30.00 122.91 139.77 59.77 30.00 90.24 139.76
24 57.49 30.00 82.70 139.78 59.32 30.00 80.88 139.76

7 1 84.82 30.00 106.98 184.04 77.28 48.22 125.86 154.48
24 70.99 30.00 107.50 148.28 67.81 30.00 118.91 138.89

in the proposed approaches are found much lower than those of traditional ones. Also,

comparing between proposed methods (E-DE and E-GA) and a state-of-art (E-JADE),

E-GA performs superior for both problems. In terms of computational cost, both tradi-

tional and proposed approaches take almost similar time with E-DE is found minimum

in the proposed approaches.

4.6.3 Discussion

In this section, a numerical explanation is presented that provides insights into the

reasons for obtaining better results from the proposed approaches than traditional ones.

Firstly, the first- and last-hour solutions of the 5-unit system using GA and E-GA are

illustrated in Table 4.5, with those in bold representing infeasible generations in terms of

their TRVs. It is seen that the proposed approach (E-GA) provides seven-day solutions

without any CV while the traditional one (GA) encounters five infeasible solutions for the

seven selected scenarios of 7-day generation scheduling; for example, the ramp violation

between days 1 and 2 is 82.73 MW because the maximum allowable ramp limit for unit-

4 is 50 MW. To compensate this unwanted violation (i.e., electricity shortfall), a high

amount of penalty cost is incurred by the producers.
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Table 4.6: Summary of 100 scenarios for periodic implementation wind-thermal DED

5-unit problem 10-unit problem

FCT
($) FCL

($) FT ($) TRV FCT
($) FCL

($) FT ($) TRV

JADE 4.25E+06 6.23E+08 6.28E+08 74.44% 8.88E+07 9.56E+08 1.04E+09 83.34%

DE 4.30E+06 5.43E+08 5.47E+08 69.60% 8.87E+07 9.07E+08 9.96E+08 79.24%

GA 4.25E+06 5.30E+08 5.34E+08 71.08% 8.73E+07 6.36E+08 7.23E+08 72.17%

E-JADE 4.28E+06 0.00 4.27E+06 0% 8.82E+07 0.00 8.80E+07 0%

E-DE 4.27E+06 0.00 4.27E+06 0% 8.80E+07 0.00 8.80E+07 0%

E-GA 4.22E+06 0.00 4.22E+06 0% 8.75E+07 0.00 8.75E+07 0%

Table 4.6, lists the total fuel costs (FCT
) for 100 predicted scenarios with their

percentages of TRV and ramp compensation costs (FCL
). The FCL

is the cumulative

TRV cost in which each TRV is calculated based on the ramp violation between the

first hour of a scenario and the last hour of that or another scenario. According to the

results from traditional approaches, when a scenario is solved based on an operating

day’s data without invoking the predicted scenarios for the subsequent days’ data, more

than 70% of solutions for those scenarios violate ramp limits between the last hour of one

scenario and the first hour of another. To compensate these ramp violations, as a high

compensation cost is incurred, the overall cost (FT ) of a traditional approach becomes

higher as the FCL
increases with an increasing TRV, with the maximum FCL

found in

JADE. On the contrary, as previously mentioned, the proposed approaches (E-JADE,

E-DE and E-GA) solve a scenario (e.g., a forecast one) by considering other possible

predicted scenarios of both that day and seven subsequent days. The solutions obtained

from E-JADE, E-DE and E-GA maintain the ramp limits over the seven-day period

and produce a minimum overall cost solution for a DED problem. Table-4.6 also reveals

the superiority of the proposed approaches over the traditional ones for both problems

using both algorithms. Moreover, the proposed E-GA is found to be best among six

algorithms for solving the both the uncertain DED problems.

4.7 Chapter Summary

Two solution approaches based on GA and DE with a new heuristic for solving both

deterministic and uncertain DED problems involving unpredictability in wind speed and
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load demand were presented in this Chapter. The mathematical model of a DED prob-

lem was reformulated, considering the possible scenario of those two uncertain variables

over the seven days operational period. In addition, a constraint is considered for peri-

odic implementation of the committed generators on successive days under the uncertain

behavior of wind speed and load demand. The heuristic technique was used to transform

an infeasible solution into a feasible one which satisfies periodic demand, capacity and

ramp limits constraints over the seven days horizon. The proposed methods, along with

a state-of-the-art algorithm, with considering two different heuristics were applied on

two uncertain DED benchmarks consisting of 5- and 10-unit wind-thermal hybrid power

plants, with the uncertainty was represented 100 realistic scenarios generated based on

the Australian wind speed and electricity demand data. For solving the uncertain DED,

the solutions obtained from the proposed and traditional approaches were compared

which revealed that the proposed methods provided scheduling with zero loads shedding

at a minimum operating cost. Also, comparing the performances of the six algorithms

implemented, the proposed E-DE and E-GA were superior for solving uncertain DED

problems, and E-GA relatively performed well for both problems.

Based on the evidence in this chapter and Chapter 3, it is evident that an EA

with the proposed heuristic outperformed state-of-the-art algorithms. However, neither

E-GA nor E-DE performed consistently well for both thermal and wind-thermal DED

problems, i.e., E-DE was better for the former and E-GA for the latter. To solve a

wide range of DED problems, such as thermal, wind-thermal, solar-thermal and hydro-

thermal, in the next chapter, an evolutionary framework is designed.
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Chapter 5

Evolutionary Framework for DED

Problems

This chapter discusses the importance of solving different types of dynamic economic

dispatch (DED) problems, such as thermal, hydro-thermal, wind-thermal and solar-

thermal, and their uncertainties in power system operations. Then, descriptions and

mathematical formulations of these problems, and an overview of existing solution ap-

proaches are provided. After stating the motivation for developing a new algorithm for

solving this wide range of DED problems, a general evolutionary framework is designed.

Finally, the experimental results and outcomes are presented.

5.1 Introduction

As discussed in the previous chapters, the aim of a DED problem is to minimize the

production costs of generators operating in a time horizon while satisfying technical

and physical constraints. However, due to the significant use of fossil fuels in power

generation, vast amounts of atmospheric pollutants are continuously released into the

environment. As recent energy act emphasized the need to reduce greenhouse gas emis-

sions when generating electricity, it is necessary to consider emission reductions in a

The following papers have been published from this chapter:
[1]. M. F. Zaman, S. M. Elsayed, T. Ray and R. A. Sarker, Configuring two-algorithm-based evolutionary
approach for solving dynamic economic dispatch problems, Engineering Applications of Artificial
Intelligence, vol. 53, August 2016, Pages 105-125.
[2]. M. F. Zaman, R. A. Sarker, and T. Ray, Solving an economic and environmental dispatch problem
using evolutionary algorithm, IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM), 2014, pp. 1367-1371.
[3]. M. F. Zaman, S. M. Elsayed, T. Ray and R. A. Sarker, An evolutionary framework for the bi-
objectives dynamic economic and environmental dispatch problems, Intelligent and Evolutionary
Systems. Proceedings in Adaptation, Learning and Optimization, vol 8. Springer, Cham, 2017.
pp. 495-508.
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problem of scheduling generators. Therefore, power industries are now focusing on lim-

iting greenhouse gas emissions while minimizing costs by introducing alternatives to

thermal sources, such as solar, wind and hydro ones, for generating electricity.

The operating cost of renewable energy is very low and its gas emissions not a big

issue while, in contrast, both those of thermal plants are quite high. As the energy de-

mand is much greater than that which a renewable generator can produce, it is necessary

to also run some other costly and inferior options, such as thermal plants. Therefore,

a mixed DED system is used to schedule both thermal and renewable sources to serve

daily load demands but, despite the advantages for the environment and economy of

renewable energy, handling its uncertainty is difficult.

As discussed in Chapter 2, sometimes the generators are scheduled with the aim

of minimizing both the gas emission and fuel cost. In this case, a DED problem is

formulated as a bi-objective, dynamic economic and emission dispatch (DEED) one

that considers non-commensurable and contradictory objectives. However, as it involves

multiple non-linear and conflicting objective functions, solving it and obtaining trade-off

solutions is very challenging [7].

Over the last few decades, although several EAs have been successfully applied for

solving both DED and DEED problems, no single algorithm has performed consistently

over a wide range of these problems. One EA may perform well in an early stage of

the optimization process but less well in later generations and vice versa. Therefore,

in this chapter, a general evolutionary framework for solving many of these problems is

presented.

5.2 Problem Description

In this section, different types of DED and DEED problems, thermal, hydro-thermal,

wind-thermal and solar-thermal systems, are described.

As mentioned in Chapter 3, the objective of a thermal-based DED problem is to

minimize the fuel costs of all the committed thermal generators while satisfying their

capacities, ramp limits, spinning reserves (SRs) and load demand constraints. It involves



Chapter 5 Evolutionary Framework for DED Problems 119

a multi-modal, non-convex and non-smooth cost function as the valve point effect (VPE)

of thermal generators is considered. As its decision variables are the electricity output

from the thermal generators over a time horizon of T hours, there are T ×NT of them,

where NT is the number of thermal units.

The hydro-thermal DED is a large-scale non-linear complex optimization problem.

Its objective is to determine the optimal power generation of both hydro and ther-

mal units to minimize the fuel costs of the thermal ones while satisfying the various

constraints of both systems. The constraints of thermal generators have already been

described while those of a hydraulic system are the reservoir’s capacity, water flow rate

and water balance between the inflow and outflow, and time delay and capacities of

its hydro generators. The objective function is considered the usual non-convex and

multi-modal fuel cost function of the thermal generators, with the costs of the hydro

generators ignored. The load demands for the thermal generators are re-calculated after

subtracting the generations of available hydro power, which depend on the water flow

rates of the reservoir and their time delays, from the forecasted load demands. The

decision variables are the electricity output from the thermal generators and the water

flow rate of the reservoir in the hydraulic system. If a hydro-thermal system has NT

and NH thermal and hydro generators, respectively, that perform for a time period of

T hours, the number of decision variables is T × (NT +NH).

The wind-thermal DED problem is a nonlinear constrained optimization problem.

After incorporating the uncertain characteristics of wind speeds into the DED model,

the objective function becomes the summation of four components. The first is the usual

fuel cost of the thermal generators and the next three the costs of the uncertain wind

generators, that is, the expected, and over-estimated and under-estimated unbalance

conditions. The expected cost is that which the wind power producer has to pay when

the system has no wind turbine. The over-estimated one refers to when the available

wind energy is less than the scheduled output for a time interval and is incurred because

an additional charge is imposed on the system to balance the load demand and gener-

ation, with the shortage compensated by the reserve power. The under-estimated cost

means that the available wind energy is greater than the scheduled output in a time

interval. In this case, the extra generations are either dispatched elsewhere or wasted,
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thus incurring a penalty cost for regaining the system’s stability by meeting the load

balance constraints. The constraints of a wind-thermal DED are the power balance,

capacity limits of both its thermal and wind generators and ramp limits of the thermal

ones. Its decision variables are the electricity output from both the thermal and wind

generators with T × (NT +NW ) variables, where NW is the number of wind turbines.

The solar-thermal DED problem is also formulated as a single-objective minimiza-

tion one in which the objective is to minimize the operating costs of both the thermal and

solar photovoltaic (PV) units. The constraints are the power balance, capacity limits of

both the thermal and solar units and ramp limits of the thermal ones. Also, an equality

constraint of the maximum solar share is used to ensure system stability under uncertain

solar generation conditions, with the electricity usage not exceeding the reserve capacity.

The decision variables of this system are considered the output from both thermal and

solar PV generators while their types are different, being continuous for the former and

integers for the latter because, when a solar unit is scheduled, the available solar energy

is fully utilized. The number of decision variables in a wind-thermal DED problem is

T × (NT +NS), where NS is the number of solar units.

As previously mentioned, a DEED problem is a bi-objective constrained, non-convex

and non-smooth minimization one in which the objective is to simultaneously minimize

both the operating costs of the committed generators and gas emissions from the thermal

ones. The constraints and decision variables in this problem are considered to be the

same as those in the single-objective DED one. Details of the mathematical formulations

of both the DED and DEED problems for thermal, hydro-thermal, wind-thermal and

solar-thermal systems are discussed in the following section.

5.3 Mathematical Formulations

In this section, the single objective DED problems for thermal, hydro-thermal, wind-

thermal and solar-thermal systems, and based on the availability of the data, the bi-

objective DEED problems for hydro-thermal and solar-thermal are presented. For all

the problems, it is assumed that their given numbers of generators are predetermined

using UC problems [230] and that these generators will be operated for the time periods
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of T−hour. Also, to compare the simulation results with the state-of-the-arts, the

uncertainty factors of the renewable sources (e.g. wind, solar, etc.) are tackled using

the conventional penalty function approach that accumulated with respective objective

function. Each of the models is described below.

5.3.1 Thermal System

In a single objective thermal based DED problem, the objective is to minimize the sum

of all fuel costs for the thermal power plants under consideration (NT ) during the op-

erational cycle, T while satisfying a number of equality and inequality constraints, such

as power balance with Ploss, capacity, ramp limits and SR constraints. The objective

function and the constraints are described in section 3.3 of chapter-3 in which the fuel

cost function including the VPE shown in Eqn. (3.1) and the constraints shown in Eqns.

(3.3) to (3.10).

5.3.2 Wind-Thermal System

In the wind-thermal DED system, the main aim is to determine the optimal power

generation of the thermal and wind generators by minimizing the overall operating cost

while satisfying the number of constraints, as described below.

A Objective Function

The objective function of a wind-thermal DED system comprises the fuel and environ-

mental costs of thermal generators and the operating cost of wind turbines. In addition,

the penalty costs, such as the over- and under-estimated ones of wind energy due to

the stochastic nature of wind speeds are considered. According to a cost analysis of

conventional and wind turbine generators, the objective function of the DED model in

T time intervals can be expressed as [137]:
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Minimize FT =
T∑
t=1

NT∑
i=1

(
FCi(PTi,t) + FEi(PTi,t)

)+ (5.1)

T∑
t=1

NW∑
w=1

(
FWw(PWw,t) + FUw(PWw,t) + FOw(PWw,t)

)
where PTi,t and PWw,tare the output of ith and wth thermal and wind generator, re-

spectively, FWw , FUw and FOwthe operating, under- and over-estimated penalty cost,

respectively, the fuel cost (FC) of thermal generators can be found in (3.1) and the cost

for gas (FE) emissions expressed as:

FE(PTi,t) = 10−2
(
αi + βiPTi,t + γiP

2
Ti,t

)
+ ηie

λiPTi,t , i ∈ NT t ∈ T (5.2)

where αi, βi, γi, ηi and λi are the emission coefficients of the ith thermal generator,

respectively. The operating cost of wind generators is assumed to be linear as:

FWw(PWw,t) = δwPWw,t , w ∈ NW t ∈ T (5.3)

where δw is the per unit cost of wth wind generator, and the output power of the wth

wind generators at the tth time interval can be expressed as [141]:

PWw,t =


0 if voutw < vw,t < vinw

PRw

vw,t−vinw
vrw−vinw

if vinw < vw,t < vrw

PRw if vrw < vw,t < voutw

(5.4)

where voutw , vinw , vrw and vw,t are the cut-out, cut-in, rated and tth-hour wind speed of

wth wind farm, respectively, and PRw rated wind power from the wth wind generator. As

wind energy is efficient and economical, it is obvious to consider penalty costs in cases

of the expected wind energy being under- and over-estimated which are linearly related

to the difference between the available and actual wind power used and expressed as:

FUw(PWw,t) = kUw

ˆ PRw

PWw,t

(
w − PWw,t

)
fPWw,t

(w)dw ∀w, t (5.5)
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FOw(PWw,t) = kOw

ˆ PRw

0

(
PWw,t − w

)
fPWw,t

(w)dw, ∀w, t (5.6)

Although it is obvious that it is not possible to know the actual wind speed in ad-

vance, prior research has demonstrated that it follows the Weibull distribution function.

Using historical wind speed values, the PDF of each wind power plant at each time

interval, i.e., fPWw,t
can be calculated as:

fPWw,t
(W ) = Ktlvin

ct
φKt−1e−φ

Kt
, 0 < Wt < WR (5.7)

where the constants kt,ct and φ are calculated as:

Kt = (σt/µt)−1.086 , (5.8)

ct = µt

Γ(1 +K−1
t )

(5.9)

φ = (1 + (W/WR)l)v
ct

(5.10)

where l = vr − vin
vin

(5.11)

where µt and σt are the mean and standard deviations of the wind speed at tth hour,

respectively.

B Constraints

Similar to the other DED models, the wind-thermal DED problem involves the power

demand, capacity and ramp constraints described in the following subsections.
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B.1 Power Balance Constraints

The total power output of thermal and wind power plants must be the same as the load

demand at each time interval as:

NT∑
i=1

PTi,t +
NW∑
w=1

PWw,t = PDt + Plosst (5.12)

where NW is the number of wind power plants.

B.2 Capacity Constraints

Each thermal and wind generator has lower and upper capacity limits as:

Pmin
Ti
≤ PTi,t ≤ Pmax

Ti
i ∈ NT , t ∈ T (5.13)

0 ≤ PWw,t ≤ PRw w ∈ NW , t ∈ T (5.14)

B.3 Minimum on/off Time Constraints

Each thermal unit has minimum on and off times as:

[
T ont−1,i − T onmini

] [
UTt−1,i − UTt,i

]
≥ 0 (5.15)[

T offt−1,i − T
off
mini

] [
UTt,i − UTt,i−1

]
≥ 0

where T onmini
and T offmaxi

are the minimum on and off time of ith unit, respectively, T ont−1,i

and T offt−1,i are the continuous on and off time of ith unit at tth time interval, respectively,

and Ut−1,i the operational status of those thermal unit, i.e., 0 - unit off, 1 - unit on.
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B.4 Ramp Constraints

As the output of a thermal unit cannot change rapidly, to avoid an unwanted electricity

shortfall during two consecutive hours, the ramp constraints are considered as:

−DRi ≤ (Pt,i − Pt−1,i) ≤ URi, if Pt−1,i > Pmin
i (5.16)

−DR0
i ≤ |Pt,i − Pt−1,i| ≤ UR1

i , if 0 < Pt−1,i < Pmin
i (5.17)

where UR1 and DR0 are the initial ramp up and down respectively. The first traditional

ramp constraint in Eqn. (5.16) represents the normal ramp constraint between the two

hours and the second in Eqn. (5.17) the ramp limits while the generating unit is in the

process of startup or shutdown.

5.3.3 Hydro-Thermal System

In this section, both DED and DEED of a hydrothermal system are presented.

A Objective Function

The aim of a hydrothermal problem is to determine the optimal level of power genera-

tion of each thermal and hydro power plant by minimizing the fuel cost of all thermal

generators in single objective DED, and minimizing simultaneously both fuel costs and

gas emissions of all thermal units in bi-objective DEED, as shown below.

A.1 Single-Objective Function

The objective function of a single-objective hydro-thermal DED system is to minimize

the fuel cost of thermal power plants with the overall cost during the operational period

(T ) expressed as [17]:
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Min: FC =
T∑
t=1

NT∑
i=1

(
ai + biPTi,t + ciP

2
Ti,t

+
∣∣∣di sin

{
ei
(
Pmin
Ti,t
− PTi,t

)}∣∣∣) ∀i, t (5.18)

In a hydrothermal system, firstly, the output from a hydro system is determined based

on the the optimal determination of water reservoir rate (XH) then the output of a

hydro generator (PH) calculated using Eqns. (5.22) and 5.23. Finally, the rest of the

electricity is determined from the thermal generators. Therefore, the decision variables

of the hydro-thermal DED system are considered as the output power of each thermal

unit and water discharge rate of each hydro reservoir at each time interval, i.e., PTi,t

and XHh,t
, respectively.

A.2 Bi-Objective Functions

In a bi-objective DEED problem, the objectives are to minimize both fuel costs and gas

emissions simultaneously, as:

Min: FC =
T∑
t=1

NT∑
i=1

(
ai + biPTi,t + ciP

2
Ti,t

+
∣∣∣di sin

{
ei
(
Pmin
Ti,t
− PTi,t

)}∣∣∣) ∀i, t (5.19)

Min: FE =
T∑
t=1

NT∑
i=1

(
10−2

(
αi + βiPTi,t + γiP

2
Ti,t

)
+ ηie

λiPTi,t

)
∀i, t (5.20)

The first objective of Eqns. (5.19) and (5.20) are the fuel costs and the gas emission

of the thermal power plants under consideration during an operational cycle T .

B Constraints

The combined hydro-thermal problem for both DED and DEED includes a number of

constraints, such as the water reservoir balance, water discharge rates and initial and



Chapter 5 Evolutionary Framework for DED Problems 127

final water availability, as well as the other technical constraints of a thermal generator,

which are briefly discussed in the following subsections.

