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1 INTRODUCTION 

Innovative methods for the analysis of water-related data sets have the potential to improve 

the extraction of interesting and useful information from the great quantity of collected 

hydrological data. Enhanced extraction of relevant features from the data will lead to better 

support of water resources management at local, regional and global scales. The volume of 

hydrological measurements gathered globally is continuously increasing as scientific advances 

ease the collection of remote and automatic measurements. The simplification and 

organisation of these immense, multivariate, hydrologic data sets is essential to allow patterns 

to be intuitively recognized and useful information to be extracted for easy incorporation into 

decision-making processes.  

Organizing information, through summarizing and sorting, is the foundation of any processing 

and analytical task involving large data sets. The summarizing portion of this process refers to 

identification of the prevalent patterns and intercomponent relationships in the data, and the 

sorting portion entails clustering similar pieces of information together. These processes can 

be tied together to provide a system of data organization. Statistical learning methods, such as 

artificial neural networks, use such a system to organise data through the recognition of 

patterns within high-dimensional data sets based on the identification of the cluster structure 

in the data. 

The self-organizing map (SOM, Kohonen, 1990) is an artificial neural network proficient at 

extracting and ordering the prevalent patterns in a data set, sorting the data in accordance 

with these patterns and conveying the information through meaningful mappings into low 

dimensional space. Unique combinations of multiple nonlinearly related variables, which 

comprise the common patterns or states of a system, are identified. Through a nonlinear 

projection to low-dimensional space, an order is established for the extracted patterns that 

best preserves the topology of the data structure. These patterns form the basis for the 

clustering of data items into groups sharing meaningful similarities. The clusters of similar data 

items become situated on the low-dimensional projection, or map, so that inter-cluster 

distance expresses a measure of dissimilarity. Interpretation of the map reveals information 

about the structure of the data set, correlations between variables and the cluster 

configuration in the data. The combination of a nonlinear projection from high-dimensional to 

low-dimensional space, the preservation of data topology and an ordered clustering provide 

distinct benefits of the SOM over other neural networks (Yin, 2005). 

The SOM is a widely used method in water-related research due to its intuitive implementation, 

resilience to missing and noisy data, ability to integrate real-time data, and straightforward 

visual summary of the system and intercomponent relationships. Of particular benefit is the 

ability of the SOM to organize data with no requirement for an explicit understanding and 

description of any complex underlying systems that may have produced the data. This attribute 

is valuable in exploring multivariate environmental data for which the creation of realistic 

system models can be time-consuming and complex. The SOM naturally integrates cross-

disciplinary data in a non-biased manner, facilitating understanding and interaction between 

collaborators from diverse fields. Relationships of hydrologic variables to physical, chemical, 
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social or economic systems in multidisciplinary research can be investigated without requiring 

expert knowledge from each of the varied disciplines. The SOM is able to incorporate new data 

as it is measured, without requiring a retraining of the model, enabling real-time data analysis. 

The intuitively comprehended visualization allows the extracted information to be directly 

integrated into decision-making processes. For these reasons, the SOM is often used for a wide 

range of data organisation purposes by scientists, engineers and researchers interested in 

exploring the physical and chemical processes of hydrology and water resources, as well as 

social and economic associations to these processes.  

The combination of data mining innovations with appropriate field expertise provides the 

ability to retrieve a desired amount of information through identification of an appropriate 

level of data summarisation. Well-produced SOMs are able to provide decision makers with an 

overall impression of the structure of a data set at a suitable level of abstraction and insight 

into the intervariable relationships. Traditionally, a low percentage of the vast amount of 

environmental measurements that are collected is actually used, due to a lack of efficient and 

effective analysis tools for processing the data (Liu & Weisberg, 2011); though new data 

analysis techniques are beginning to provide means to convert unprecedented amounts of 

data into useful information that can drive development (website [1]). Cottrell et al. (2016) 

note that ‘as the computational complexity of the SOM algorithm is low compared with the 

number of data items it can process, and it is particularly well suited to stream data, the SOM 

appears to have a great future ahead in a big data context’. Though an intuitive statistical 

procedure such as the SOM that accurately allows the user to discover common patterns and 

relationships without the complexity of mathematical modelling is valuable in multidisciplinary 

environmental studies, it will be effective only if the method is appropriately applied to the 

specific data and the results are suitable representations of the information contained within 

the data set.  

Developments that may lead to an improved SOM method are suggested in the literature. Yang 

& Wu (2006) indicate that the visualisation of changes in data structures has not yet been 

properly addressed in data mining research, nor has the separation of the temporal and cross-

sectional structure of a data set. Yin (2008) asserts that the potential of the SOM method is 

not realised in current applications which are often limited to empirically chosen parameters. 

Van der Maaten et al. (2007) articulate that the highly nonlinear, high-dimensional 

characteristics of real world data require appropriate analysis techniques, and emphasise that 

any improvements in methods need to be accessible to researchers and engineers. Kohonen 

(2008) identifies the representation of dynamic phenomena with SOMs as a prominent issue 

to be addressed. He also states that the determination of the number of map nodes that would 

best represent a data set is one of the most common questions arising from users (Kohonen, 

2013). Abrahart et al. (2012) call for the identification of novel applications that can only be 

solved with neural networks, highlighting the importance of applying the methods to 

appropriate data analysis tasks.  