B.1 Power Balance Constraints

The summation of the power outputs of the thermal (PTi,t) and hydro (PHh,t
) generators

must be equal to the load demand (PDt) for a certain time interval as:

NT∑
i=1

PTi,t +
NH∑
h=1

PHh,t
= PDt t ∈ T (5.21)

where the power output of the hth hydro plant at the tth time interval can be expressed

as:

PHh,t
= C1,hV

2
Hh,t

+ C2,hX
2
Hh,t

+ C3,hVHh,t
XHh,t

+ C4,hVHh,t
+

C5,hXHh,t
+ C6,iXHh,t

h ∈ NH , t ∈ T (5.22)

where Ck,h h = 1, 2, . . . , 6 are the generation coefficients of hth hydro generator, Vh,t the

water storage volume for the hth reservoir at the tth time interval that can be expressed

as:

VHh,t+1 = VHh,t
−XHh,t

+ IHh,t
− SHh,t

+
Nup∑
r=1

XH
r,

(
t−tdr,h

) + SH
r,

(
t−tdr,h

)
 h ∈ NH , t ∈ T (5.23)

where IHh,t
and SHh,t

are the water inflow and spillage water reservoir for the hth hydro

generator at tth time interval, respectively, and Nup and tdr,h
the number of upstream

plants and water transport delay from rth to hth reservoirs, respectively. It is noted

that the Ploss and water spillage are assumed to be zero for comparison with ref. [17]

while the Nup and tdr,h
are calculated from the structure of the hydro reservoir shown

in Appendix A.2 of Fig. A.1.
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B.2 Capacity Constraints

The generation capacity constraints of the hydro and thermal power plants are, respec-

tively:

Pmin
Hh
≤ PHh,t

≤ Pmax
Hh

h ∈ NH , t ∈ T (5.24)

Pmin
Ti
≤ PTi,t ≤ Pmax

Ti
i ∈ NT , t ∈ T (5.25)

where PminHh
and PmaxHh

are the minimum and maximum hydro power plant, respectively.

B.3 Water Storage and Discharge Constraints

The capacity limits of the water storage and water discharge rates of each reservoir are,

respectively:

V min
Hh
≤ VHh,t

≤ V max
Hh

h ∈ NH , t ∈ T (5.26)

Xmin
Hh
≤ XHh,t

≤ Xmax
Hh

h ∈ NH , t ∈ T (5.27)

where V min
Hh

and V max
Hh

are the minimum and maximum value of VHh
, respectively, and

Xmin
Hh

andXmax
Hh

the minimum and maximumXHh
, respectively. In the hydraulic system,

the initial and final reservoir storage volumes must meet the requirements of all the

reservoirs as:

∣∣∣VHh,t

∣∣∣t=0
= V ini

Hh
,
∣∣∣VHh,t

∣∣∣t=T = V end
Hh

h ∈ NH (5.28)

where V ini
Hh

and V end
Hh

are the initial final water volumes of hth reservoir, respectively.

However, as these two constraints are not easy to satisfy using a conventional approach,

an iterative method is employed for dealing with them efficiently, details of which shown

below[17].
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B.4 Dealing with Reserve Constraints

Let,
[
PT1,t , PT2,t , . . . , PTi,t ,X1,t, X2,t, . . . , Xh,t

]
be an initial solution array for an opera-

tional time period, t ∈ T . The output power of the thermal units (PT ), and the water

discharge rate (XH) must satisfy their range as in Eqns. (5.27) and (5.25). Then, the

water reservoir storage volume capacity (VH) can be determined using Eqn. (5.23),

which also satisfy its limit in Eqn. (5.28), in addition to its initial and final storage

volume capacity in Eqn. (5.28). Since, spillage water is assumed to be zero, thus, the

water reserves balance constraints of Eqn. (5.23) can be rewritten as follow [17]:

VHh,0 = VHh,T
−

T∑
t=1

XHh,t
−

T∑
t=1

Nup∑
r=1

XH
r,

(
t−tdr,h

) − T∑
t=1

IHh,t
(5.29)

where h ∈ NH

Now, it is assumed that any random dependent time interval (nd) can be used to satisfy

the initial and final water storage constraints, the water discharge rate at that time

interval can be calculated from the Eqn. (5.29) as:

XHh,nd
= VHh,0 − VHh,T

+
T∑
t=1

IHh,t
+

T∑
t=1

Nup∑
r=1

XH
r,

(
t−tdr,h

) −
∑
t=1
t6=nd

XHh,t
where h ∈ NH (5.30)

This dependent water discharge rate should also satisfy the constraint in Eqn. (5.27).

Once the feasible water discharge rate is determined, compute the hydro power using

Eqn. (5.22).

5.3.4 Solar-Thermal System

As solar-thermal problems formulate both single objective DED and bi-objective DEED

ones, which involves thermal and solar photovoltaic (PV) generators. Based on the

nature of the decision variables, the solar-thermal DED problem is essentially considered

a MINP in which the solar unit represented as a binary variable and the thermal unit
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as a continuous one. The objective function and constraints of the DED and DEED

systems are described in the following subsection [39].

A Objective Function

In the solar-thermal the primary objective of a DED is to minimize the overall cost of

these generators by allocating the load demand among the committed ones. Moreover,

in DEED, the secondary objective of minimizing the gas emission of the considered

thermal generators is considered, those described below.

A.1 Dynamic Economic Dispatch

The objective function of the solar-thermal DED consists of both the fuel and gas emis-

sion costs of the thermal generators and the operating cost of the solar unit as:

Min: FT =
T∑
t=1

NT∑
i=1

(
Ci,t

(
PTi,t

)
+ Ei,t

(
PTi,t

))
+

NS∑
k=1

(
FSk

(
USk,t

)
+ FPk

(
USk,t

))
(5.31)

where Ci,t
(
PTi,t

)
= ai + biPTi,t + ciP

2
Ti,t

+
∣∣∣di sin

{
ei
(
Pmin
Ti,t
− PTi,t

)}∣∣∣ (5.32)

Ei,t
(
PTi,t

)
= hi

(
αi + βiPTi,t + γiP

2
Ti,t

+ ηie
λiPTi,t

)
i ∈ NT t ∈ T (5.33)

where hi = Ci,t (Pmax
i )

Ei,t (Pmax
i ) (5.34)

where NS is the number of solar power plants, USk,t
the binary decision variable that

determines whether kth solar unit turns on or off at tth time period, and hi a normalized

factor is multiplied to the gas emission function of Eqn. (5.33) to align the degree of
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the cost function in Eqn. (5.32). Taking into account the actual solar generation, the

operating cost of the kth solar unit at the tth time is:

FSk
(USk,t

) = PUcos tkPSk,t
USk,t

, USk,t
∈ {0, 1} k ∈ NS t ∈ T (5.35)

where PUcostk is the per unit cost of the kth solar unit and and PSk,t
the available solar

power from sth solar unit at tth time interval which generated as:

PSk,t
= Prk

{
1 + Ω

(
Tambk,t

− Trefk

)} Sik,t
1000 (5.36)

where Prk
, Ω, Sik,t, Tamb and Tref are the rated power, temperature coefficients, ambient

and reference temperature, respectively, found from historical data. In order to achieve

the maximum benefit of solar availability, another objective function that minimizes the

difference between the total available solar power and actual solar share is expressed as:

FP (USk,t
) =

T∑
t=
Kk

NS∑
k=1

PSk,t
−

NS∑
k=1

PSk,t
USk,t

 (5.37)

where Kk is a large value used to control the importance of the difference term relative

to the other terms.

A.2 Dynamic Economic and Emission Dispatch

The fuel costs and gas emissions of a solar-thermal DEED problem are presented, re-

spectively:

Min: FC =
T∑
t=1

NT∑
i=1

(
Ci,t(PTi,t)

)
+

NS∑
k=1

(
FSk

(USk,t
)
) (5.38)

Min: FE =
T∑
t=1

NT∑
i=1

hi
(
Ei,t(PTi,t)

)
(5.39)

The values of Fci , FSk
and Fei are found from Eqns. (5.32), (5.33) and (5.35), respec-

tively.
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B Constraints

For both DED and DEED, the solar-thermal system has the following equality and

inequality constraints.

NT∑
i=1

PTi,t +
NS∑
k=1

PSk,t
USk,t

= PDt + Plosst t ∈ T (5.40)

Pmin
Ti
≤ PTi,t ≤ Pmax

Ti
i ∈ NT , t ∈ T (5.41)

−DRi ≤ PTi,t − PTi,t−1 ≤ URi i ∈ NT t ∈ T (5.42)

T∑
t=1

NS∑
k=1

PSk,t
USk,t

≤ 0.3PDt (5.43)

Eqn. (5.40) defines the power balance constraints, and Eqns. (5.41) and (5.42) the

capacity and ramp constraints of the thermal generators, respectively, The constraint

in Eqn. (5.43) is used to limit the solar share at any time based on a 30% upper limit

to avoid any uncertainty in terms of solar irradiance, as it is uncertain and depends on

nature, the total contribution of solar generation must not be greater than the reserve

capacity of a DED system [39].

5.4 Solution Approach

As discussed in Chapter 2, different variants of evolutionary algorithms (EAs) have

been commonly used to solve different types of DED and DEED problems with non-

convex cost functions because they have simple structures and do not need to satisfy

any certain mathematical properties of the objective function. Of various EAs, genetic

algorithms (GAs) have performed well for mixed-integer DED problems, such as solar-

thermal and wind-thermal, as has differential evolution (DE) for those in the continuous

domain, such as thermal and hydro-thermal ones, with GAs demonstrating a superior
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Fig. 5.1: Sample convergence plots of E-GA and E-DE for solving 5-unit thermal-based
DED problem

convergence property but long computational times and DE obtaining a sub-optimal

solution in a very short time [3].

5.4.1 Motivation

As previously mentioned, although EAs have gained popularity for solving both DED

and DEED problems, no single algorithm has been shown to be superior to another over

a wide range of these problems. Also, it is found in Chapters 3 and 4 that, although the

self-adaptive DE and GA with a heuristic (i.e., E-DE and E-GA, respectively) outper-

form some state-of-the-art algorithms, neither performs consistently for both thermal

and wind-thermal DED problems, e.g., E-DE is better for thermal-based DED ones and

E-GA for a wind-thermal DED system. It is also determined that one EA might per-

form well during one stage of the search process and poorly in others; for example, the

convergence plots of a 5-unit thermal-based DED problem shown in Fig. 5.1 illustrate

that the E-GA performs well in an early stage of the evolutionary process and E-DE in

later ones.
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On the other hand, as discussed in Chapter 2, different multi-method-based al-

gorithms which configure two or more EAs are widely used to efficiently solve vari-

ous complex optimization problems. However, to the best of our knowledge, adopting

such methods to solve highly complex, constrained and real-world electrical generators’

scheduling problems, such as DED and DEED ones, has not yet been explored.

Therefore, in this chapter, a general evolutionary framework which adaptively places

more emphasis on the most suitable EA (GA or DE) during the evolutionary process

to solve different types of DED and DEED problems, including thermal, hydro-thermal,

solar-thermal and wind-thermal ones, is developed and discussed in the following section.

5.5 Proposed GA-DE Algorithm

In this section, a general framework that configures two EAs (GA and DE) with a

heuristic for solving a wide range of DED and DEED problems is discussed. In its

design, an initial population of size NP is generated and then randomly divided into

two sub-populations of equal size, NP1 and NP2, for GA and DE, respectively. In

subsequent generations, new individuals in GA and DE are generated from random

individuals from either subpopulation (NP1 and NP2) rather than only their own which

results in information being exchanged between the two algorithms in each generation.

To evaluate the fitness function, firstly, the constraint violation (CV) of each individual of

each algorithm is calculated using Eqn. (3.32) and, if zero, indicates that the individual

is feasible, and then the fitness value (FV) is calculated, with the number of fitness

evaluations increased by one. Otherwise, if a CV is greater than zero, i.e., the individual

is infeasible, it is repaired by the proposed heuristic (Algorithm 5.2 ) and then its FV and

CV calculated. As this CV is calculated first, the number of fitness evaluations is not

increased but, after the FV of the final repaired solution is calculated, it is increased by

one. Once the FVs and CVs of both the parents and children are evaluated, a selection

operator is applied to rank each individual, with the best NP individuals selected for the

next generation. Subsequently, each sub-population is updated by the new individuals

generated, with the best selected, as described in sub-section 5.5.4. Based on the number

of individuals selected from the children, the success rate (SUR) of each algorithm is
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calculated, e.g., if 30% of the new individuals of GA survive to the next generation, the

SUR of GA is 30%. Then, the sub-population sizes (NP1 and NP2) for the subsequent

generation are updated according to their normalized SURs, and their lower (Nmin
P1 ) and

upper (Nmax
P1 ) bounds as:

NP1 = max
[
Nmin
P1 ,min

{
NP

SUR1,g
SUR1,g + SUR1,g

, Nmax
P1

}]
(5.44)

SUR1,g ∪ SUR2,g 6= 0, g ∈ NG

NP2 = NP −NP1 (5.45)

This means that the better-performing algorithm contributes to producing offspring

for the next generation. As an algorithm may perform well in an early stage of the

evolutionary process but poorly in a later one or vice versa, in this design, the lower and

higher bounds are set based on the sub-population sizes. However, if both SUR1,g and

SUR2,g are zero, the values of NP1 and NP2 remain the same as in the immediate previ-

ous generation. This process is continued until a predefined number of generations (Ngc)

is performed. Then, the best algorithm is determined based on its average SUR during

the last Ngc generations and used to evolve the entire population (one sub-population

size is set equal to NP and the other to zero) for the next Ngc generations. Once Ngc

generations are completed, the latest individuals are again equally and randomly al-

located to both algorithms in the two sub-populations (NP1 and NP2) and the same

process continued until a stopping criterion is reached.

It is worth mentioning that, although the proposed GA-DE algorithm shares some

similarities with those in [121, 122, 231], as its initial population is divided into sub-

populations, each of which uses a different EA, it has the following differences:

1. it dynamically updates the sub-population sizes and allows the better-performing

algorithm to evolve all individuals in a cycle;
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2. each algorithm obtains some information from the other and generates NP1 or NP2

offspring from all the parents (not only its own) of NP individuals; and

3. a heuristic is employed to obtain a feasible solution from an infeasible one which

can improve the convergence rate.

The proposed GA-DE algorithm and its pseudo-code are presented in algorithm 5.1

while each of its components is described in more detail in the following sub-sections.

5.5.1 Initial Population

The chromosomes or representations of the decision variables for both GA and DE are

expressed as:

~xp =



[
PTi,t

]
1:Nx

Nx = T ×NT , for thermal system[
PTi,t , PWw,t

]
1:Nx

Nx = T × (NT +NW ) for wind-thermalsystem[
PTi,t , Xh,t

]
1:Nx

Nx = T × (NT +NH) , for hydrothermal system[
PTi,t , USk,t

]
1:Nx

Nx = T × (NT +NS) , for solar-thermal system

(5.46)

where i= 1, 2, .,NT , h= 1, 2, .,NH , k= 1, 2, .,NS , w= 1, 2, ., W , t= 1, 2, ..,T , USk,t
∈ [0, 1],

p ∈ NP , withNP the population size, andNx the number of decision variables as, T×NT ,

T × (NT + NW ), T × (NT + NH) and T × (NT + NS) for the thermal, wind-thermal,

hydrothermal, and solar-thermal systems, respectively.

Each individual (−→x ) of GA-DE is generated by:

~xp = ~xmin +
(
~xmax − ~xmin

)
LHS(Nx), p ∈ NP (5.47)

where ~xmin and ~xmax are the lower and upper bound vectors, and −→xp the pth individual

in the NP population, with LHS (Nx) random individuals generated using LHS rules.
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Algorithm 5.1 GA-DE algorithm
Require: NG, NP , N

min
P 1 and Nmax

P 1
1: Set, count1 = count2 = 0
2: Randomly generate an initial population of size NP as in section (5.5.1)
3: Evaluate the individuals after repairing the infeasible ones using heuristic described in section

5.5.3
4: Randomly distribute NP individuals over two subpopulations with sizes of NP 1 and NP 2,

such that NP 1 = NP 2
5: for g = 1 : NG do
6: count1 = count1 + 1
7: if count1 ≤ Ngc then
8: procedure Perform GA(1 to NP 1)
9: Generate NP 1 number of offspring from the entire NP parents using the GA operators

described in section 3.5.2
10: for i = 1 : NP 1 do
11: Calculate CV of the ith individual using (3.32)
12: if If ith individual is infeasible then
13: Repair ith individual using the heuristic described in section 5.5.3
14: Calculate the FVs and new CVs
15: else
16: Calculate the FV of the ith individual, and set, CV = 0
17: end if
18: end for
19: Determine the best NP 1 individuals from the parents and offspring based on the selection

approach described in section 5.5.4
20: Calculate SR1,g based on numbers of offspring of surviving to the next generation
21: end procedure
22: procedure Perform DE(1 to NP 2)
23: for i = 1 : NP 2 do
24: Generate a child from all the parents (NP ) using the DE operators described in section

3.5.3
25: Evaluate the FV and CV of the ith individual by repeating the steps 11 to 11
26: If the problem is a single objective DED, accept or reject the new individual based on

the Eqn. (3.33)
27: end for
28: If the problem is a bi-objective DEED, determine the best NP 2 individuals from the

parents and offspring based on the selection approach described in section 5.5.4
29: end procedure
30: Group selected individuals, NP ← NP 1 +NP 2
31: Update NP 1 and NP 2 according to Eqn. (5.44)
32: else
33: set, count2 = count2 + 1
34: if count2 ≤ Ngc then
35: Calculate average success rates of GA (ASR1) and DE (ASR2)
36: if ASR1 > ASR2 then
37: Perform GA, considering NP 1 ← NP 1 +NP 2
38: else
39: Perform DE, considering NP 2 ← NP 1 +NP 2
40: end if
41: end if
42: if count2 = Ngc then
43: Repeat step 4 and set again,count1 = count2 = 0
44: end if
45: end if
46: end for
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5.5.2 GA-DE Search Operators

To update the individuals in GA-DE, either a GA or a self-adaptive DE search operators

is used in various stages of evolution. Like the previous chapters, SBX and NUM are

used in GA, and two self-adaptive mutation operators and one binomial crossover in

DE because they showed superior performances for solving various DED problems in

previous chapters. All these operators are discussed in sections 3.5.2 and 3.5.3 of chapter-

3 for GA and DE search operators, respectively.

5.5.3 Heuristic for DED Constraints

As shown in Chapters 3 and 4, the solutions from an EA without heuristic are inferior to

those of obtained from an EA with a heuristic. This was because a DED problem involves

several difficult equality and inequality constraints, and the new solutions generated by

an EA process may not satisfy all of them, especially during the early stages of the

evolutionary process. To overcome this issue, a heuristic for repairing the infeasible

individuals was proposed in chapter-3 for a thermal-based DED system and chapter-

4 for an uncertain wind-thermal one. In this chapter, an improved and generalized

heuristic is developed for a broad range of both single- and bi-objective, DED and DEED

problems ( e.g., thermal, hydro-thermal, solar-thermal and wind-thermal) involving both

continuous and mixed-integer decision variables.

In this process, the T−hour load cycle is divided into T sub-problems, with pro-

duction truly allocated among the committed units to meet the hourly load demand,

starting from different random hours using the forward and backward slack generation

approach. This heuristic simultaneously allocates both types of production (thermal and

renewable) which is one of its main differences from the heuristic presented in chapter-3.

Its pseudo code is shown in algorithm 5.2.

5.5.4 Selection Process

For the single objective DED problem, a greedy selection scheme is followed that dis-

cussed in Eqn. (3.33) of Chapter 3. To rank the chromosomes for the bi-objectives
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Algorithm 5.2 Heuristic for DED and DEED constraints
Require: An infeasible individual, ~y
1: Tranform ~y into a form of P matrix of size T × N as Eqn. 3.21, where N is the

number of generators
2: Randomly select t ∈ T and Pt ∈ P , and keep t0 = t
3: procedure Start the forward process(t0 to T )
4: Set, Pmaxi,t = xmaxi , Pmini,t = xmini i ∈ N
5: while t = T do
6: satisfy the generation limits as:
7:

Pi,t =



Pmaxi,t if Pi,t > Pmaxi,t ∀i ∈ NT , NH , NW

Pmini,t if Pi,t,≤ Pmini,t ∀i ∈ NT , NH , NW

1 if 0.5 < Pi,t∀i ∈ NS

0 if Pi,t ≤ 0.5∀i ∈ NS

Pi,t otherwise

(5.48)

8: Satisfy the equality constraints as:
9: for j=1:N do

10: Select, nd ∈ {NT , NW , NH , NS} randomly
11: if nd ∈ NS then . If nthd unit is a solar unit

12: Pnd,t =
{

0 if Pnd,t < 0.5
PS,t otherwise

. Get available solar power at tth hour

13: else

14: Pnd,t = max

Pminnd,t
,min


PDt −∑N

i = 1
i 6= nd

Pi,t

 , Pmaxnd,t




15: end if
16: if

∣∣∣∑N
i=1 Pi,t − (PDt + Plosst)

∣∣∣ ≤ εg then
17: Break
18: end if
19: end for
20: Update the upper and lower capacity limits, respectively:
21: Pmaxi,t+1 = min [Pmaxi , (Pi,t + URi)], i ∈ N
22: Pmini,t+1 = max

[
Pmini , (Pi,t −DRi)

]
, i ∈ N

23: t = t+ 1
24: end while
25: end procedure
26: procedure Start the backward process(t0 − 1 to 1)
27: Set, t = t0 − 1
28: while t = 1 do
29: Update capacity limits as:
30: Pmaxi,t+1 = min [Pmaxi , (Pi,t − URi)], i ∈ N
31: Pmini,t+1 = max

[
Pmini , (Pi,t +DRi)

]
, i ∈ N

32: Satisfy the equality constraints by following the steps from 6 to 19
33: Set, t = t− 1
34: end while
35: end procedure
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DEED problems, firstly, the parents and offspring are grouped together and the best

NP individuals among them selected for the next generation. To do this, a popular

constraint-handling approach with a non-dominated sorting (NDS) technique [20] is

used in which an additional objective is considered based on the amount of relative CV.

Then, a crowding sorting technique and non-dominated mechanism are used to preserve

diversity and elitism among the population members. The advantages of having an ad-

ditional objective for constrained optimization problems are explicitly demonstrated in

[232].

5.6 Experimental Results

For the experimental study, several test problems involving thermal, hydro-thermal,

solar-thermal and wind-thermal systems with up to a 24-hour planning horizon and a

one-hour long time period from the literature are considered. Based on data availability,

these problems can be solved as single and bi-objective with and without considering

the power loss (Ploss), and are defined as follows:

• Case-1: single objective 5-unit thermal problems with and without Ploss [14];

• Case-2: single objective 10-unit thermal problems with and without Ploss [14];

• Case-3: a single objective 7-unit hydro-thermal problem without Ploss [17];

• Case-4: a single objective 19-unit solar-thermal system without Ploss [39];

• Case-5: a single objective 6-unit wind-thermal system with Ploss [137];

• Case-6: a bi-objective 7-unit hydro-thermal problem without Ploss [17], and

• Case-7: a bi-objective 19-unit solar-thermal system without Ploss [39].

For a fairer comparison, the problems’ data are kept as in the literature [39, 137], and

the GA parameters, probability of crossover and mutation, and distribution index (η)

set to 0.9, 0.1 and 3, respectively. The NP ,Ng,NPmin1 , NPmax1 and Ngc for all cases are

illustrated in Table 5.1. Thirty independent runs are performed for each test case and

the solutions recorded and compared with results from state-of-the-art algorithms.
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Table 5.1: Different parameters used in this chapter

Problem NP NG NPmax1 NPmin1 Ngc

Case-1 100 1000 20 80

50

Case-2 100 4000 20 80
Case-3 200 500 40 160
Case-4 100 1000 16 60
Case-5 100 1000 20 80
Case -6 200 500 20 80
Case-7 100 1000 20 80

The algorithm is implemented on a desktop personal computer with a 3.4 GHZ Intel

Core i7 processor and 16 GB of RAM using the Matlab (R2014a) environment and is

run until the number of generations is higher than NG (criterion-1) or the best fitness

value is no longer improved in θ (where θ = 100) generations (criterion-2).

5.6.1 Single Objective DED Problems

In this section, the single objective DED problems of cases-1 to case-5 are solved using

the proposed GA-DE and other state-of-the-arts with and without considering the Ploss,

as discussed below.

A Thermal DED

Firstly, the proposed GA-DE algorithm is applied to solve the 5- and 10-unit DED ther-

mal systems (cases 1 and 2, respectively) with and without considering Ploss. Then,

these problems are solved using the GA and DE independently considering the heuris-

tic and are known as enhanced GA (E-GA) and enhanced DE (E-DE), as in previous

chapter. To validate the results, the test problems are also solved using a well-known

algorithm called the Evolution Strategy with Covariance Matrix Adaptation (CMA-ES)

[233]. For this, a constrained problem is transformed into an unconstrained one using

the penalty function approach, where the penalty coefficient is considered arbitrary as

1E + 3. The code for CMA-ES is taken directly from the Web, where the sigma and

stopping criteria are set as defaults. The results obtained from the GA-DE, E-GA, E-

DE, CMA-ES and others in the literature are presented in Tables 5.2 to 5.5. in which

STD represents the standard deviation of 30 random runs and NR indicates that the
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Table 5.2: Summary of solutions for 5-unit system with Ploss

Method Production cost ($) STDMinimum Average Maximum
SA [207] 47356 NR NR NR
APSO [208] 44678 NR NR NR
GA [200] 44862 44922 45894 NR
PSO [200] 44253 45657 46403 NR
ABC [200] 44046 44065 44219 NR
AIS [62] 44385 44759 45554 NR
H-PSO [206] 43223 43732 44252 274.95
CMA-ES [233] 43211.47 43720.20 44280.24 336.05
E-GA 42528.9 42580.6 42638.4 30.16
E-DE 42528.7 42571.2 42664.5 36.9
GA-DE 42522.10 42547.60 42632.80 32.97

Table 5.3: Summary of solutions for 10-unit system with Ploss

Method Production cost ($) STDMinimum Average Maximum
EP [82] 1054685 1057323 NR NR
EP-SQP [82] 1052668 1053771 NR NR
MHEP-SQP [83] 1050054 1052349 NR NR
DGPSO [83] 1049167 1051725 NR NR
IPSO [209] 1046275 1048154 NR NR
AIS [62] 1045715 1047050 1048431 NR
ECE [210] 1043989 1044963 1046805 NR
ABC [200] 1043381 1044963 1046805 NR
TVACIPSO [211] 1041066 1042118 1043625 NR
EBSO [212] 1038915 1039188 1039272 NR
CSAPSO [213] 1038251 1039543 NR NR
SAMFA [214] 1037698 1037938 1039199 NR
MTLA [215] 1037489 1037712 1038090 NR
MIQP [14] 1038376 NR NR NR
CMA-ES [233] 1051937 1055172 1059457 2184.37
E-GA 1036460 1037020 1037430 251.83
E-DE 1036280 1036310 1036380 51.31
GA-DE 1036240 1036280 1036360 44.28

results are not reported in the literature. It is clear that GA-DE outperformed all the

state-of-the-art algorithms for the all considered problems.

B Hydro-Thermal DED

In this section, a 7-unit hydro-thermal DED system [17] comprising 3 thermal and 4

hydro units is solved using the CMA-ES, E-GA, E-DE and proposed GA-DE algorithms
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Table 5.4: Summary of solutions for 5-unit system without Ploss

Method Production cost ($) STDMinimum Average Maximum
CMA-ES [233] 43034.78 43688.71 44510.21 575.63
E-GA 42524.4 42565.9 42630.8 26.77
E-DE 42523.6 42524.8 42621.6 28.87
GA-DE 42517.00 42524.80 42615.80 24.49

Table 5.5: Summary of solutions for 10-unit system without Ploss

Method Production cost ($) STDMinimum Average Maximum
EP [82] 1048638 NR NR NR
SQP [82] 1051163 NR NR NR
EP-SQP [82] 1031746 1035748 NR NR
MHEP-SQP [83] 1028924 1031179 NR NR
AIS [62] 1021980 1023156 1024973 NR
GA [200] 1033481 1038014 1042606 NR
ABC [200] 1021576 1022686 1024316 NR
DE [99] 1036756 1040586 1452558 3225.8
CDE [99] 1019123 1020870 1023115 1310.7
MDE [104] 1031612 1033630 NR NR
CSDE [216] 1023432 1026475 1027634 NR
Hybrid DE [104] 1031077 NR NR NR
HS [217] 1046726 NR NR NR
HHS [217] 1019091 NR NR NR
CE [210] 1022702 1024024 NR NR
ECE [210] 1022272 1023335 NR NR
PSO [200] 1027679 1031716 1034340 NR
IPSO [209] 1023807 1026863 NR NR
ICPSO [218] 1019072 1020027 NR NR
PSO-SQP [219] 1027334 1028546 NR NR
ICA [220] 1018468 1019291 1021796 NR
H- PSO [206] 1018159 1019850 1021813 826.94
MIQP [14] 1016601 NR NR NR
CMA-ES [233] 1034484 1035843 1037202 1922
E-GA 1016360 1016710 1016880 221.11
E-DE 1016160 1016260 1016420 69.93
GA-DE 1016160 1016200 1016280 38.82
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Table 5.6: Summary of solutions for 7-unit hydro-thermal system

Method Production cost ($) STDMinimum Average Maximum
DE [17] 110810.00 NR NR NR
NSGA2 [234] 101659.00 112811.00 121685.00 5241.72
IDEA [234] 103433.00 109610.00 122391.00 5078.27
CMA-ES [233] 72165.03 72481.43 72797.83 447.45
H-NSGA2 [234] 71256.20 72131.00 73946.50 663.86
H-IDEA [234] 70309.00 71232.80 72186.90 515.88
E-GA 67955.30 68208.60 68613.00 198.46
E-DE 67502.20 67783.80 68134.60 227.53
GA-DE 67335.20 67526.10 67896.70 120.31

on the same platform. The results obtained are compared with those of each other and

state-of-the-art algorithms. In Table 5.6, it is clear that the proposed approach is able

to obtain the best results of all the algorithms.

C Solar-Thermal DED

In this section, a 19-unit solar-thermal mixed-integer nonlinear DED model from [39]

which consists of 6 thermal and 13 solar units is solved using the E-GA, E-DE and

proposed GA-DE algorithms. The discrete decision variables (i.e., generation from the

solar unit) are handled as continuous ones and then rounded off in order to avoid different

representations. It is also noted that the overall operating cost of the solar-thermal

DED model depends on the percentage of solar share in actual production as the per

unit solar cost considered is higher than the per unit fuel (e.g., coal) cost of a thermal

generator [39]. Also, higher injections of the thermal generators produce higher gas

emissions which incur an extra penalty cost for the additional equipment required to

reduce environmental pollution. However, it is evident in Table 5.7 that, although the

solar share of the proposed approach is only marginally lower than those of the others,

the production cost of this method is much lower.

D Wind-Thermal DED

In this section, a wind-thermal DED problem consisting of 5 thermal and 160 wind farms

for a 6-hour planning horizon with a one-hour time period is considered [137]. As in
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Table 5.7: Summary of solutions for 19-unit solar-thermal system

Method Production cost ($) STDMinimum Average Maximum
B-PSO [39] 944087.00 NR NR NR
E-GA 917211.98 917220.01 917217.69 3.04
E-DE 920873.41 922824.81 919626.45 2099.68
GA-DE 915371.25 916061.31 916603.49 357.93

Table 5.8: Summary of solutions for wind-thermal system

Method Production cost ($) STDMinimum Average Maximum
CMA-ES [233] 803892 815891 830831 9360.24
DE [137] 798891 NR NR NR
PSO [137] 802386 NR NR NR
CPSO [137] 799258 NR NR NR
BPCDE [137] 795194 NR NR NR
E-DE 791028 791296 791523 122.27
E-GA 790772 791002 791883 221.55
GA-DE 790525 790761 791177 113.23

the other cases, this test problem are solved using CMA-ES, E-GA, E-DE and GA-DE,

with their results and those from other methods in the literature presented in Table 5.8

showing that the proposed approach obtains better results than the others.

5.6.2 Bi-objective DEED Problems

For demonstrating the effectiveness of the proposed GA-DE algorithm for solving bi-

objective DEED problems, in this section two standard benchmarks, (i) a 7-unit hydro

thermal power system from [17]; and (ii) a 19-unit solar-thermal power system from [39],

for a 24-hour planning horizon in one-hour time period are solved using our proposed

and state-of-the-art algorithms with and without considering the heuristic, as follows:

1. Non-dominated sorting GA-II (NSGA-II) without heuristic,

2. Multi-objective DE (MODE) without heuristic,

3. NSGA-II with heuristic (H-NSGA-II),

4. MODE with heuristic (H-MODE), and

5. Proposed GA-DE with heuristic (GA-DE),
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Table 5.9: Comparison of performances of algorithms for hydro-thermal DEED

Algorithm HV (reference: [1,1]) Time
(sec)Best Mean Median Worst STD

NSGA-II 0.59 0.53 0.54 0.44 0.05 56.81
MODE 0.49 0.43 0.44 0.35 0.05 48.91

H-NSGA-II 0.84 0.81 0.81 0.79 0.01 237.82
H-MODE 0.81 0.77 0.78 0.71 0.03 232.55
GA-DE 0.91 0.89 0.89 0.87 0.01 234.41

A Hydro-Thermal DEED

In this section, a 7-unit bi-objective hydro-thermal DEED problem comprising 3 thermal

and 4 hydro units is solved using the proposed and state-of-the-art algorithms on the

same platform. Once the 30 random runs of each algorithm are completed, their hyper-

volume (HV) values are calculated based on their normalized fitness values as [235]:

fnorm = f − fideal
fNadir − fideal

(5.49)

where, fnorm and f are the normalized and actual function values, respectively, and

fideal, and fNadir the ideal and nadir points [235] for this problem, respectively, which

are found to be (7.17E+4,10.09) and (1.28E+5,142.95), respectively from all the runs of

all the algorithms considered. The best, mean, median, worst, and standard deviation

(STD) of the HV values obtained from algorithm with and without the heuristic are

shown in Table 5.9. It is indicated that the proposed approach with the heuristic (H-

GA-DE) obtains the best and most consistent results of all the algorithms in a reasonable

computational time. The Pareto-frontiers of the best runs based on the HV values for all

the algorithms are plotted in Fig. 5.2 which also shows the superiority of the proposed

algorithm. In fact, the GA-DE approach obtains the best non-dominated solutions, both

inclusive and exclusive of the heuristic, with H-GA-DE the best algorithm of all.

B Solar-Thermal DEED

To demonstrate the performances of the six algorithms, with and without the heuristic,

on larger problems, in this section, a 19-unit solar-thermal DEED problem is solved that

formulated as a mixed-integer, non-linear, bi-objective optimization one that minimizes
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Fig. 5.2: Pareto-frontiers for hydro-thermal problem

both the operating costs and gas emissions. The binary decision variables of the solar

units are handled as continuous ones and then rounded off in order to avoid different

representations.

Once the 30 independent runs are completed, the functions’ values are normalized

according to Eqn. (5.49) based on nadir and ideal points, and found to be, (8.17E+5,

2.36E+5) and (3.08E+5, 2.0E+5), respectively. Subsequently, the HV of each run is cal-

culated and the best, mean, median, worst and STD values presented in Table 5.10 which

indicates that the proposed H-GA-DE obtains the best solutions of all the algorithms

within a reasonable computational time.

The Pareto frontiers of the best runs based on the HV values are presented in Fig.

5.3 in which it is clear that including a heuristic significantly improves the performances

of all the algorithms considered, with the proposed GA-DE the best in terms of obtaining

non-dominated solutions. In fact, when the algorithms do not include the heuristic, as

their numbers of feasible solutions are very limited, the range of Pareto frontiers is very
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Table 5.10: Comparison of performances of algorithms for solar-thermal DEED

Algorithm HV (reference: [1,1]) Time
(sec)Best Mean Median Worst STD

NSGA-II 0.18 0.17 0.17 0.15 0.01 64.47
MODE 0.21 0.20 0.21 0.18 0.01 52.21

H-NSGA-II 0.52 0.51 0.51 0.51 0.00 158.21
H-MODE 0.50 0.49 0.49 0.47 0.01 148.30
GA-DE 0.56 0.55 0.55 0.54 0.00 212.48
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Fig. 5.3: Pareto-frontiers for solar-thermal problem

narrow. Conversely, when the heuristic is applied to rectify infeasible solutions towards a

feasible direction, the algorithms quickly obtain non-dominated feasible solutions while

simultaneously minimizing both objectives.

5.7 Statistical Comparison

In this section, the proposed GA-DE algorithm is statistically compared with-state-of-

the-art ones. Based on the available data, the Wilcoxon non-parametric test results
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Table 5.11: Wilcoxon test results for GA-DE versus E-DE, E-GA and CMA-ES

Algorithms Criterion Better Similar Worse p Decision

GA-DE vs E-DE Best 6 1 0 0.027 +
Mean 6 1 0 0.028 +

GA-DE vs E-GA Best 7 0 0 0.018 +
Mean 7 0 0 0.018 +

GA-DE vs CMA-ES Best 6 0 0 0.028 +
Mean 6 0 0 0.028 +

Table 5.12: Ranks of GA-DE, E-DE, E-GA and CMA-ES from Friedman test results for
7 instances based on best and average values

Criteria GA-DE E-DE E-GA CMA-ES
Best FV 1.08 2.08 2.83 4.00

Average FV 1.08 2.08 2.83 4.00

for GA-DE are compared against those for E-DE, E-GA and CMA-ES for the different

problems including (i) 5-unit thermal with Ploss, (ii) 10-unit thermal with Ploss, (iii)

5-unit thermal without Ploss, (iv) 10-unit thermal without Ploss, (v) hydro-thermal,

(vi) wind-thermal and (viii) solar-thermal are illustrated in Table 5.11. Note that the

comparisons between GA-DE, and E-DE and E-GA are performed for all 7 systems but,

between GA-DE and CMA-ES, for the six cases as CMA-ES is not a suitable method

for solving a mixed-integer (solar-thermal) problem. Furthermore, all the comparisons

are based on both the best and average FVs found in 30 runs to which, using a 5%

significance level, assigning one of three signs (+, −, and ≈), where ‘+’ means that

GA-DE is significantly better than the other algorithm, ‘−’ that it is significantly worse

and ‘≈’ that there is no significant difference between the two algorithms. According to

Table 5.11, GA-DE is able to obtain better results than the other algorithms and, from

a statistical perspective, is significantly better than the other methods.

In addition, the Friedman test is carried out to rank all the algorithms based on

their best and average FVs, with the results for 7 and 4 instances shown in Tables 5.12

and 5.13, respectively, demonstrating that the proposed GA-DE algorithm is ranked 1st.

Also, for the bi-objective DEED problems, a Friedman test is performed considering

the HV of each run of each algorithm with their mean ranks (MRs) are listed on Table

5.14 which proved that the GA-DE is the best algorithm for both problems.
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Table 5.13: Ranks of GA-DE, E-DE, E-GA, CMA-ES, AIS, ABC, PSO and GA from
Friedman test results for 4 cases based on best and average FVs

Criteria GA-DE E-DE E-GA CMA-ES AIS ABC PSO GA
Best 1.25 1.75 3.00 6.00 6.00 4.50 6.00 7.50
Avg 1.25 1.75 3.00 4.00 6.00 5.00 7.50 7.50

Table 5.14: Friedman tests for the bi-objective problems

Alg. Mean rank
Hydro-Thermal Solar-Thermal

NSGA-II 1.60 1.00
MODE 1.40 2.00
H-NSGA-II 3.90 4.00
H-MODE 3.10 3.00
GA-DE 5.00 5.00

5.8 Parametric Analysis

This analysis evaluates the performances of some of the algorithm’s parameters, includ-

ing the effects of: (i) the proposed heuristic, (ii) NP , (iii) NPmin1 , (iv) NPmax1 , and (v)

the cycle or window size (WS) in terms of Ngc that enables the better-performing algo-

rithm to run independently. In addition, the computational costs of different algorithms

for different problems are extensively analyzed with the simulation results compared

based on different stopping criteria. To do this, the single objective DED problems are

considered as their FVs (as single) are easy to comparable. Each test is conducted fol-

lowing the ceteris paribus strategy in which only one parameter is varied while all the

others remain fixed at their best values [236].

5.8.1 Effect of Proposed Heuristic

In the proposed algorithm, a heuristic is used to convert any infeasible solutions into

good-quality feasible ones. To demonstrate its effect, the algorithms are run with and

without it, and the average fitness value over 30 independent runs of each variant

recorded, as presented in Table 5.15. Note that, for the parametric analysis, the Ploss
is not considered in cases 1 and 2. Based on the Table 5.15, it can be seen that the

performance of GA-DE with the proposed heuristic dominates that without it. Also,
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Table 5.15: Comparison of average results using different parameters

Problem Without heuristic With heuristic
Case-1 51886.4 42542.9
Case-2 1076540 1016218
Case-3 101659 67748.8
Case-4 infeasible 908440.0
Case-5 983831 790794.1

Table 5.16: Comparison of average results using different NP

Cases NP FV

Case-1
50 42568.4
100 42542.9
150 42575.4

Case-2
50 1016909
100 1016218
150 1016713

Case-3
100 68095.4
200 67748.8
300 67749.9

Case-4
50 916118.82
100 915371.25
150 915708.64

Case-5
50 791542.7
100 790794.1
150 791564.5

for the case-4, the algorithm without heuristic does not obtain a single feasible solution

even after NG generations.

5.8.2 Effect of NP

In this section, using three different values of NP for each case, the effect of NP on

different problems is analyzed. After 30 independent runs for each case, the average

results are recorded and presented in Table 5.16. It is found that NP values of 100, 100,

200, 100 and 100 are the best choices for cases 1, 2, 3, 4 and 5, respectively.

5.8.3 Effect of SPSmin and WS

The proposed algorithm is run considering NPmin1 = 10% and 30% of NP /2 with WS

set at values of 25, 50 and 100 generations, respectively. The average results from 30
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Table 5.17: Comparison of results using different NPmin
1 and WS

Problem NPmin1 WS
10% 20% 30% 25 50 100

Case-1 42559.3 42542.9 42556.5 42544.7 42542.9 42554.7
Case-2 1016616 1016218 1016591 1016498 1016200 1016555
Case-3 68023.8 67748.8 67913.8 67907.5 67748.8 67787.5
Case-4 918140.0 908440.0 921230.0 919590.0 908440.0 918540.0
Case-5 791840.5 790794.1 791525.3 791289.5 790794.1 791289.5

Table 5.18: Summary of computational costs for different problems

Problem GA-DE E-DE E-GA CMA-ES
No.
FFEs

Time
(min.)

No.
FFEs

Time
(min.)

No.
FFEs

Time
(min.)

No. FFEs Time
(min.)

5U without Ploss 92,300 4.94 63,500 4.25 66,500 4.70 129,81,602 127.91
5U with Ploss 100,000 6.82 40,600 3.97 78,600 6.25 126,85,700 119.12
10U without Ploss 393,200 12.11 265,200 11.70 326,100 12.80 323,30,922 462.60
10U with Ploss 400,000 13.34 347,600 12.07 341700 13.15 302,35,682 650.27
Hydro-thermal 60,000 6.38 60,000 6.20 60,000 7.35 230,58,440 1201.90
Wind-thermal 82,400 7.40 99,200 7.56 95,200 7.48 183,458 16.43
Solar-thermal 71,200 4.83 28,500 3.95 23,400 3.54 - -

independent runs for each case are presented in Table 5.17. It is found that NPmin1 =

20% of NP and WS = 50 are the best values.

5.8.4 Effect of Stopping Criteria

In this section, the algorithms’ performances are examined using three different stopping

criteria of being allowed to run until (i) a predefined number of maximum fitness function

evaluations (MaxFFEs) is reached, (ii) a predefined computational time is considered

and (iii) the best FVs are no longer improved for θ consecutive generations.

For the analysis, the number of fitness function evaluations (FFEs) and computa-

tional cost for each problem required by the different algorithms to obtain the results

in Tables 5.2-5.8 are summarized in Table 5.18. For a fair comparison, only the im-

plemented algorithms (i.e., GA-DE, E-GA, E-DE and CMA-ES) are considered as the

simulation time is highly dependent on their computational resources and coding effi-

ciency.

Now, all the algorithms are run for up to the same number of MaxFFEs, the

values of which for different problems are set according to those for GA-DE in Table

5.18. Based on 30 random runs, the computational costs and average FVs (AFVs) for
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Table 5.19: Comparisons of different algorithms with same number of MaxFFEs

Problem FFEs
GA-DE E-DE E-GA CMA-ES

Time
(min.)

AFV Time
(min.)

AFV Time
(min.)

AFV Time
(min.)

AFV

5U without
Ploss

92,300 4.94 42524.80 4.35 42524.80 5.45 42565.90 0.50 49929.92

5U with
Ploss

100,000 6.82 42547.60 6..27 42571.20 6.25 42580.60 1.45 49703.14

10U without
Ploss

393,200 12.11 1016200.00 11.83 1016260.00 13.47 1016710.00 2.70 1052495.95

10U with
Ploss

400,000 13.34 1036280.00 12.36 1036310.00 14.05 1037020.00 3.16 1069478.71

Hydro-
thermal

60,000 6.38 67526.10 6.20 67783.80 7.35 68208.60 2.56 133561.43

Wind-
thermal

82,400 7.40 790761.00 7.14 791296.00 8.37 791002.00 4.59 815977.01

Solar-
thermal

71,200 4.83 916061.31 4.23 922824.81 5.24 917220.01 - -

Table 5.20: Comparisons of different algorithms run for same computational time

Problem Time AFV
(min) GA-DE E-DE E-GA

5-unit without Ploss 4.94 42524.80 42524.80 42577.30
5-unit with Ploss 6.82 42547.60 42571.20 42580.60
10-unit without Ploss 12.11 1016200.00 1016260.00 1016740.00
10-unit with Ploss 13.34 1036280.00 1036310.00 1037110.00
Hydro-thermal 6.38 67526.10 67783.80 68310.50
Wind-thermal 7.40 790761.00 791296.00 791118.00
Solar-thermal 4.83 916061.31 922824.81 917278.10

different approaches for different problems are presented in Table 5.19 in which it can

be seen that CMA-ES is the fastest algorithm but obtains the worst quality of solutions.

Of the three EAs, GA-DE is able to achieve the best solutions although it consumes

slightly more computational time than the others.

Then, all the algorithms are run for up to the same computational time, with the

results in Table 5.20 demonstrating that GA-DE performs best.

As previously mentioned, one of the stopping criteria is to run all the algorithms

until there is no improvement in the best FVs for θ consecutive generations. The effect

of this parameter is tested on GA-DE’s performance for solving the 5- and 10-unit

thermal (without Ploss), wind-thermal and solar-thermal DED systems. According to

Table 5.21, it is better to set θ to a value of 100 or 200 rather 50 generations. However,
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Table 5.21: Effect of θ

Criteria θ
5-unit without Ploss 10-unit without Ploss

FV ($) Evolved Time
FV ($) Evolved Time

Gen. (min.) Gen. (min.)
1 50 42535.8 268 1.23 1016420 1654 8.54
2 100 42524.80 923 4.94 1016260 3932 12.11
3 200 42524.80 1000 5.41 1016260 4000 13.05

Criteria θ
Wind-thermal Solar-thermal

FV ($) Evolved Time FV ($) Evolved Time
Gen. (min.) Gen. (min.)

1 50 790811 557 5.64 916254.49 572 3.82
2 100 790761 824 7.40 916061.31 712 4.83
3 200 790761 1000 8.78 916061.31 1000 6.08

as the computational time for GA-DE with θ = 100 is less than that for GA-DE with

θ = 200, it is considered best to set θ to a value of 100.

5.8.5 Effect of Configuration for Updating NP1 and NP2

As described earlier, the sub-population sizes of NP1 and NP2 are updated based on their

normalized SUR as in Eqn. (5.45) and (5.44), respectively, with NP1 and NP2 remaining

unchanged when both SUR1,g and SUR2,g are zero. However, if one SUR has quite a

small value while the other is zero, there is a possibility that there will be a small bias

towards NP1 based on Eqn. (5.44). To avoid such a situation, an alternative approach

for updating NP1 and NP2 is tested in this section, in which a small ∆(here, ∆= 0.001)

is added to both SUR as:

NP1 = max
[
Nmin
P1 ,min

{
NP

SUR1,g + ∆
(SUR1,g + ∆) + (SUR1,g + ∆) , N

max
P1

}]
(5.50)

SUR1,g ∪ SUR2,g 6= 0, g ∈ NG

NP2 = NP −NP1 (5.51)
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Table 5.22: Comparison of average results using different configurations

Criteria 5U 5U 10U 10U Hydro- Wind- Solar-
without Ploss with Ploss without Ploss with Ploss thermal thermal thermal

1 42524.8 42547.6 1016200.0 1036280.0 67526.1 790761.0 916061.3
2 42524.3 42546.9 1016270.0 1036270.0 67556.3 790772.0 917220.7

To demonstrate the effect of Eqns. (5.51) and (5.50), the performances of the

proposed GA-DE algorithm is examined with NP1 and NP2 updated based on Eqns.

(5.45) and (5.44) in criterion-1 and Eqns. (5.51) and (5.50), respectively in criterion-2.

Table (5.22) presents the average results for different test problems under both

criteria which show that, those for criterion-2 deviate marginally from those in criterion-

1. Therefore, although the technique for updating NP1 and NP2 has an impact on

solution quality, it is not significant.

5.8.6 Effect of Switching Between GA and DE

As previously mentioned, GA-DE is a self-adaptive multi-EA in which individuals are

switched dynamically between GA and DE during the evolutionary process. In this

process, the sub-population sizes are increased for a well-performing algorithm and vice

versa. In addition, the better-performing algorithm is run for a full cycle to evolve all

individuals alone while the other is not run during that period. The changes in sub-

population sizes of the two algorithms with the numbers of generations for the median

run of all the test cases are presented in Fig. 5.4 to 5.8, in which it can be seen that

GA performs better in the earlier stages for some cases, and DE for others.

Fig. 5.9 illustrates the percentages of individuals assigned to GA during the first 20

cycles for all cases. Note that those evolved by DE can be determined by subtracting the

individuals assigned to GA from NP . According to Fig. 5.9, neither GA nor DE is the

better algorithm for solving the wide range of DED problems considered in this paper,

and their performances can change during the evolutionary process. Therefore, config-

uring the best EA during the evolutionary process is a possible solution for obtaining

better results.
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Fig. 5.4: Self-adaptive changes of NP 1 and NP 2 for 5-unit thermal system

Fig. 5.5: Self-adaptive changes of NP 1 and NP 2 for 10-unit thermal system
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Fig. 5.6: Self-adaptive changes of NP 1 and NP 2 for hydro-thermal system

Fig. 5.7: Self-adaptive changes of NP 1 and NP 2 for solar-thermal system
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Fig. 5.8: Self-adaptive changes of NP 1 and NP 2 for wind-thermal system
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Fig. 5.9: The individuals are evolved by GA per cycle for different cases
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Fig. 5.10: Convergence plots for 5U with Ploss

The convergence patterns of different test problems for median runs presented in

Fig. 5.10 to 5.15 demonstrate the advantages of the adaptive configuration of multi-EAs

in that GA-DE converges faster than both E-GA and E-DE.

5.9 Chapter Summary

An evolutionary approach based on configuring two EAs, a GA and DE, for solving a

wide range of single- and bi-objective DED and DEED problems, respectively, such as

thermal, hydro-thermal, solar-thermal and wind-thermal systems, was presented in this

chapter. In the algorithm’s design, a self-adaptive mechanism for configuring the GA

and DE during the course of evaluation based on the performances in previous generation

(i.e., if an algorithm showed better performance, more individuals were evolved using it

and vice versa), was presented. Once a prescribed number of generations (cycles), only

the better algorithm was allowed to perform while, in the next cycle, both performed

again and so on. In addition, the control parameters of the search operators were self-

adaptively configured over the generations in order to achieve the best combinations on
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Fig. 5.11: Convergence plots for 5U without Ploss
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Fig. 5.12: Convergence plots for 10U with Ploss
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Fig. 5.13: Convergence plots for 10U without Ploss
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Fig. 5.14: Convergence plots for hydro-thermal DED system
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Fig. 5.15: Convergence plots for wind-thermal

a real-time basis with a heuristic technique employed to obtain feasible solutions from

infeasible ones. The proposed framework was applied to different classes of DED and

DEED problems, with the results showed that GA-DE was the best.

In Chapters 2, 3 and 4, efficient approaches for solving various DED and DEED

problems by minimizing their operating costs and gas emissions are developed. However,

it is also important in a real competitive energy market to maximize the individual profit

of each participant. Therefore, in the next chapter, solution approaches for bidding

problems that aim to maximize individual profits in an energy market are developed

and discussed.



Chapter 6

EAs for Bidding Problems in

Energy Market

This chapter discusses the importance of solving a bidding problem in an energy

market. Then, problem descriptions, mathematical formulation and an overview of

existing solution approaches with their drawbacks of this problem are presented. Subse-

quently, two co-evolutionary (CE) solution approaches one based on a genetic algorithm

(GA) and other on a self-adaptive differential evolution (DE) are developed to solve

this problem. Finally, the experimental results, parametric analyses and outcomes are

discussed.

6.1 Introduction

As discussed in Chapter 2, during the last decade, the electricity markets in many coun-

tries have become decentralized and deregulated from monopolized to increase economic

efficiency and reduce operational costs. In this scheme, the markets are being opened

up to competition among both suppliers and consumers. In them, generator companies

(GENCOs) and consumers simultaneously submit their bids to an independent system

operator (ISO) that determines the market clearing price (MCP) and amount of elec-

tricity to be supplied by each winning bidder by solving a dispatch problem. As the
The following articles have been published based on this chapter:

[1]. M. F. Zaman, S. M. Elsayed, T. Ray and R. A. Sarker, Co-evolutionary approach for strategic bidding
in competitive electricity markets, Applied Soft Computing, Volume 51, February 2017, Pages 1-22.
[Key Sections: 6.3.1, 6.5.2, 6.5.3, 6.5.8 and 6.6.4]
[2]. M. F. Zaman, S. M. Elsayed, T. Ray and R. A. Sarker, Evolutionary algorithms for computing Nash
equilibria in electricity markets, Evolutionary algorithms for computing Nash equilibria in electricity
markets, IEEE Transactions on Evolutionary Computation (Under Review). [Key Sections: 6.3.2,
6.4, 6.5.5, 6.5.6, 6.5.7, 6.6.1, 6.6.2 and 6.6.3].
[3]. M. F. Zaman, S. M. Elsayed, T. Ray and R. A. Sarker, A co-evolutionary approach for optimal
bidding strategy of multiple electricity suppliers, in IEEE Congress on Evolutionary Computation,
Vancouver, Canada, 2016.

163



164 Chapter 6 EAs for Bidding Problems in Energy Market

profit of a bidder depends on both its own submitted bid and those of its rivals, each

bidder optimizes its own bidding behavior with respect to those of its competitors while

satisfying some power system constraints. As a high bid by a bidder may not be selected

by the ISO while a lower one may not cover its own costs, to choose an appropriate bid-

ding strategy for maximizing the profits of all bidders is a challenging economic game

problem [52].

As discussed in Chapter 2, of different game-theory-based economic models, the

Cournot and supply function equilibrium (SFE) are the most popular due to their real-

istic characteristics [189, 193]. In the former, the amount of power to be produced by

each player is considered a strategic variable, while a linear function is used in the latter

[189]. Each model is formulated as a bi-level optimization problem (details are pro-

vided later) which is very challenging to solve as it contains a nested optimization task

within the constraints of another optimization problem. Also, as this problem becomes

more complex in the presence of its difficult mathematical properties, such as multi-

modality, non-convexity, non-differentiability and multiple solutions [24], it is inherently

more difficult to solve than traditional optimization ones.

Although several approaches for solving this problem have been developed, as they

determine a solution for each player iteratively in each iteration, approaching an overall

solution is difficult even for a small problem and requires a long computational effort for

a large one. Also, most of these methods aim to find a single solution whereas detecting

multiple ones is more practical and challenging, with a few attempts having been made

to solve such a discrete game problem. However, an energy market is a continuous one

containing infinite sets of strategies that can be adopted by each player. Therefore, in

this chapter, a CE approach for detecting multiple solutions in a single run involving

continuous games with N−players is proposed.

6.2 Problem Description

In this section, a bidding problem in an energy market is described. It is formulated

as a bi-level optimization problem with its objective in the upper level to maximize
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the profit of each bidder (either GENCOs or consumers) by anticipating the profit-

maximization actions of its rivals [4]. In the lower level, the ISO solves an optimal power

flow (OPF) problem to maximize the community social welfare (CSW) by scheduling

the available generators based on the actions submitted by the GENCOs. The CSW is

defined as the difference between the profits obtained by trading electricity to consumers

and the expenses of purchasing it from GENCOs. The OPF problem is an extension

of an economic dispatch (ED) one that considers the power transmission constraints,

such as branch flows and capacity constraints. However, in practice, it is typically

approximated by a more tractable ‘DC-OPF’ problem that focuses exclusively on real

power constraints in a linearized form by simplifying some restrictions regarding voltage

magnitudes, voltage angles, admittances and the reactive power [237]. In this thesis, the

DC-OPF problem is used to represent an electrical power network which includes the

constraints of active transmission power flows, transmission line (TL) capacities, active

power generations, nodal voltage angles and active power demands.

The decision variables in the upper level are considered the bidding parameters of

each bidder that can be varied within a given range while the lower level is the power

output (PO) of each generator of each GENCO that maximizes the CSW. The objective

function of the lower level is affected by the upper level’s decision variables, for example,

the cost function of a GENCO is controlled by its own interest that a bid is submitted.

Once all the bidders submit their bids to the ISO, it solves the DC-OPF problem and

determines the PO and MCP of each bidder. Then, the objective (profit) function of

the upper level is calculated based on the PO, MCP and their actual production costs.

However, the MCPs of all the bidders are the same when transmission congestions

(TCs) are ignored but, if they are considered, vary significantly from location (or node)

to location which is called the locational market price (LMP).

As previously mentioned, based on the bidding parameters, the problem can be

formulated as SFE and Cournot models, as described below.
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6.3 Problem Formulations

In this section, the mathematical formulations of the equilibrium models of an energy

market, such as (i) SFE and (ii) Cournot game models are presented. However, both

models consider some assumptions made are that each player (i) knows the market rules,

(ii) has complete information about the actual generation costs of itself and its rivals,

(iii) knows the range of its bidding parameters and those of its rivals from historical

data, and (iv) knows the capacities of the TLs connected to the market [169].

6.3.1 Supply Function Equilibrium Model

In the equilibrium model, it is assumed that each GENCO has a single generator with

the quadratic cost function:

Ci = ai + biPi + ciP
2
i , ∀i ∈ I (6.1)

where Pi is the generation output from ith GENCO and I the number of GENCOs. Note

that, in this research, it is assumed that each GENCO has a single generator that can

be any type, such as thermal, hydro, solar or wind one. Then, the marginal cost (MC)

of the ith GENCO (generator) is:

MCi = dCi
dPi

= bi + 2ciPi, ∀i ∈ I (6.2)

Since each GENCO plays a game in the market, rather than submitting an actual

marginal cost of Eqn. (6.2), a strategic quasi function (Eqn. (6.3)) called a linear supply

function [189] is submitted to the ISO as:

Bi = b′i + c′iPi, ∀i ∈ I (6.3)

where Bi is the linear supply function of ith generator and b́i, ći the quiescent cost

coefficients of that generator.
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The consumers’ utility cost function (Yj) is the quadratic inverse form [189]:

Yj = djDj − ejD2
j ∀j ∈ J (6.4)

where dj , ej are the coefficients of jth strategic consumers’ utility function,Djthe demand

of that consumer and J the number of strategic consumers. The load demand function

of the linear form is the inverse function with a negative gradient:

dYj
dD

= dj − 2ejDj ∀j ∈ J (6.5)

Again, as a strategic consumer, it plays with the quasi function in Eqn. (6.6):

Lj = d′j − e′jDj ∀j ∈ J (6.6)

where d́j , éj are quiescent coefficients of jth demand curve.

Based on [189, 193], the bidding parameterizations can be selected in the following

four ways.

1. Intercept parameterization: the strategic players adjust the intercepts of b́i, ∀i and
´dj , ∀j of their marginal cost functions in Eqns. (6.3) and (6.6), respectively, to

construct their profit-maximizing bids for submission to the ISO while keeping the

slope constant as ći = 2ci, ∀i and éj = 2ej , ∀j.

2. Slope parameterization: the strategic bids of the players are modeled by varying

the slope of the marginal cost functions in Eqns. (6.3) and (6.6) with the values

of ći∀i and ´ej∀j, respectively, while keeping the intercepts constant as b́i = bi, ∀i

and d́j = dj , ∀j, respectively.

3. Slope-and-intercept parameterization: the players adjust both intercepts (b́i, ∀i

and ´dj , ∀j) and slopes (ći, ∀i and ´ej , ∀j) independently and simultaneously as

their strategic variables to allow more degrees of freedom for choosing the strategic

supply function.



168 Chapter 6 EAs for Bidding Problems in Energy Market

4. Slope intercept parameterization: the strategic players adjust both the slopes and

intercepts in the supply functions in Eqns. (6.3) and (6.6) for GENCOs and

consumers, respectively, but in a fixed linear relationship between the true and

quasi values of the marginal cost function. This can be interpreted as multiplying

the marginal cost functions by arbitrary non-negative constants, say kgi∀i and

kdj
∀j, in order to construct the supply function bids, as:

Bi = kgi(bi + ciPi) (6.7)

kmingi
≤ kgi ≤ kmaxgi

∀i ∈ I

Lj = kdj
(dj − ejDj) (6.8)

kmindj
≤ kdj

≤ kmaxdj
∀j ∈ J

where Bi and Lj are the supply functions for the GENCO and consumer, respectively,

kgiand kdj
the coefficients of the supply functions in Eqns. (6.7) and (6.8), respectively,

and kmingi
, kmaxgi

, and kmindj
, kmaxdj

the minimum and maximum limits of kgiand kdj
,

respectively.

Due to the effectiveness of ‘slope intercept parameterization’ in real life, it is used in

this research with kgi∀i and kdj
∀j the strategic variables for GENCOs and consumers,

respectively. The strategic functions for GENCOs and consumers, respectively, as shown

in Fig. 6.1 by dotted lines, represent the true supply functions and the solid lines the

strategic supply ones obtained by multiplying the decision variables of kgi∀i and kdj
∀j.

A Formulation of ISO’s Optimization Problem

Once the participants in the market submit their strategic supply functions, the ISO

runs a DC-OPF problem to maximize the CSW subject to the power system’s trans-

mission constraints. The ramp rate constraints are ignored in this formulation as it is

assumed that they are sufficiently high. Also, start-up and shut-down decisions are not
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Fig. 6.1: Strategic bidding for supply and demand

considered as it is assumed that the on/off status of a unit is known a priori at the

time of constructing bidding strategies [238]. Since the ISO receives strategic bids from

each player, its objective function is represented by the quasi CSW that incorporates

the strategic variables kgi∀i and kdj
∀j as:

Max :
∏
ISO

=
J∑
j=1

(
d′jDj −

1
2e
′
jD

2
j

)
−

I∑
i=1

(
b′iPi + 1

2c
′
iP

2
i

)
(6.9)

with respect to: Pi, Dj , δk, i = 1, 2, ..., I; j = 1, 2, ..., J ; k = 1, 2, ...,K

Eqn. (6.9) represents the objective function of the ISO’s DC-OPF problem in which

it is equal to the consumers’ benefit minus the generation costs considering the strategic

bids. The DC-OPF problem has the following constraints when TCs are included.

1. Real power balance constraints for each node (k = 1, 2, . . . ,K):

Ik∑
i=1

Pi −
Jk∑
j=1

Dj − PNetInjectk = 0 (6.10)

where PNetInjectk =
∑

km/mk∈BR
Fkm (6.11)

Fkm = Bkm (δk − δm) (6.12)

2. Limits of real power flow through each branch (km ∈ BR):
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|Fkm| ≤ FUkm (6.13)

3. Limits of real power of each generator (i = 1, 2, . . . , I):

Pmin
i ≤ Pi ≤ Pmax

i (6.14)

The above DC-OPF problem is a nonlinear and non-convex single-objective op-

timization problem, and generally represented by its first-order KKT conditions for

solving using a conventional method [189]. Consequently, the LMPs, Pi, i ∈ I from

each GENCO, Dj , j ∈ J of each consumer, transmission flows (Fkm) and nodal voltage

angles (δk) are calculated to simultaneously satisfy each market participant’s first-order

optimality conditions for maximizing their net benefits (KKT conditions) while clearing

the market (supply = demand).

However, the lower level DC-OPF problem has to be optimized in every genera-

tion with the best solution is used in the evaluation of the objective function in the

upper-level profit maximization problem. Therefore, an efficient technique is desired in

solving the lower level problem to reduce the computational complexity of the bi-level

optimization problem. This can be achieved by using a strictly convex quadratic pro-

gramming (SCQP) technique for solving the lower level optimization problem [237, 239].

Such a technique can be only applied under the assumption that the objective function

is quadratic, which has been satisfied of Eqn. (6.9). The SCQP-based DC-OPF problem

is presented in the following subsection.

B Formulation of ISO’s Optimization Problem based on SCQP

The DC-OPF problem can be represented as an SCQP one by eliminating the voltage

angles using substitution in which the ISO’s objective function of Eqn. (6.9) is subject

to the equality constraints of the real power balance in Eqn. (6.10), is expressed as

an SCQP and accumulates a soft penalty function of the sum of squared voltage angle

differences as [237, 239]:
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Min :
I∑
i=1

(1
2c
′
iP

2
i + b′iPi

)
−

J∑
j=1

(
d′jDj −

1
2e
′
jD

2
j

)
− π

 ∑
km∈BR

(δk − δm)2

 (6.15)

where δk is voltage angle in radians at node/bus k with assuming a reference bus voltage

angle of δ1 = 0, Eqn. (6.15) is reduced as:

Min :
I∑
i=1

(1
2c
′
iP

2
i + b′iPi

)
−

J∑
j=1

(
d′jDj −

1
2e
′
jD

2
j

)
−π

 ∑
1m∈BR

δ2
m +

∑
km∈BR,k≥2

(δk − δm)2


(6.16)

subject to:

Ik∑
i=1

Pi −
∑

km/mk∈BR
Bkm (δk − δm) =

Jk∑
j=1

Dj ∀k = 1, 2, · · · ,K (6.17)

−Bkm (δk − δm) ≥ −FUkm ∀k,m = 1, 2, · · · ,K (6.18)

Bkm (δk − δm) ≥ −FUkm ∀k,m = 1, 2, · · · ,K (6.19)

Pi ≥ Pmin
i ∀i = 1, 2, · · · , I (6.20)

where Bkm, Fkm and FUkm are the susceptance, TL flow and maximum capacity of the

TL connected to nodes k to m, respectively, K the number of nodes, Ik and Jk the

numbers of generators and consumers, respectively at the kth node.

To efficiently solve the above optimization problem, a matrix representation of the

objective function in Eqn. (6.16) and constraints in Eqns. (6.17) to (6.20) is developed

as:

Min: f(x) = 1
2xTGx + fTx (6.21)
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subject to: CinxT ≥ bin (6.22)

CeqxT = beq (6.23)

Details of the coefficients, such as G, f, Cin, bin, Ceq and beq of Eqns. (6.21) to

(6.23) are shown in Appendix B. Note that, for the variable notations, a boldface one

indicates that it is a matrix or vector and a normal italic one a scalar.

C Formulating Optimization Problem of Each Player

Once the lower-level SCQP problem is solved, the values of Pi, Dj , λPi , λDi and

Fkm ∀i, j, k are calculated based on their primal and dual variables in the KKT rep-

resentation shown in Appendix C. Then, the upper-level optimization problems of the

strategic firms, in which individual profits are maximized, are solved given the revenue

minus the true generation cost as:

Max : πi(kgi) = λPiPi − Ci(Pi) (6.24)

kmingi
≤ kgi ≤ kmaxgi

, ∀i ∈ I

Max : πj(kdj
) = Yj(Dj)− λdj

Dj (6.25)

kmindj
≤ kdj

≤ kmaxdj
, ∀j ∈ J

where πi and πj are the profits of the GENCO and consumer, respectively. As the

variables Pi, Dj , λPi , λDi are produced by the SCQP problem given in Eqns. (6.21) to

(6.23), they can be expressed as implicit functions of the players’ bidding strategies as

kg = {kg1, kg2, . . . , kgI} and kd = {kd1, kd2, . . . , kdJ}. Therefore, they should satisfy the

KKT conditions of the ISO optimization problem.
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6.3.2 Cournot Model

The formulation of Cournot game is very similar to that of SFE with the exception is

the bidding parameter in which, in the Cournot game, a player (say, n) uses its variable

Pi i = n as the bidding variable to maximize its profits with respect to the other players,

Pi i = 1, 2, . . . , I; i 6= n as [174]:

π(Pi) = λPiPi − Ci(Pi), ∀i = 1, 2, ..., I (6.26)

where Ci(Pi) = ai + biPi + ciP
2
i

Pmini ≤ Pi ≤ Pmaxi ∀i ∈ I (6.27)

where the amount of electricity Pi is the decision strategic variable for this model of

the ith generator with λPi∀i determined by the Lagrange multiplier of the equality

constraints in Eqn. (6.29) of the lower level DC-OPF problem, which is the simplest

version of above DC-OPF one as:

Max:
J∑
j=1

(djDj − ejD2
j ) (6.28)

subject to:
Ik∈I∑
i=1

Pi − Fkm =
Jk∈J∑
j=1

Dj (6.29)

where Fkm =
∑

km/mk∈BR
Bkm (δk − δm)

− FUkm ≤ Fkm ≤ FUkm ∀k,m = 1, 2, ...,K (6.30)

Like SFE model, (dj , ej) and Dj are the coefficients of the demand function and elec-

tricity demand of the jth consumer, respectively, J the number of consumers, and δk the

voltage angle (in radians) at node k,∀k ∈ K, k 6= 1 as δ1 considered the reference bus

with a fixed value of 0.
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6.4 Solution Approach

As discussed in Chapter 2, solving the SFE and Cournot models has gained a great deal

of attention over the last decade. As both involve difficult mathematical properties in

the objective function, including multi-modality, non-convexity and non-differentiability,

compared with classical techniques, various evolutionary algorithms (EAs) are now gen-

erating interest in the research community for solving this problem. In many of them,

a conventional iterative (IT) approach is used to determine the optimal bidding strate-

gies of all participating players, with each strategy updated sequentially by one in an

iteration to maximize its profit while those of its rivals remain unchanged. This process

continues until the bidding strategy of a player improves, with the algorithm terminated

as soon as a Nash equilibrium (NE) is reached. The NE is a stable state of a game in

which a player cannot improve its profit unilaterally given that the actions of its rivals

remain unchanged [47].

6.4.1 Motivation

As previously mentioned, most existing methods solve the bidding problems of bidders

one after the other which may take too long when there are many bidders and is one of

the issues addressed in this chapter. Also as, in most of the abovementioned methods,

game-based bidding strategies are used, the bids are represented as discrete quantities,

such as bidding high, medium or low, with the payoff matrices easily determined by

computing all possible combinations of the strategies. However, in reality, as a player in

an energy market submits its bid within a given range, as the size of the payoff matrix

becomes infinite, it is impossible to evaluate all the combinations [13]. Moreover, current

methods determine a single NE which is not adequate for an energy market as, even

if it is perfect, the possibilities of there being other equilibria cannot be ignored [24].

Therefore, to address the abovementioned issues, in this chapter, two CE approaches

those detect multiple solutions in a single run are implemented.
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6.5 Proposed Co-evolutionary Approach

In this section, the proposed CE algorithms are presented for solving the bidding prob-

lem of an energy market to maximize the individual profit. The algorithms also de-

termine multiple NEs in a single run by anticipating the actions of each player on

those of the others. In them, two CE algorithms are designed based on two variants

of EAs, such as self-adaptive DE (called CE-DE) and GA (called CE-GA), considering

N−subpopulations for N−players are developed in which, in each subpopulation, the

actions of a player (say, x) are optimized with respect to those of its rivals. In the

initial generation, NP actions of each subpopulation are randomly assigned based on

Eqn. (6.31) and then evaluated. As, to evaluate an individual of a player (n ∈ N), it

is necessary to know the set of best individuals (let x∗n, n = 1, 2, . . . , N) of its rivals,

it is initially assumed that the initial individuals are the best individuals of the other

players, that is, x∗n ∈ xn, n = 1, 2, .., N . Once all the individuals in a subpopulation are

evaluated, the Nash non-dominated sorting (NNDS) algorithm derived from well known

fast non-dominated sorting (NDS) mechanism [20] is run to determine their ranks, as

shown in Algorithm 6.6. Subsequently, the best individuals of a player are updated

based on the first non-dominated rank (nd−rank = 1) and their FVs, as described in

subsection 6.5.5. In subsequent generations, the offspring are generated by evolving the

parents using either a self-adaptive DE (variant-1) or real coded GA (variant-2) with this

process continuing until a stopping criterion is met. The pseudo-code of the proposed

CE solution approach is shown in Algorithm 6.3 and details of its components provided

in subsequent subsections.

6.5.1 Initial Generation

A CE algorithm starts with a number of subpopulations, each of which has NP random

individuals. Considering that N players participate in a game, each of which has its own

sub-population, an individual in the n−subpopulation is initialized as:
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Algorithm 6.3 CE solution approach
Require: NP , NG > 1 and N
1: Set g = 0
2: Randomly generate initial individuals in each subpopulation using Eqn. (6.31)
3: Set random best individuals, as x∗n ⊆ xn∀n
4: for n = 1 : N do
5: Evaluate FV s of all NP individuals using the Algorithm-6.4
6: Determine the rank of the individuals with updating best ones (x∗n) by performing

NNDS, in Algorithm-6.6.
7: end for
8: for g = 1 : NG do . g and NG is the current and maximum generation number,

respectively.
9: for n = 1 : N do

10: for p = 1 : NP do
11: Replace the redundant individuals as in section 6.5.6
12: Generate a child yn,p by evolving xn using either GA or DE operators
13: Evaluate FV s of both xn,p and yn,p using Algorithm-6.4.
14: Accept xn,p or yn,p based on Algorithm-6.5.
15: end for
16: Repeat step 6
17: end for
18: Terminate, if a stopping criterion is met, described in section 6.5.5
19: end for

xp,n = xnmin + (xnmax − xnmin) LHS(NP ) (6.31)

p = 1, 2, . . . , NP , n = 1, 2, . . . , N

where xn ∈ [(kg, kd), P ] are the decision variables for the SFE (subsection 6.3.1) and

Cournot (subsection 6.3.2) models, respectively. The minimum (xmin) and maximum

(xmax) limits are found from their respective limits. The number of players (N) depends

on the problem size, that is, N = I, I+J , for the Cournot, and SFE models, respectively.

LHS(NP ) represents the NP random individuals generated using LHS as described

previous section.

6.5.2 Evaluation

As previously mentioned, the objective function of a player is to maximize its own profit

by modifying its bidding action with respect to those of its rivals. From the profit



Chapter 6 EAs for Bidding Problems in Energy Market 177

functions of Eqns. (6.24) to (6.26), it can be seen that, when a player evaluates its

own fitness function, the values of the others must be known. Therefore, the FFE of an

individual in a subpopulation (p ∈ NP ) for a player (n ∈ N) depends on both its own

and its opponents’ bidding actions. Since selecting rivals’ bidding actions is difficult,

the sets of best bidding actions found in the previous generation is used. This process

is illustrated by an example that assumes the market has two strategic players: the

individuals of player-1 in generation g+1 are evaluated by taking the set of best bidding

actions of player-2 from its previous generation (g); if there is more than one but less

than NP best individuals, to evaluate all of those of player-1 in generation g + 1, its

rivals’ strategies are randomly chosen ensuring that each performs at least once. For

an N−player game, the FFEs of Nx individuals of a player in subpopulation−n are

presented in Algorithm 6.4.

Algorithm 6.4 The process of FFEs of single player
Require: xi,n i = 1, 2, ..., Nx and n ∈ N
Require: A set of best bidding actions of nth player’s rivals, as {x∗k}, k =

1, 2, ..., N, k 6= n
1: Determine the size of each {x∗k}, as Nbestk = size({x∗k}), k = 1, 2, ..., N, k 6= n
2: for i = 1 : Nx do
3: Set an empty vector, −→xo = ∅ . xo represents operating x and ∅ an empty set
4: for k = 1 : N do
5: if k 6= n then
6: Update, −→xok = x∗k,r, where, Zr ∈ [1, Nbestk ]
7: else . take the current individual
8: Update, −→xok = xi,k
9: end if

10: Evaluate FV by supplying a −→xo to the respective player’s profit function
11: end for
12: Update, xi,k = −→xok k = 1, 2, ..N
13: end for
14: Return, FV s and x

6.5.3 Update Bidding Actions

To update the bidding actions of each player, a GA and DE are used for the CE-GA

and CE-DE algorithms, respectively. The search operators GA and DE are discussed in

sections 3.5.2 and 3.5.3, respectively.
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6.5.4 Selection

To select an individual, a greedy scheme is used in which the fittest (according to the

FVs) of two candidates, a parent and its child, is chosen. However, as the problem

considered in this study involves maximizing the profits of a number of players (N > 1),

a direct greedy method is not appropriate. Therefore, the new selection criteria described

below are proposed.

Consider an N−player game with a player’s parent and offspring are x1 and x2,

respectively and a set of best actions of its rivals, y∗. The payoffs for x1 and x2 are

FV (x1, y
∗) and FV (x2, y

∗), respectively, assuming an operator, M where M(x1, x2) =

FV (x1, y
∗) > FV (x2, y

∗) represents the number of players that benefit if a player uses

a x1 strategy compared with when that player uses of x2 with the same best bidding

actions of its rivals, i.e., y∗. Then, the potential relationships between x1 and x2 are:

1. M(x1, x2) = N : x1 is strictly non-dominated by x2

2. M(x2, x1) = N : x2 is strictly non-dominated by x1

3. M(x1, x2) = M(x2, x1) 6= N : neither is x1 strictly non-dominated by x2 nor x2

strictly non-dominated by x1

Proposition 1. A strictly non-dominated solution is a global NE.

Proof . Let x∗ ∈ x be a solution strictly non-dominated by another solution, x1 ∈ x.

Suppose that, x∗ is not a global NE, but, x1 is an equilibrium i.e., there must be at least

one player, n ∈ N that benefits when using x1 but not x∗, as:

M(x1, x
∗) = FV (x1, y

∗) > FV (x∗, y∗) ≥ 1 (6.32)

However, M(x1, x
∗) = 0 when x∗ is strictly nondominated by x1 which means that

x∗ is a global NE.

As for criterion-3, neither solution is a global NE, the self-benefit criteria is used

to select the individuals in order to drive the solutions towards the global NE space;
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for example, if FV (x1, y
∗) = [10, 8], FV (x2, y

∗) = [9, 10] and the operating player is

n = 1, since FVn(x1, y
∗)>FVn(x2, y

∗) (i.e., 10 > 9), x1 survives to the next generation.

Details of these criteria for selecting an individual from a parent (x1) and its child (x2)

are provided in Algorithm 6.5.

Algorithm 6.5 Criteria for selecting parent or child
Require: A parent, x1, and a child, x2, with their FVs, as FV (x1, y

∗) and FV (x2, y
∗),

respectively
Require: n← Index of player is currently operating
1: Determine, M(x1, x2) and M(x2, x1)
2: if M(x1, x2) = N then . parent is good
3: x = x1 . select parent
4: else if M(x2, x1) = N then . child is good
5: x = x2 . select child
6: else if FVn(x1, y

∗) > FVn(x2, y
∗) then . is FV of nth player better for parent?

7: x = x1 . select parent
8: else . the FV of nth player better for child
9: x = x2 . select child

10: end if
11: Return, x

6.5.5 Ranking Individuals

Once all the better-performing individuals in a subpopulation are selected, they are

further ranked to determine the best ones for evaluating the next generations. This

is achieved using Algorithm 6.6 which is developed based on the concept of the NDS

approach [20] and called the NNDS.

Algorithm 6.6 Ranking individuals using NNDS
Require: The individuals, x of a subpopulation, n
1: Determine nd−rank(x) using the NDS approach [20]
2: Take the nth player’s individuals, xn ⊂ x
3: Set, X = ∅ and xBest = ∅ . ∅ is a symbol for the empty set
4: for k = 1 : max(nd−rank) do
5: Get, xn,k ⊂ xn based on the kth nd−rank
6: Update, xn,k = sort(xn,k) based on nth player’s FV s
7: Update, X = [X,xn,k]
8: if k = 1 then . Update the best individuals
9: xBestn = xnk

10: end if
11: end for
12: Return, x← X and x∗ ← xBest
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In the NNDS, firstly, the individuals are ranked based on the conventional NDS

approach which means that those better for all players receive nd−rank=1 and those

worse for all players a maximum nd−rank, and so on, as explained in following example.

1. x1 is non-dominated by x2 if M(x1, x2) > M(x2, x1), i.e., nd−rank(x1) = 1 and

nd−rank(x2) = 2

2. x2 is non-dominated by x1 if M(x2, x1) > M(x1, x2), i.e., nd−rank(x2) = 1 and

nd−rank(x1) = 2

3. x1 and x2 are indifferent ifM(x1, x2) = M(x2, x1), i.e., nd−rank(x1) = nd−rank(x2) =

1

To determine the best set of actions of each player, the individuals with nd−rank = 1 is

sleeted. These solutions are actually the NEs found so far, as proven in proposition-2.

Proposition 2. The solutions with nd−rank = 1 are NEs.

Proof . Suppose that x∗ ∈ x is a solution with nd−rank = 1 but not an NE. Let

x1 ∈ x be another solution with nd−rank > 1 but an NE, i.e., there must be at least

one player that obtain a benefit using x1 rather than x∗, such as:

M(x1, x
∗) = FV (x1, y

∗) > FV (x∗, y∗) ≥ 1 (6.33)

However, it is necessary that M(x1, x
∗) = 0 satisfies the conditions of the NNDS

approach. Therefore, M(x∗, x1) = FV (x∗, y∗) > FV (x1, y
∗) ≥ 1 which indicates that

x∗ is an NE because @x1 ∈ x, x1 6= x∗ such that M(x1, x
∗) > M(x∗, x1).

6.5.6 Maintaining Diversity

As, if there are redundant individuals in a subpopulation, which is possible, the per-

formance of the optimization algorithm can be affected. Any redundant individual is

replaced by a random solution generated using Eqn. (6.31). To allow the algorithm to

concentrate on high-quality solutions during the later stages of the evolution, the process

continues until the algorithm reaches half the NG.
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6.5.7 Stopping criteria

In this study, two stopping criteria are considered:

1. the maximum number of generations (NG) is reached; and

2. both the maximum number of generations is reached to NG/2 and the best bidding

actions are no longer improved for a predefined number of generations, θ.

Criteria 1 and 2 affect the run time and solution optimality, respectively. When only

criterion 1 is used, NG is difficult to define because different systems have different con-

vergence characteristics. Therefore, when both criteria 1 and 2 are used simultaneously,

the solution optimality is possibly guaranteed [240].

6.5.8 Solution Approaches for Lower-Level Optimization Problem

As seen in section 6.3, a nonlinear DC-OPF optimization problem is required to solve

when a profit function of the bidding problem in Eqns. (6.24), to (6.26) is evaluated.

This problem is used in the lower level of the competitive bi-level SFE model and treated

as a single-objective optimization problem in a non-competitive market. For verification

purposes, it is solved using three different approaches, such as (i) a classical IP optimiza-

tion technique, (ii) a real-coded GA, and (ii) a self-adaptive DE. A brief description of

an IP method is described in section 2.7.1 while the operators of GA and DE presented

in sections 3.5.2 and 3.5.3, respectively.

6.6 Experimental Study

For the experimental study, the wide range of game-based bidding problems of the real-

life electricity markets are solved. Besides, to verify the proposed methods in solving the

different games, four standard test functions are considered. The considered problems

are:

1. four standard test functions;
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2. a Cournot model of the IEEE 2-bus system; and

3. a SFE model of the IEEE 3- and 30-bus systems.

Each test problem is solved using the proposed CE approaches based on (i) GA (called

the CE-GA) and (ii) DE (called the CE-DE) algorithms. Also, to validate these methods,

two conventional iterative (IT) line search algorithms [174], one based on GA (called IT-

GA) and the other on DE (called IT-DE) [241] are adopted. In them, in each iteration, a

player optimizes its bidding strategy given its rivals have fixed actions. To start a game,

each player randomly chooses its action assuming that random strategies are used by

the other players and then optimizes its own action with respect to those of the other

players. In the following generations, either GA or DE search operators are used to

generate a better-quality strategy from its parents. Once a player obtains its optimal

bidding strategy, the first iteration is over. Then, the next player begins to optimize its

own strategy using the same process while considering the best bidding strategies of its

rivals found so far. This iterative process is terminated when either no player is able

to change its action in θ generations or the maximum number of iterations (MaxIt) is

reached.

The GA parameters, the probabilities of crossover and mutation, are set to 0.9 and

0.1, respectively. Based on the empirical analysis discussed in subsection 6.6.3, the

values of θ, NP , NG, and MaxIt are set to 5, 40, 100 and 10, respectively. Thirty

independent runs are performed for each test case and the solutions recorded, with

the median one based on the average profits reported. Moreover, the NEs obtained

by the CE algorithms are verified by performing a Gambit simulation [242] in which

the final results consider the pure strategies of the players, with their payoff matrices

further evaluated to determine all the equilibrium points through configuring the Gambit

software as “Compute all Nash Equilibria” [242][13].

6.6.1 Test Problems

In this subsection, four standard continuous test functions are solved, each of which has

two competitive players that optimize their decision variables within a range to maximize

their own profits with respect to those of their rivals [172, 229]. Four test functions are
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considered: (i) the Cournot model of duopoly; (ii) the partnership game; and (iii) and

(iv) examples from [172], with their respective payoff functions:

πi(qi, qj) = qi(24− (qi + qj)− 5) (6.34)

0 ≤ qi ≤ 100, ∀i, j = 1, 2; i 6= j

πi(qi, qj) = pc/2− q2
i (6.35)

0 ≤ qi ≤ 4, ∀i, j = 1, 2, i 6= j

pc = 4(q1 + q2 + 0.2q1q2)

π1 = q1 (6.36)

π2 = (0.5− q1)q2

0 ≤ q1 ≤ 0.5 0 ≤ q2 ≤ 1

πi = 1
4(qi + qj)(100− qi)− (100− qi)(200− (6.37)

qi − 0.001qiqj)

0 ≤ qi ≤ 100, ∀i, j = 1, 2, i 6= j

where πi is the profit (payoff) of the ith player and q1 and q2 the strategic variables

optimized to maximize πi, i ∈ {1, 2}. The analytical results obtained of their resulting

NEs are (5, 5), (1.25, 1.25), (0.5, 0 ∼ 1), and (48.98, 48.98) for test problems 1, 2, 3 and

4, respectively [172].

Now, these problems are solved using the CE-GA, CE-DE, IT-GA and IT-DE al-

gorithms and their results for bidding actions and payoffs illustrated in Fig. 6.2 to 6.5,

respectively. It can be seen that the IT algorithms find a single NE and the CE-based
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Fig. 6.2: Profits and actions obtained by CE and IT approaches for test problem-1

ones several. Also, the CE based algorithms maximize their payoff values than those of

the IT ones, with CE-DE obtaining the best results in terms of maximizing profits.

To demonstrate the performances of the CE algorithms, their results are compared

for detecting a number of NEs (nNEs), the FFEs they require for each run and their

simulation times with those of the IT algorithms, as presented in Table 6.1, with the

results showing that the CE algorithms require fewer FFEs than the IT ones and CE-DE

is the best of all the algorithms. Moreover, the CE-DE identifies the maximum numbers

of NEs for all test functions while the IT based approaches find one.

6.6.2 Bidding Problems

As previously mentioned, the game-based bidding problem is formulated as a bi-level

optimization problem with the upper-level profit maximization of each individual bidder

solved using the proposed CE-GA and CE-DE, and conventional IT-GA and IT-DE al-

gorithms. To solve the lower-level DC-OPF problem, a suitable algorithm among three
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Fig. 6.3: Profits and actions obtained by CE and IT approaches for test problem-2

Table 6.1: Summary of results for test functions

Algorithms
IT-GA [241] IT-DE [241] CE-GA CE-DE

Test problem-1
FFEs 41050 41050 16080 10160
Time (sec.) 8.16 6.91 3.36 3.29
nNE 1 1 5 7

Test problem-2
FFEs 27366 27366 16080 13520
Time (sec.) 7.45 4.36 3.24 3.12
nNE 1 1 6 14

Test problem-3
FFEs 27366 27846 16080 16080
Time (sec.) 7.32 6.34 3.47 3.31
nNE 1 1 14 40

Test problem-4
FFEs 41050 31927 16080 9900
Time (sec.) 11.14 5.22 3.37 3.29
nNE 1 1 4 10
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Fig. 6.4: Profits and actions obtained by CE and IT approaches for test problem-3

considered ones, such as , IP, GA and DE is determined. Because, if the lower level

algorithm provides a local solution and/or takes long time to compute, the higher level

CE based algorithms cannot perform well. Therefore, at first, the market is considered

non-competitive, all the participating GENCOs and consumers are considered as non-

strategic with their bidding coefficients set to 1 [47]. In other words, neither GENCOs

nor consumers are allowed to maximize their profits but, rather, always play with their

true marginal cost and demand functions in Eqns. (6.2) and (6.5) for GENCOs and

consumers, respectively. Therefore, as this bi-level problem has no longer upper level, it

becomes a single-objective optimization one of DC-OPF problem, which aims to max-

imize the CSW, and is solved using the (i) E-GA, (ii) E-DE and (iii) IP algorithms.

Since the smaller number of generators are involved in the bidding problem, the best

parameters of GA and DE those found in previous Chapter in solving 5-unit thermal

problem of Table 5.1 are used for solving the DC-OPF one, and the MaxIt set to a

value of 1000 for IP algorithm.
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Fig. 6.5: Profits and actions obtained by CE and IT approaches for test problem-4

After 30 independent runs of each algorithm for solving each energy market;s prob-

lem, their average results and the results in the literature, such as those from EBA [47],

BA [47], PSO [47], GA [47] and NCP [243], including the CSW and computational time,

are presented in Table 6.2. Note that, for solving DC-OPF problem using IP method,

the developed matrix representation in Eqns. (6.21) to (6.23) for the SCQP problem is

used while if they are solved using GA and DE algorithms, a non-convex formulation

of Eqns. (6.15) to (6.20) is used. The simulation results for the DC-OPF problem for

considered bidding problems are presented in Table 6.2 in which, the profits of each

algorithm are quite similar while the computational time of IP is much lower than those

of the others.

As the lower level of the problem has to be optimized in every generation, to be used

in the evaluation of the objective function in the upper one, which is computationally

expensive to solve using an EA, the IP method with the SCQP formulation is used to

solve the lower level problem in the bi-level bidding problem. For all problems, the

MaxIt is set to the value of 1000.



188 Chapter 6 EAs for Bidding Problems in Energy Market

Table 6.2: Caparisons of different algorithms for solving lower-level DC-OPF problems

Algorithm
2-bus 3-bus 30-bus

CSW Time CSW Time CSW Time
($) (sec.) ($) (sec.) ($) (sec.)

EBA [47] NR NR 6212.05 0.96 NR NR
BA [47] NR NR 6212.05 0.96 NR NR
PSO [47] NR NR 6212.05 0.96 NR NR
GA [47] NR NR 6212.05 0.96 NR NR
NCP [243] NR NR 6212.10 NR NR NR
E-GA 10000.04 27.14 6212.06 47.08 18453.88 94.09
E-DE 10000.09 25.58 6212.06 30.09 18453.88 62.28
IP 10000.00 0.01 6212.06 0.01 18453.88 0.08

For solving the bidding problems using the proposed CE-DE and CE-GA algorithms,

each problem considers the following three cases.

• Case I: consumers are non-strategic, and TLs ignored

• Case II: consumers are non-strategic, and TLs considered

• Case III: consumers are strategic, and TLs considered

A strategic customer is one that can participate in the bidding process which increases

the number of players in that game while, in a non-strategic customer game, the number

of players is reduced to the number of GENCOs with customers only able to buy a

predefined amount of electricity from the market. Also, if the problem considers the

capacity constraints of a TL, the optimization space of the problem becomes discrete

which means that it has multiple NEs [24]. Details of each test problem are provided

below.

A IEEE 2-bus system

At first, a modified IEEE 2-bus Cournot game is solved which qualitatively similarly to

the California model [174] shown in Fig. 6.6. Its formulation is discussed in subsection

6.3.2 and, for cases I and II, FU12 is set to 80 and 55 MW, respectively [174].

For case I, a strategy of (148, 148) with the payoff of (1.39E+3, 1.39E+3) is found in

[174] as well as obtained from the conventional IT-DE and IT-GA algorithms. The CE-

DE and CE-GA algorithms determine several NEs with a fixed payoff, as shown in Fig.
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Fig. 6.6: 2 bus Cournot model
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Fig. 6.7: Profits and actions obtained by CE and IT approaches for IEEE 2-bus system
(case I)

6.7. For case II, although the local search algorithms obtain different NEs of (148, 148),

(92, 136) and (153, 136) from different runs, it is proven that, except for (148, 148), the

solutions are local NEs [174]. On the other hand, the proposed CE algorithms obtain a

number of NEs, as shown in Fig. 6.8, all of which are verified by the Gambit simulation.

By comparing the FFEs and simulation times of the IT- and CE-based algorithms
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Fig. 6.8: Profits and actions obtained by CE and IT approaches for IEEE 2-bus system
(case II)

Table 6.3: Summary of results for IEEE 2 bus system

Algorithm Case I Case II
FFEs Time (min.) nNE FFEs Time (min.) nNE

IT-GA [241] 41040 9.10 1 45600 10.84 1
IT-DE [241] 45560 9.05 1 48560 11.46 1
CE-GA 16080 3.63 4 16080 3.81 15
CE-DE 16080 2.61 40 16080 3.30 40

for cases I and II, as shown in Table 6.3, it is proven that the proposed CE algorithms

are very efficient, even after obtaining multiple NEs, with CE-DE the best in terms of

its nNEs, FFEs and computational time.

B IEEE 3-bus system

The IEEE 3-bus test system is formulated as a SFE model assuming that the bidding

action involves the cost coefficients of the respective generator and consumer as kg ∈
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[1.0, 2.5], and kd ∈ [0.1, 1.0], respectively [47]. Its mathematical formulation is provided

in subsection 6.3.1 and its parameters depicted in Fig. 6.9 which shows that it consists

of two generators at nodes 1 and 3, two consumers at nodes 1 and 2, and three TLs

considered lossless with equal reactance values of x = 0.002. The TL capacity of FU12 is

set to 500 MW for case I and 25 MW for cases II and III while the capacity limits of

the other TLs are ignored.

Once cases I and II of this system are solved using the CE- and IT- based algo-

rithms, their final results as well as those of the state-of-the-art algorithms, such as

GA, PSO, Bat-inspired algorithm (BA), enhanced BA (EBA) [47] and mixed nonlinear

complementarity problem’s algorithm (NCP) [243] are illustrated in Fig. 6.10 and 6.11,

respectively, with the proposed CE approaches obtaining multiple equilibria. Neverthe-

less, it is seen in the Gambit software that the solutions of other algorithms are rejected

(i.e., not an NE) by the CE algorithms’ results.

For case III, as the consumers participate in the bidding market, there are four

players. Since it is difficult to present the results visually, the obtained mean values of

the bidding actions and payoffs from each algorithm are tabulated in Table 6.4. One

can observe that the results are very consistent. The numbers of FFEs, computational

times and nNEs presented in Table 6.5 for all three cases indicate that CE-DE is the

best algorithm.
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Fig. 6.10: Profits and actions obtained by CE and IT approaches for IEEE 3-bus system
(case I)

Table 6.4: Bidding actions and payoffs obtained by CE and IT approaches for IEEE
3-bus system (case III)

Alg. Actions Payoff
P-1 P-2 P-3 P-4 P-1 P-2 P-3 P-4

IT-GA [241] 1.36 1.18 0.92 0.82 762.36 1093.81 1988.80 1634.91
IT-DE [241] 1.31 1.16 0.90 0.78 766.58 861.24 2117.16 1657.94
CE-GA 1.31 1.16 0.90 0.78 766.98 859.96 2120.15 1656.04
CE-DE 1.31 1.16 0.90 0.78 766.66 861.39 2116.60 1658.40

Table 6.5: Summary of results for IEEE 3-bus system

Alg. Case I Case II Case III
FFEs Time

(min.)
nNE FFEs Time

(min.)
nNE FFEs Time

(min.)
nNE

IT -GA[241] 45600 5.70 1 27361 2.02 1 54720 4.27 1
IT -DE[241] 45600 4.49 1 27360 1.95 1 54720 4.04 1
CE-GA 16080 1.19 3 16080 1.19 3 32160 2.33 4
CE-DE 16080 1.17 4 13040 0.95 3 18080 1.31 16
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Fig. 6.11: Profits and actions obtained by CE and IT approaches for IEEE 3-bus system
(case II)

C IEEE 30-bus system

To demonstrate the effectiveness of the proposed algorithms for a large system, the

IEEE 30-bus test system, which has up to 26 competitive players with 6 generators, 20

loads, 41 lines and 30 buses, is considered with all the TLs lossless and their reactance

values set to 0.001. The system data and schematic diagram are described in [244]. The

TLs’ capacity limits are ignored for case I while, for cases II and II, FU6,8, FU17,12 and

FU10,17 are set to 10, 8 and 10, respectively, and the bidding coefficients of the generators

and consumers kg ∈ [1.0, 2.5], and kd ∈ [0.1, 1.0], respectively. All the cases are solved

using all the algorithms, with a summary of their results presented in Table 6.6 which

demonstrates that there is a global NE in case I and multiple ones in cases II and III.

However, to obtain these equilibria, conventional methods take longer and require more

FFEs than the proposed CE-based approaches. Comparing CE-GA and CE-DE, again,

CE-DE is best in terms of nNEs, FFEs and computational times for all cases.
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Table 6.6: Summary of results for IEEE 30-bus system

Alg. Case-I Case-II Case-III
FFEs Time

(min.)
nNE FFEs Time

(min.)
nNE FFEs Time

(min.)
nNE

IT -GA[241] 95760 12.37 1 95760 13.13 1 592800 82.06 1
IT -DE[241] 82080 10.44 1 82080 10.71 1 592840 81.70 1
CE-GA 48240 6.88 1 48240 6.75 13 209040 28.25 16
CE-DE 48240 6.05 1 29520 3.89 21 209040 27.93 40

Table 6.7: Effect of NP on CE-DE

Problem NP = 20 NP = 40 NP = 60
MFV s FFEs Time nNEs MFV s FFEs Time nNEs FFEs MFV s Time nNEs

1 25.00 6521 0.05 4 25.00 10160 0.05 7 25.00 15480 0.05 7
2 4.06 4680 0.03 4 4.06 13520 0.05 14 4.06 16440 0.05 14
3 0.25 8040 0.06 20 0.25 16080 0.06 40 0.25 24120 0.08 60
4 3.16E+03 5160 0.04 6 3.16E+3 9900 0.05 10 3.16E+03 14280 0.05 10

IEEE 2 1.39E+03 8040 1.67 20 1.39E+3 16080 3.3 40 1.39E+03 24120 4.90 60
IEEE 3 1.27E+03 7160 0.58 2 1.27E+3 13040 0.95 3 1.27E+03 18120 1.28 5
IEEE 30 842.81 13800 1.31 14 842.83 29520 3.89 21 842.76 40680 3.84 20

6.6.3 Parametric analysis

In this subsection, the robustness of the proposed CE approaches is evaluated in terms of

the means of the mean FVs (MFVs) of all the players, nNEs and run times (in minutes)

by analyzing the parameters (i) NP , (ii) stopping criteria and (iii) convergence plots. To

do this, the best-performing algorithm, CE-DE, is used to solve the test problems for

case II by following a ceteris paribus strategy in which only one parameter is varied while

all the others remain fixed to their best values. Then a statistical comparison between

IT- and CE-based algorithms with their convergence characteristics are presented.

A Effect of NP

Three different values of NP are used to solve the test problems considered, with their

results presented in Table 6.7 demonstrating that all their MFVs are almost the same.

However, in terms of nNEs, CE-DE with NP = 20 is inferior to CE-DE with NP = 40

and NP = 60 although the computational times and FFVs are much higher for NP = 60.

Therefore, it can be stated that NP does not affect the algorithm’s capability to obtain

the best MFV, with its value of 40 saving computational time and producing good

results.
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Table 6.8: Effect of θ on CE-DE

Problem θ = 2 θ = 5 θ = 10
MFV s FFEs Time nNEs MFV s FFEs Time nNEs FFEs MFV s Time nNEs

1 25.00 9840 0.04 7 25.00 10160 0.05 7 25.00 12400 0.05 7
2 4.07 10320 0.04 6 4.06 13520 0.05 14 4.06 14480 0.06 14
3 0.25 16080 0.07 40 0.25 16080 0.06 40 0.25 16080 0.07 40
4 3.16E+03 9040 0.04 7 3.16E+3 9900 0.05 10 3.16E+03 10800 0.05 10

IEEE 2 1.39E+03 16080 3.32 40 1.39E+3 16080 3.3 40 1.39E+03 16080 3.54 40
IEEE 3 1.28E+03 9200 0.68 3 1.27E+3 13040 0.95 3 1.28E+03 16080 1.23 3
IEEE 30 842.83 28560 3.03 12 842.83 29520 3.89 21 842.76 35280 3.92 21

Table 6.9: Effect of NG on CE-DE

Problem NG = 50 NG = 100 NG = 200
MFV s FFEs Time nNEs MFV s FFEs Time nNEs FFEs MFV s Time nNEs

1 25.00 8080 0.04 6 25.00 10160 0.05 7 25.00 17040 0.07 9
2 4.07 8080 0.04 13 4.06 13520 0.05 14 4.06 17040 0.07 14
3 0.25 8080 0.04 40 0.25 16080 0.06 40 0.25 32080 0.14 40
4 3.16E+03 8080 0.04 7 3.16E+3 9900 0.05 10 3.16E+03 17040 0.07 11

IEEE 2 1.39E+03 8080 1.74 40 1.39E+3 16080 3.3 40 1.39E+03 32080 6.69 40
IEEE 3 1.28E+03 8080 0.62 2 1.27E+3 13040 0.95 3 1.27E+03 18000 1.32 3
IEEE 30 842.96 24240 2.46 12 842.83 29520 3.89 21 842.74 51120 5.16 21

B Effect of stopping criteria

As previously discussed in subsection 6.5.7, this study uses two different stopping criteria,

θ and NG, the effects of those are analyzed. Firstly, three different θ values ( 2, 5 and

10) are tested and present their results in Table 6.8 which indicate that they do not have

a significant impact on the quality of solutions (MFVs) but higher values increase the

computational time. Also, as it is seen that the nNEs are almost the same for θ values

of 5 and 10, it is wise to choose one of 5.

Using the best value of θ = 5, CE-DE is run with three different NG, i.e., 50, 100

and 200, to solve the same problems. The results presented in Table 6.9 indicate that the

performance of this algorithm slightly improves when NG is increased and as, obviously,

the computational time also increases, NG = 100 is selected.

C Detection of NE

In this subsection, the process of determining NEs in different generations by solving the

IEEE 2-bus system for case II using the best-performing algorithm CE-DE is illustrated,

with a few samples of some results for nNEs and their locations illustrated in Fig.

6.12. It can be seen that, in the first few generations, the actions of the players are

distributed over the optimization area. Then, each subpopulation subsequently seeks its
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Fig. 6.12: NEs obtained in different generations

own best propagation with respect to its rivals’ best actions. After a few generations,

the algorithm obtains all the equilibria points which later verified by the professional

Gambit software. This means that, although the algorithm initially treats some solutions

as NEs, finally, the true NEs are only kept in the solutions.

6.6.4 Comparison CE and IT based Algorithms

In this subsection, the proposed CE based algorithms are statistically compared with

those of traditional CE based algorithms. Firstly, an ANOVA test in randomized com-

plete block designs procedures is performed as the number of objective functions (treat-

ments) is more than one. Here, the treatments (samples) are considered the profits of all

the players, CSWs and computational times for all considered problems with their case

studies, and four algorithms, such as IT-GA, IT-DE, CE-GA and CE-DE considered as

a block. The null and alternative hypothesizes are defined, respectively, as:
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Table 6.10: ANOVA analysis for all the considered test problems

SS df MS F P−value Fcrit Comments
Algorithms 4.01E+04 3 1.34E+04 4.36 0.0047 2.62 F > Fcrit
Treatments 2.41E+10 196 1.23E+08 40136.57 0.00 1.21 F > Fcrit

Error 1.80E+06 588 3.06E+03
Total 2.41E+10 787 1.23E+08

H0 : α1 = α2 = α3 = · · · = αk = 0 (6.38)

H1 : At least one of the αiis not equal to zero (6.39)

where αi is the effect of the ith treatment. The null hypothesis H0 is tested at the 5%

level of significance, that assumes, all the algorithms provide the solutions with the same

mean value. The test results of ‘sum of squares (SS)’, ‘degree of freedom (df)’, ‘mean

square (MS)’, computed F and critical Fcrit with the P−values for both algorithms

and treatments are presented in Table 6.10. From the results, the smaller the P−values

(< 0.05) and the meeting the constraint F > Fcrit demonstrate the evidence to against

the null hypothesis, HO. Therefore, the solutions from the all algorithms are not equal,

at least one of the mean is different. However, the ANOVA test does not provide the

information where the actually differences lies or which one is better [245].

To determine the individual algorithm’s effect, a Wilcoxon sign test is performed

in the samples solutions of all players from all considered problems for four algorithms.

The comparisons are performed based on the average profits of all players, using a 5%

significance level. The results are shown in Table 6.11, in which found that the P−values

of all the sets of comparisons are less than 0.05, indicating that there is a significant

difference between the solutions from any two algorithms. Also, it is found that the

CE-based algorithms obtain better solutions than those of IT-based ones. In addition,

the Friedman test is carried out to rank all the algorithms, as shown in Tables 6.12, with

the results demonstrating that the proposed CE-DE algorithm is ranked 1st, followed

by CE-GA, IT-DE and IT-GA. Furthermore, a sample box plot for the 30-bus (case

III) system for player 1 is depicted in Fig. 6.13 that illustrates the performance of the
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Table 6.11: Wilcoxon test results for IT-DE, IT-GA, CE-DE and CE-GA

Better Similar Worse P−value
IT-DE vs. IT-GA 88 70 42 0.001
IT-DE vs. CE-DE 51 70 79 0.018
IT-DE vs. CE-GA 52 75 73 0.044
IT-GA vs. CE-DE 46 70 84 0.001
IT-GA vs. CE-GA 44 70 86 0.000
CE-DE vs. CE-GA 84 70 46 0.001

Table 6.12: Ranks of IT-DE, IT-GA, CE-DE and CE-GA from Friedman test results

IT-DE IT-GA CE-DE CE-GA
2.51 2.82 2.24 2.44

600
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740
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780

IT−DE IT−GA CE−DE CE−GA

Fig. 6.13: A sample boxplot of the profits of player-1 of IEEE 30-bus system (case III)

proposed CE-DE algorithm for obtaining highest mean results with a smaller standard

deviation.

The performances of the proposed CE approaches are also explored by comparing

their convergence characteristics with those of the IT based methods. The IEEE 3-

bus test problem for case III is solved using the CE-DE and IT-DE algorithms with
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Fig. 6.14: Convergence characteristics of bidding actions for both GENCOs and
consumers in IT-DE and CE-DE algorithms

the convergence patterns of their bidding coefficients shown in Fig. 6.14. It can be

seen that the IT-DE takes 25 iterations to converge while the CE-DE converges in only

six generations and, even after 4, obtains the best solution. This is because an IT

approach determines the best bidding action for each bidder sequentially while the CE

one determines them for all bidders simultaneously.

6.7 Chapter Summary

The objective of this Chapter was to develop the solution approaches for the bidding

problems of an energy market where both GENCOs and consumers participate in a bid-

ding process to maximize their individual profits by optimizing their own bidding behav-

iors while anticipating those of others. The market was represented as a non-cooperative

game with aiming to determine NE. It was formulated as a bi-level optimization problem

in which the lower level maximizes the CSW by solving a DC-OPF problem using the
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developed two EAs and a classical optimization technique. In the upper level, either

self-adaptive DE or GA was used to maximize an individual bidder’s profit, with multi-

populations considered for multiple bidders in which each sub-population represented a

player that co-evolved with the others and evaluated its own best propagation consider-

ing the best individuals from the other subpopulations. Therefore, in a few generations,

the best bidding strategies of all players were obtained. Moreover, to determine multiple

NEs in a single run, a new ranking technique for determining the best individuals in

a subpopulation was developed, with two propositions proven to justify that the best

solutions obtained from the proposed technique were the actual NEs.

To validate the results, two conventional methods were also implemented and their

results compared by solving a number of benchmark problems, including four standard

test functions and three real-world energy market problems. Comparisons of the simu-

lation results revealed that the CE-based approaches had merit in terms of their nNEs

detected, FFEs and computational times, with CE-DE the best of all the algorithms.



Chapter 7

Conclusions and Future Research

Directions

This chapter presents a summary of the research carried out for this thesis, discusses its

findings and suggests possible future research directions.

7.1 Summary of Research Conducted

In this thesis, the importance of solving different types of power system optimization

problems, particularly dynamic economic dispatch (DED) and bidding ones, in elec-

tricity generation and distribution was discussed. The DED was used to minimize the

production cost by allocating daily load demands to the operating generators while sat-

isfying various technical and environmental constraints. In the bidding problem, the

individual profits of an energy market were maximized by determining the optimal ac-

tion of each participant with respect to those of the others and the market’s constraints.

The primary objective of this study was to develop an algorithmic framework for solving

these problems that could be applicable for real-world power system operations.

The framework for the developed solution approaches was divided into several steps.

Firstly, for solving real-world thermal generator-based DED problems, two efficient evo-

lutionary algorithms (EAs), a self-adaptive differential evolution (DE) and genetic algo-

rithm (GA) were developed. In them, a new heuristic technique for repairing infeasible

individual was proposed. The mathematical model and solution approaches were ex-

tended to consider uncertain wind generators in a DED model, with the uncertainties

due to variable wind speeds and load demands for a one-week period incorporated.

Another heuristic technique for handling these uncertainties and the large number of

equality constraints of a DED problem for the time period of one week with one-hour

201
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time spans were developed. Then, the proposed method was further extended to estab-

lish a general evolutionary framework for the automatic configuration of GA and DE for

solving a wide range of both thermal and renewable-based DED problems. Later, these

problems, which were formulated as bi-objective dynamic economic and emission dis-

patch (DEED) ones with their objectives to simultaneously minimize both the fuel costs

and greenhouse gas emissions, were solved. Finally, two co-evolutionary (CE) solution

approaches, one based on a self-adaptive DE and the other on a GA, for the bidding

problem were developed with the aim of determining multiple solutions in a single run.

The proposed solution approaches were applied to a number of DED, DEED and

bidding problems. The first three were used to solve various types of single- and bi-

objective DED and DEED problems, such as thermal, hydro-thermal, solar-thermal and

wind-thermal systems with and without considering gas emissions as a second objec-

tive. The CE algorithms were applied to the bidding problems considering two different

equilibrium models, each with three cases: (i) the generators were strategic but the

consumers non-strategic and the constraints of the transmission lines (TLs) ignored; (ii)

the generators were strategic, the consumers non-strategic and the TLs considered; and

(iii) both the generators and consumers were strategic with the TLs considered. For

comparison purposes, some state-of-the-art algorithms were also implemented to solve

the above problems. Several parametric and statistical analyses of each algorithm for

each problem were performed. The experimental results and findings obtained from each

approach are summarized below.

7.1.1 EAs for Thermal DED Problems

In Chapter 3, the importance of solving a real-life thermal-based DED problem in elec-

tricity generation was discussed. The goal of this chapter was to develop an appropriate

solution approach for a practical thermal based DED problem. Therefore, the objective

(cost) function of a DED problem was considered non-smooth, non-convex and multi-

modal which is common in a real-life thermal generator due to the valve-point effect

(VPE). Also, electricity transmission losses and ramp constraints were included in the

formulation of the DED problem.
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Two enhanced EAs based on (i) a GA and (ii) self-adaptive DE with a heuristic

technique, namely E-GA and E-DE, respectively, were proposed to solve these problems.

The control parameters of DE were self-adaptively adjusted in each generation while a

non-uniform mutation was used in GA to avoid premature convergence. To satisfy the

large number of equality constraints in a DED problem, a new heuristic technique that

decoupled a T-hour problem into a T number of periodic sub-problems and allocated

the hourly load demand to the generators using forward and backward slack-generation

approaches was proposed. It repaired any infeasible individual into a feasible one which

led to a great improvement in the algorithms’ performances. The performance of the

proposed algorithms were validated by solving seven benchmark problems taken from

different studies in the literature. Also, the effects of the various important parameters

used in the proposed algorithms were explicitly investigated. Based on the analysis of

results and convergence plots, it could be concluded that the heuristic enhanced the

performances of the two EAs considered in this thesis, with E-DE the best of all the

algorithms for solving thermal-based DED problems.

7.1.2 EAs for Wind-thermal DED Problems

In Chapter 4, a non-linear, constrained and complex DED model of an uncertain wind-

thermal power system, in which uncertainties due to variable wind speeds and elec-

tricity demands were considered in its formulation, was presented. This problem was

re-formulated as a scenario-based wind-thermal DED one considering some additional

constraints (e.g. transient ramp violations) for generating one-day solutions, in periodic

order, on consecutive days. These constraints helped to reduce any unwanted electricity

shortfall during the transition period from the last hour of one operating day to the first

hour of the next. Hundreds of possible scenarios with uncertain wind speeds and vari-

able load demands were generated for a seven-day period using Gaussian distributions

with means and standard deviations obtained from historical data.

To solve such uncertain DED problems, two solution approaches based on (i) a self-

adaptive DE and (ii) real-coded GA with a new heuristic were designed. The heuristic

was used to meet the large numbers of equality and inequality constraints in a DED

problem under the uncertain environment. It transformed an infeasible solution into a
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feasible one which satisfied periodic demands, and capacity and ramp limit constraints

over a seven-day horizon. Two uncertain DED problems consisting of 5- and 10-unit

wind-thermal generators, with their uncertainties represented by 100 realistic scenarios

generated based on Australian wind speed and electricity demand data, were solved

using the proposed solution approaches and a state-of-the-art algorithm considering two

different heuristics. The results obtained were compared with each other and those in

the literature. It was evident that the proposed methods provided scheduling with a

zero penalty cost and lower production cost than traditional methods, with the E-GA

performing best.

7.1.3 Evolutionary Framework for DED and DEED Problems

In Chapter 5, the importance of solving various types of DED and DEED problems in

power system operations was discussed. Comprehensive descriptions of the mathematical

formulations for thermal, hydro-thermal, wind-thermal and solar-thermal systems were

presented. The uncertainties of renewable sources were formulated as penalty functions

and added to the objective one. The objective of a single-objective DED problem was

to minimize the overall operating costs, including the fuel and environmental ones, of

thermal generators, the operational costs of renewable sources, and the under- and over-

estimated costs of any uncertainties. The objectives of a bi-objective DEED problem

were to simultaneously minimize the costs of both their operations and greenhouse gas

emissions.

Motivated by the two proposed algorithms presented in Chapters 3 and 4, a general

evolutionary framework for the automatic configuration of GA and DE that could solve a

wide range of both single- and bi-objective DED and DEED problems was designed, with

the algorithm called GA-DE. In it, random individuals from the initial population were

evaluated in parallel through two different sub-populations, one using GA and the other

DE. Although the initial sub-population sizes were the same, they were dynamically

varied in each generation based on the performance of each EA in previous generations.

After a predefined number of generations (also called a cycle), only the better-performing

algorithm was allowed to run alone for a subsequent cycle. After that cycle was com-

pleted, both algorithms were run again for another cycle using the same sub-population
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size. The process was continually repeated until a stopping criterion was met. Also, a

self-adaptive mechanism was used to determine the best set of control parameters for

the mutation and crossover operators of DE in each generation of the evolutionary pro-

cess. Moreover, a heuristic technique was employed to improve the convergence rate of

each algorithm by rectifying infeasible individuals towards feasible directions. Different

types of single- and bi-objective DED and DEED problems, respectively, were solved

using the proposed and state-of-the-art algorithms. Several parametric and statistical

analyses were carried out to demonstrate the effects of different parameters used in the

algorithm. A comparison indicated that the proposed algorithm consistently performed

better than all the others, with the heuristic greatly enhancing all their performances.

7.1.4 Co-evolutionary Approaches for Bidding Problems

Chapter 6 presented a bidding problem for maximizing the individual profits of both

generator companies (GENCOs) and customers in an energy market in which they op-

timized their own bidding behaviors while anticipating those of others. The market was

represented as a non-cooperative game with a supply function equilibrium (SFE) and

a Cournot model that aimed to determine a Nash equilibrium (NE). Both models were

formulated as bi-level optimization problems with each bidder’s profit maximized at the

higher level and the overall cost minimized at the lower level. In the upper level, once

all the bidders provided their bids to an independent system operator (ISO) in a com-

petitive environment, in the lower level, a DC-optimal power flow (DC-OPF) problem

was solved which determined the market price and quantity for each bidder. Based on

these two values, the profits (objective function in the upper level) of the bidders were

calculated.

A bidding strategy could be either discrete or continuous. In a discrete one, each

bidder determined its optimal bid (NE) from a set of known ones using the traditional

min-max game theory approach. However as, in this study, the realistic bidding param-

eters were considered continuous and the payoff functions non-smooth, non-convex and

multi-modal, the bidding problem considered might have had multiple equilibria, i.e.,

multiple NEs.
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Two CE solution approaches based on (i) a self-adaptive DE and (ii) a GA were

developed to solve such a bidding problem that formulated as a bi-level optimization

problem. For verification purposes, the lower-level DC-OPF problem was solved using

three algorithms, an interior point (IP), DE and GA, and the upper level one, two

EAs (GA and DE). Each algorithm considered multi-populations for multiple bidders

in which each sub-population represented a player (bidder) that co-evolved with the

others and sought its best propagation considering the best individuals from the other

sub-populations. Also, to determine multiple solutions (i.e., multiple NEs) in a single

run, a new ranking technique for determining the best individuals in a sub-population

was developed. In it, two propositions were given to justify that the best solutions

obtained from the proposed techniques were the actual NEs. Moreover, two well-known

conventional iterative (IT) solution methods, IT-DE and IT-GA, were implemented

to analyze the effectiveness of the proposed CE algorithms. Their performances were

validated by solving four standard test functions and three IEEE bidding problems.

Comparisons of the simulation results with both each other and those in the literature

revealed that the CE approaches had merit in terms of quality and reliability, with that

based on DE the best method for a bidding problem.

7.2 Research Findings

The proposed algorithms were tested on different bidding, DED and DEED problems

over a 24-hour planning horizon with one-hour long periods. The results obtained were

compared with those from different state-of-the-art algorithms in the literature. After

analyzing them, the key outcomes found were as follows.

• A real-parameter enhanced GA with a non-uniform mutation and a self-adaptive

enhanced DE exhibited superior performances for solving DED, DEED and bidding

problems.

• The heuristic repair scheme greatly improved the quality of solutions by trans-

forming infeasible individuals into feasible ones while solving DED and DEED

problems.
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• Selecting the DE’s control parameters using the self-adaptive mechanism enabled

it to obtain the best solution quickly.

• The performance of the non-uniform mutation of GA was better than those of

other mutation operators, such as polynomial and chaotic ones.

• Incorporating some additional constraints in an uncertain DED problem helped to

minimize any electricity shortfall due to a disturbance in the system.

• Efficient solution approaches could schedule uncertain generators in such a way

that they could operate in a periodic order on subsequent days.

• When solving different DED problems using the E-GA and E-DE algorithms, the

former performed well for the wind-thermal and the latter for the thermal DED

problems.

• For a wide range of single-objective DED and bi-objective DEED problems, higher-

quality solutions were obtained with the proposed evolutionary framework (i.e.,

GA-DE) than the state-of-the-art algorithms, including the developed E-GA and

E-DE ones.

• Although the numbers of fitness function evaluations (FFEs) consumed by GA-DE

were marginally higher than those by E-DE and E-GA in some cases and much

lower than those of a state-of-the-art algorithm (CMA-ES) in all cases, it produced

the best-quality solutions. The main reason for GA-DE’s higher numbers of FFEs

was that it did not meet the stopping criterion (no improvements noticed in the

last 100 generations) at the same stage in the evolutionary process as the other

algorithms that became stuck in local optima which indicated that it was able to

maintain much better diversity.

• When the same number of maximum FFEs was set as the stopping criterion for

all algorithms, the GA-DE obtained better-quality solutions with reasonable com-

putational times than E-DE and E-GA while, although the simulation times of

CMA-ES were the minimum in all instances, the quality of its solutions was sig-

nificantly degraded.
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• For a fixed computational time, the GA-DE was found to be the best algorithm

followed by E-DE and E-GA.

• For the multi-objective DEED problems, the Pareto frontiers obtained by the

GA-DE algorithm were clearly better than the solutions from the state-of-the-art

algorithms.

• The complexity of the bi-level bidding problems was reduced by solving the lower-

level DC-OPF problem using a strictly convex quadratic programming (SCQP)

approach.

• For solving the bidding problem using the proposed CE and conventional IT-based

methods, it was revealed that the CE one was the fastest. This was because an

IT approach determined the best bidding action for each bidder sequentially while

the CE ones determined that for all bidders simultaneously.

• The CE methods obtained the best results in terms of individual profits and com-

munity social welfare (CSW).

• The CE methods obtained multiple NEs in continuous strategic games. The theo-

retical analyses confirmed that the results obtained were NEs which were verified

using the professional Gambit software.

7.3 Future Research Directions

The mathematical models and solution approaches developed in this thesis could be

extended in the following ways.

1. Although the data used for each problem considered were taken from different

studies in the literature, solving a practical problem using industrial data would

be interesting.

2. Although the DED problems were solved considering a 24-hour planning horizon

with one-hour intervals which could be shortened, if necessary, without modifying

the algorithm, solving them with five-minute intervals using more sensitive data

(frequent changes) for real-time scheduling could be worthwhile.
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3. Although uncertainties due to wind speeds and variable load demands were incor-

porated in the DED model, other uncertainty factors, such as the disruption of a

generator and/or physical fault in a transmission line could be considered.

4. The generalized framework for the various types of DED and DEED problems

could be extended by considering other EAs and configuring two or more of them.

Also, using more than one evolutionary operator in a single EA could be worth

investigating.

5. The framework could be used to solve other power system optimization problems,

such as security-constrained ED (SCED) and OPF ones.

6. As all the solution approaches developed used some random individuals in the

initial population, they took a long time to reach their final solutions. Therefore,

an appropriate method for generating initial individuals for each algorithm could

be implemented.

7. Although the diversity of individuals was maintained by injecting some random

individuals, another method for balancing convergence and diversity could be de-

veloped.

8. The performances of the enhanced EAs for solving thermal-based DED problems

could be improved by adding a local search technique.

9. For solving bidding problems, a number of aspects could be further investigated.

First and foremost, although the cost function of a generator was considered

quadratic, it could be represented as piece-wise non-linear, non-convex and non-

smooth to align with reality. Secondly, the market model developed based on a

single period could be extended to multi-period demands of 24 hours with five-

minute to one-hour intervals. Finally, in this study, it was assumed that each

bidder had incomplete information about the bidding strategies of its rivals but

perfect information about their cost structures. This could be further extended by

considering that they have incomplete information of both. Furthermore, solving

the problem in a completely distributed manner is another possible direction for

future work.
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Appendix A

Data of Test Systems

In this chapter, the data for all the test problems are provided.

A.1 Thermal System

In this section, the data for the 5 and 10 thermal systems are presented while the data

for the 30, 100 and 150 units can be found by duplicating the 10-unit system of 3, 10

and 15 times, respectively.

A.1.1 5-Unit

The characteristics of the generators, load demand and corresponding Ploss coefficients

(B) for the 5-unit thermal system are presented in Tables A.1, A.2 and A.3, respectively.

Table A.1: Characteristics of generators in 5-unit thermal system

Unit Pmin Pmax a b c d e UR DR
MW MW $/h $/MWh $/(MW )2h $/h rad/MW MW/h MW/h

1 10 75 25 2 0.008 100 0.042 30 30
2 20 125 60 1.8 0.003 140 0.04 30 30
3 30 175 100 2.1 0.0012 160 0.038 40 40
4 40 250 120 2 0.001 180 0.037 50 50
5 50 300 40 1.8 0.0015 200 0.035 50 50

Table A.2: Load demand for 5-unit system

t (hour) 1 2 3 4 5 6 7 8 9 10 11 12
PD (MW) 410 435 475 530 558 608 626 654 690 704 720 740
t (hour) 13 14 15 16 17 18 19 20 21 22 23 24
PD (MW) 704 690 654 580 558 608 654 704 680 605 527 463
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Table A.3: Ploss coefficients (B) of 5-unit system

0.000049 0.000014 0.000015 0.000015 0.000020
0.000014 0.000045 0.000016 0.000020 0.000018
0.000015 0.000016 0.000039 0.000010 0.000012
0.000015 0.000020 0.000010 0.000040 0.000014
0.000020 0.000018 0.000012 0.000014 0.000035

Table A.4: Characteristics of generators in 10-unit thermal system

Unit Pmin Pmax a b c d e UR DR
MW MW $/h $/MWh $/(MW )2h $/h rad/MW MW/h MW/h

1 150 470 958.2 21.6 0.00043 450 0.041 80 80
2 135 460 1313.6 21.05 0.00063 600 0.036 80 80
3 73 340 604.97 20.81 0.00039 320 0.028 80 80
4 60 300 471.6 23.9 0.0007 260 0.052 50 50
5 73 243 480.29 21.62 0.00079 280 0.063 50 50
6 57 160 601.75 17.87 0.00056 310 0.048 50 50
7 20 130 502.7 16.51 0.00211 300 0.086 30 30
8 47 120 639.4 23.23 0.0048 340 0.082 30 30
9 20 80 455.6 19.58 0.10908 270 0.098 30 30
10 55 55 0.00951 22.54 692.4 380 0.0943 30 30

Table A.5: Load demand for 10-unit system

t (hour) 1 2 3 4 5 6 7 8 9 10 11 12
PD (MW) 1036 1110 1258 1406 1480 1628 1702 1776 1924 2072 2146 2220
t (hour) 13 14 15 16 17 18 19 20 21 22 23 24
PD (MW) 2072 1924 1776 1554 1480 1628 1776 2072 1924 1628 1332 1184

Table A.6: Ploss coefficients (B) of 10-unit system

0.0087 0.00043 -0.00461 0.00036 0.00032 -0.00066 0.00096 -0.0016 0.0008 -0.0001
0.00043 0.0083 -0.00097 0.00022 0.00075 -0.00028 0.00504 0.0017 0.00054 0.0072
-0.00461 -0.00097 0.009 -0.002 0.00063 0.003 0.0017 -0.0043 0.0031 -0.002
0.00036 0.00022 -0.002 0.0053 0.00047 0.00262 -0.00196 0.0021 0.00067 0.0018
0.00032 0.00075 0.00063 0.00047 0.0086 -0.0008 0.00037 0.00072 -0.0009 0.00069
-0.00066 -0.00028 0.003 0.00262 -0.0008 0.0118 -0.0049 0.0003 0.003 -0.003
0.00096 0.00504 0.0017 -0.00196 0.00037 -0.0049 0.00824 -0.0009 0.0059 -0.0006
-0.0016 0.0017 -0.0043 0.0021 0.00072 0.0003 -0.0009 0.0012 -0.00096 0.00056
0.0008 0.00054 0.0031 0.00067 -0.0009 0.003 0.0059 -0.00096 0.00093 -0.0003
-0.0001 0.0072 -0.002 0.0018 0.00069 -0.003 -0.0006 0.00056 -0.0003 0.00099

A.1.2 10-Unit

The characteristics of the generators, load demand and Ploss coefficients (B) for the

10-unit problem are presented in Tables A.4, A.5 and A.6, respectively.
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Table A.7: Characteristics of thermal generators in hydro-thermal system

Unit Pmin Pmax a b c d e
MW MW $/h $/MWh $/(MW )2h $/h rad/MW

1 20 175 10 2 0.0037 18 0.037
2 40 300 10 1.75 0.0175 16 0.038
3 50 500 20 1 0.0625 14 0.04
4 20 175 10 2 0.0037 18 0.037
5 40 300 10 1.75 0.0175 16 0.038

Table A.8: Characteristics of hydro generators in hydro-thermal system

Unit C1 C2 C3 C4 C5 C6 V min
H V max

H V ini V end Xmin
H Xmax

H PminH PmaxH

1 -0.0042 -0.42 0.03 0.9 10 -50 80 150 100 120 5 15 0 500
2 -0.004 -0.3 0.015 1.14 9.5 -70 60 120 80 70 6 15 0 500
3 -0.0016 -0.3 0.014 0.55 5.5 -40 100 240 170 170 10 30 0 500
4 -0.003 -0.31 0.027 1.44 14 -90 70 160 120 140 6 20 0 500

Table A.9: Reservoir inflows (×104m3)

Hour Reservoir Hour Reservoir Hour Reservoir
1 2 3 4 1 2 3 4 1 2 3 4

1 10.0 8.0 8.1 2.8 9 10.0 8.0 1.0 0.0 17 9.0 7.0 2.0 0.0
2 9.0 8.0 8.2 2.4 10 11.0 9.0 1.0 0.0 18 8.0 6.0 2.0 0.0
3 8.0 9.0 4.0 1.6 11 12.0 9.0 1.0 0.0 19 7.0 7.0 1.0 0.0
4 7.0 9.0 2.0 0.0 12 10.0 8.0 2.0 0.0 20 6.0 8.0 1.0 0.0
5 6.0 8.0 3.0 0.0 13 11.0 8.0 4.0 0.0 21 7.0 9.0 2.0 0.0
6 7.0 7.0 4.0 0.0 14 12.0 9.0 3.0 0.0 22 8.0 9.0 2.0 0.0
7 8.0 6.0 3.0 0.0 15 11.0 9.0 3.0 0.0 23 9.0 8.0 1.0 0.0
8 9.0 7.0 2.0 0.0 16 10.0 8.0 2.0 0.0 24 10.0 8.0 0.0 0.0

Table A.10: Load demand for hydro-thermal system

t (hour) 1 2 3 4 5 6 7 8 9 10 11 12
PD (MW) 750 780 700 650 670 800 950 1010 1090 1080 1100 1150
t (hour) 13 14 15 16 17 18 19 20 21 22 23 24
PD (MW) 1110 1030 1019 1060 1050 1120 1070 1050 910 860 850 800

A.2 Hydro-Thermal System

For the 7-unit hydro-thermal system, the characteristics of the thermal and hydro gener-

ators are presented in Tables A.7 and A.8, respectively, the hydro reservoir configuration

with delay times in Fig. A.1, the reservoir inflow rates in Table A.9 and the 24-hour

load demands in Table A.10.
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Ih1 Ih2

Ih3

Ih4

Qh1
Qh2

Qh3

Qh4

Reservoir 1 Reservoir 2

Reservoir 3

Reservoir 4

Where,

Ihj – natural inflow rate to reservoir j

Qhj – discharge of plant j

Plant 1 2 3 4

Nup 0 0 2 1

td 2 3 4 0

Nup: no. of upstream plants

td: time delay to immediate downstream plant

Fig. A.1: Hydraulic system network

Table A.11: Characteristics of thermal generators in solar-thermal system

Unit Pmin Pmax a b c d e α β γ η δ UR DR

MW MW $
h

$
MWh

$
(MW )2h

$
h

rad
MW

lb
h

lb
MWh

lb
(MW )2h

lb
h

1
MW

MW
h

MW
h

1 100 500 0.007 7 240 0 0 13.86 0.33 0.00419 0 0 80 120
2 50 200 0.0095 10 200 0 0 13.86 0.33 0.00419 0 0 50 90
3 80 300 0.009 8 220 0 0 40.27 -0.55 0.00683 0 0 65 100
4 50 150 0.009 11 200 0 0 40.27 -0.55 0.00683 0 0 50 90
5 50 200 0.008 10.5 220 0 0 42.90 -0.51 0.00461 0 0 50 90
6 50 120 0.0075 12 190 0 0 42.90 -0.51 0.00461 0 0 50 90

Table A.12: Power ratings and per unit rates of solar plants

Unit 1 2 3 4 5 6 7 8 9 10 11 12 13
Pr(MW ) 20 25 25 30 30 35 35 40 40 40 40 40 40

Ucost($/kWh) 0.22 0.23 0.23 0.24 0.24 0.25 0.26 0.27 0.27 0.275 0.28 0.28 0.28

Table A.13: Sample data of solar radiation, temperature and power demand

Hour 1 2 3 4 5 6 7 8 9 10 11 12
Si(W/m2) 0 0 0 0 5.4 101 253.7 541.2 530.4 793.9 1078 1125.6
Tamb(0c) 30 29 28 28 28 28 29 31 33 34 35 36
Tref (0c) 35 33 31 31 31 31 33 37 41 43 45 47
PD(MW ) 955 942 953 930 935 963 989 1023 1126 1150 1201 1235

Hour 13 14 15 16 17 18 19 20 21 22 23 24
Si(W/m2) 1013.5 848.2 726.7 654 392.9 215.1 38.5 0 0 0 0 0
Tamb(0c) 37 37 37 38 38 37 35 34 34 33 32 32
Tref (0c) 49 49 49 51 51 49 45 43 43 41 39 39
PD(MW ) 1190 1251 1263 1250 1221 1202 1159 1092 1023 984 975 960

A.3 Solar-Thermal System

For the mixed-integer solar-thermal problem, the characteristics of the thermal genera-

tors and solar plants are presented in Tables A.11 and A.12, respectively, and the load

demands and temperatures for a 24-hour period in Table A.13.
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Table A.14: Characteristics of thermal generators in wind-thermal system

Unit Pmin Pmax a b c d e α β γ η

MW MW $
h

$
MWh

$
(MW )2h

$
h

rad
MW

lb
h

lb
MWh

lb
(MW )2h

lb
h

1 30 400 100 15 0.12 260 5.2 911.8 2.094 0.05859 0.1
2 100 600 200 18 0.04 280 6.3 613.1 -5.457 0.04266 1
3 100 650 100 10 0.06 300 8.6 628.5 -4.116 0.03669 1
4 250 800 200 18 0.04 270 9.8 542.6 -8.55 0.0238 1
5 300 1000 100 15 0.05 380 4.2 461.3 -9.712 0.01153 1

Table A.15: Ramp characteristics of thermal generators in wind-thermal system

Unit UR DR DR0 UR1 T onmin T offmin P0 T0
MW
h

MW
h

MW
h

MW
h h h MW h

1 100 100 50 100 4 3 260 3
2 100 100 80 160 3 3 400 5
3 120 120 80 160 4 4 320 3
4 200 180 100 200 4 3 480 3
5 200 200 100 300 4 3 600 6

Table A.16: Ploss coefficients (B) of thermal generators in wind-thermal system

7.075 -1.005 -1.865 -1.975 -1.585 -0.36
-1.005 11.355 0.055 -1.07 -1.475 -0.51
-1.865 0.055 7.295 2.905 0.08 -0.945
-1.975 -1.07 2.905 3.96 0.395 -1.03
-1.585 -1.475 0.08 0.395 1.61 -0.535
-0.36 -0.51 -0.945 -1.03 -0.535 3.14

Table A.17: Ploss coefficients (B) of thermal generators in wind-thermal system

Time (h) 1 2 3 4 5 6
µ(m/s) 12.1 14.07 8.52 10.23 4.86 6.52
σ(m/s) 7.03 9.29 5.13 6.85 2.91 4.28
PD(MW ) 1900 1952 2260 2330 2406 2026

A.4 Wind-Thermal System

For the wind-thermal system, the characteristics of the thermal generators and their

Ploss coefficients are presented in Tables A.14 to A.16, respectively, and the hourly load

demand and wind speed with a standard deviation error in Table A.17.
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Appendix B

SCQP Formulation

In this section, for the DC-OPF SCQP problem, the coefficients of the objective function

in Eqn. (6.21) and constraints in Eqns. (6.22) and (6.23) are described.

B.1 Depiction of Objective Function

The decision variable of the objective function in Eqn. (6.21) is:

x = [P1, P2, ..., PI , δ2, δ2, ..., δK , q1, q2, ..., qJ ]T(I+K+J−1)×1 (B.1)

and the coefficient:

G =


Ug 0 0

0 Wrr 0

0 0 Ud

 ∈ <(I+K+J−1)×(I+K+J−1) (B.2)

where Ug and Ud are the generators’ and consumers’ quadratic matrices, respectively,

as:

[
Ugm,n

]
(I×I) =

 c′m if m = n

0 otherwise
;∀m,n = 1, 2, . . . , I (B.3)

[
Udm,n

]
(J×J)

=

 e′m if m = n

0 otherwise
;∀m,n = 1, 2, . . . , J (B.4)

Parameter Wrr is the reduced form of the weight matrix (W) that can be defined

as the voltage and angle difference of each node as:

245
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W = 2π (wmn) ∈ <(K×K) (B.5)

where, wmn =



−Emn if m 6= n∑K

k = 1

k 6= m

Emk if m ≡ n (B.6)

where E ∈ <(K×K) is the branch connection matrix defined as:

E =

 1 if either kmor mk ∈ BR

0 otherwise
(B.7)

Once the W matrix is found, the reduced weight matrix (Wrr) is determined after

removing the first row and column, i.e., excluding the slack bus (k = 1).

The linear argument (f) in Eqn. (6.21) is determined as:

f =
[
b′ 0 d′

]
∈ <1×(I+J+K−1) (B.8)

Comparing the original (6.15) and quasi (6.21) objective functions, it is seen that

the latter provides a positive definite quadratic form, with at least one non-zero compo-

nent strictly positive scalar which may indicate that the optimization problem could be

satisfied by the first-order optimality of KKT conditions [237]. The KKT representation

of the problem is shown in Appendix C.

B.2 Depiction of Constraints

The coefficients of the inequality constraint in Eqn. (6.22) are defined as:

Cin =

 Cg Og

Od Cd

 ∈ <(2K+2I+J)×(I+J+K−1) (B.9)
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where,

Cg =



Ot −DAr

−Ot DAr

Ip Op

−IP −Op


∈ <(2K+2I)×(I+K−1) (B.10)

where, Ot, Op, Od and Og are zero matrices of sizes K× I, I× (k−1), J × (I+K−1)

and (2K + 2I)× J , respectively, while Ip is the identity matrix of size (I × k − 1). The

diagonal matrix, D, reduced adjacency matrix Ar, and diagonal adjacent matrix of the

load demand, Cd are determined as:

[Dm,n](K×K) =

 Bm,n if m = n

0 if m 6= n
, ∀m,n = 1, 2, . . . ,K (B.11)

A =



~(1,BI1) ~(2,BI1) . . . ~(K,BI1)

~(1,BI2) ~(2,BI2) · · · ~(K,BI2)
...

... . . . ...

~(1,BIN ) ~(2,BIN ) · · · ~(K,BIN )


= <(I×K) (B.12)

~(i,BIn) =


+1 if BIn takes the form ij ∈ BR for some node j > i

−1 if BIn takes the form ji ∈ BR for some node j < i

0 otherwise
i = 1, ...,K;n = 1, ..., I (B.13)

Then, the reduced adjacency matrix, Ar is calculated after deleting the first row

and column of the A matrix, with the load adjacent to the diagonal matrix determined

as:

[
Cdm,n

]
(J×J)

=

 1 if m = n

0 if m 6= n
, ∀m,n = 1, 2, . . . , J (B.14)
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The coefficient on the right-hand side in Eqn. (6.22) bin can be calculated as:

bin =
[
F F Pmin Pmax

]T
(B.15)

where F =
[
FU1 , · · · , FUK

]
(1×K)

(B.16)

Pmin =
[
Pmin

1 , Pmin
2 , · · · , Pmin

I

]
(1×I)

(B.17)

Pmax = [Pmax
1 , Pmax

2 , · · · , Pmax
I ](1×I) (B.18)

The coefficients of the equality constraints in Eqn. (6.23) Ceq and beq are deter-

mined as:

Ciq =
[ ∐

g Y r
bus

∐
d

]
∈ <(K,I+J+K−1) (B.19)

where ∐g and ∐g are the matrices indicating the locations of the generators and loads,

respectively, which are defined as:

∐
g

=



∃ (1 ∈ I1) ∃ (2 ∈ I1) · · · ∃ (I ∈ I1)

∃ (1 ∈ I2) ∃ (2 ∈ I2) · · · ∃ (I ∈ I2)
...

... . . . ...

∃ (1 ∈ IK) ∃ (2 ∈ IK) · · · ∃ (I ∈ IK)


(K×I)

(B.20)

where, ∃ (i ∈ Ik) =

 1 if i ∈ Ik
0 if i /∈ Ik

(B.21)
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∐
d

=



⊥ (1 ∈ J1) ⊥ (2 ∈ J1) · · · ⊥ (J ∈ J1)

⊥ (1 ∈ J2) ⊥ (2 ∈ J2) · · · ⊥ (J ∈ J2)
...

... . . . ...

⊥ (1 ∈ JK) ⊥ (2 ∈ JK) · · · ⊥ (J ∈ JK)


(K×J)

(B.22)

where, ⊥ (j ∈ Jk) =

 −1 if j ∈ Jk
0 if j /∈ Jk

(B.23)

The impedance matrix (Ybus) is calculated as:

Ybus =



∑K
k 6=1B1,k −B1,2 · · · −B1,K

−B2,1
∑K
k 6=2B2,k · · · −B2,K

...
... . . . ...

−BK,1 −BK,2 · · ·
∑K
k 6=K BK,k


∈ <(K×K) (B.24)

Then, the reduced impedance matrix (Y r
bus) is obtained from the Ybus matrix after

removing the first row. Note that the coefficient of the equality constraints in Eqn.

(6.23) , beq is a zero matrix of size (K × 1).
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Appendix C

KKT Conditions of SCQP

Problem

The ISO’s SCQP problem can be summarized as:

Minimize: f(x) (C.1)

subject to: gin(x) = bin − CinxT ≤ 0 ∀in ∈ IN (C.2)

heq(x) = beq − CeqxT = 0 ∀eq ∈ EQ (C.3)

where g and h are the inequality and equality constraints, respectively, and IN and

EQ their active numbers, respectively. Note that the number of equality constraints is

exactly the same as the number of buses for a power system network. Based on [246],

the KKT conditions are:

∇f(x) +
IN∑
in=1

uin∇gin(x) +
EQ∑
eq=1

λk∇heq(x) = 0 (C.4)

uingin(x) = 0 ∀in = 1, 2, · · · , IN (C.5)

where uin∀in is a non-negative scalar and λ the scalar dual variables for the inequality

and equality constraints, respectively. After differentiating Eqn. (C.4) with respect

to all the primal and dual variables, a well-known matrix equation (Ay=b) is found,

where y =
[
xT, u1, . . . , uIN , λ1, . . . , λEQ

]T . The process for determining y is explicitly

described in [246, 247].
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Once x and λk, ∀k = 1, 2, . . . ,K are known, the PD by each generator (Pi), load

dispatch by each consumer (qj), LMP of each node (λPi∀i, λdj
∀j) and branch flows

(Fkm) are calculated as:

Pi = xi ∀i = 1, 2, · · · , I (C.6)

qj = xI+K+j ∀j = 1, 2, · · · , J (C.7)

λPi = λi ∀i ∈ IK (C.8)

λdj
= λj ∀j ∈ JK (C.9)

F = S ∗ PNetInject (C.10)

where S = (D ∗Ar) ∗B−1
rr (C.11)

PNetInject = Brr ∗ δ (C.12)

δk = xI+k ∀k = 1, 2, · · ·K (C.13)

where Brr is found from the Ybus matrix after deleting the first row and column.
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