A thorough review of recent literature pertaining to applications of SOMs in hydrology and 

water resources has been conducted to explore the current scope for advancements to the 

SOM method with respect to these fields. It has become clear that the improvements explicitly 
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called for in the literature cited above are yet to be realised. Though most hydrological and 

water resource systems include a spatiotemporal component (referring to data in which there 

is a cross-sectional structure as well as a temporal one) and many also contain nonlinear 

manifolds (such as the fluctuating intervariable relationships generated from diurnal or season 

effects), the SOM method continues to encounter various limitations when applied to 

spatiotemporal and nonlinear data.  

It is also evident that there is a disconnect between recent theoretical statistical research in 

the SOM method (published in neural network, machine learning and statistical journals) and 

practical applications of the SOM (published in environmental and engineering journals). Most 

technical advances are not adopted into the commercial and research realms; instead, users 

tend to favour heuristics and software defaults for parameter selection in the SOM process 

rather than making informed choices based on their data and purposes.  

In consideration of the current state of SOM knowledge and water-related applications, this 

thesis focuses on advances to the SOM method through providing a series of improvements 

in:  

• the representation of dynamic spatiotemporal data  

• a method for deliberate, application-specific parameter selection, 

• pattern extraction from highly nonlinear data,  

• the visualisation of individual paths of data items though temporal shifts in the cross-

sectional structure of the data,  

• the successful integration of new SOMs theoretical ideas into applied research. 

The overall objective of the thesis, through a combination of these improvements, is an 

enhanced extraction and visualization of information from large, high dimensional data sets to 

reveal patterns and clusters that are an accurate representation of the data structure.  

This thesis is comprised of five papers concentrating on distinct aspects of these improvements. 

The flow between the papers is methodical and documented, with each paper using and 

building on developments from other papers in the thesis as well as drawing on concurrent 

related literature published by other researchers. Throughout the papers, associated statistical 

topics are discussed, including: spatiotemporal exploratory data analysis, clustering methods, 

temporal cluster trends and evolution, representation of outliers, time series analysis, 

nonlinear manifold learning and dimension reduction.  

To support the expansion of theoretical advances into applied research, each of the 

developments introduced here is demonstrated on the extraction of meaningful information 

from a real, water-related data set. Data concerning the relationships of human populations 

with their freshwater resources generally contain difficult-to-define dynamic relationships, and 

vastly differing data sources and measurement techniques, making them especially well suited 

for analysis with the SOM. Adequate knowledge of these relationships can bring about more 

successful management of water extraction and consumption, trade, land use, disaster 

mitigation strategies, agricultural use, pollution prevention, development, and climate change 

mitigation. The clustering of spatiotemporal data containing nonlinear intervariable 



7 
 

relationships and the identification of data items with similar or diverging trends are common 

themes in this thesis.  

A range of scales is included in the application studies in this thesis. The literature indicates 

that studies at the global scale in the water sector have traditionally been restricted by a lack 

of global datasets and methods (Jongman et al., 2012) and yet potentially important regional 

water resource patterns may be masked by continental and global scale summaries 

(Vorosmarty et al., 2000). Therefore, each study in this thesis provides a global view of 

relationships between regional systems. With the introduced innovations in the SOM method, 

the global structure of each system is determined and, within it, regional patterns are analysed 

and compared. Global hydrologic connectivity is recognized and associations are visualised 

between areas of the world sharing similar conditions, be it countries, river basins or cities.  

The structure of this thesis is as follows. In Section 2, the literature review, current state of 

SOMs and gaps in knowledge are summarized. Section 3 discusses the approach taken to 

address these gaps, the flow and connectivity of the overall project, information on 

publications and applications, and an introduction to each of the five papers comprising the 

thesis. Sections 4-8 contain the published and submitted papers in their original forms. The 

conclusion in Section 9 summarises the relationship between the papers, the discoveries, 

results, and improvements in the state of SOMs and water resources, and suggests directions 

for future research.  
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2 LITERATURE REVIEW SUMMARY  

A broad literature review was conducted to explore a range of recent statistical methods and 

data exploration topics in hydrology and water resources. This review was refined into a 

thorough literature review encompassing theoretical advances in the statistical methodology 

of the SOM, and a wide variety of SOMs applications were read to determine the current state 

of SOMs practice and existing gaps in the knowledge base.  

2.1 BROAD LITERATURE REVIEW OF STATISTICS FOR WATER-RELATED DATA 
Techniques and ideas were investigated regarding the extraction and expression of 

information from large amounts of spatiotemporally variable water-related data. The literature 

read in this preliminary portion of the review highlighted many current topics of interest, and 

although most of this broad review is not included in this thesis, a few topics were encountered 

that shaped the overall direction of research. These were: spatiotemporal self-similarity and 

cluster analysis (eg., Bierman et al., 2011, Ruiz-Medina, 2012); data assimilation for the 

improved prediction of systems, discovery of anomalies and validation of models (eg., 

Mendoza et al., 2002, Fekete et al., 2002, Reichle, 2008, Decharme et.al., 2008, Xia et al., 2012, 

Houborg et al., 2012); determination of the interrelated effects of climate change and 

anthropogenic activities on rivers (eg., Shanmuganathan et al., 2006, Steynor et al., 2009, Gao 

et al., 2013); measurement of surface water extent, discharge and inundation from space (eg., 

Smith, 1997, Vorosmarty et al., 2005, Alsdorf et al., 2007, Papa et al., 2008, Pan et al., 2008, 

Dorigo et al., 2012, Chapman & Charantonis, 2017); Bayesian space-time models to address 

the mismatch in data sampling scales of spatial and temporal variability (eg., Kingston et al., 

2005, Wikle et al., 1998, Chiu & Lehmann, 2011, Vanem et al., 2011); and the innovative uses 

of neural networks for water-related systems (Abrahart et al., 2012). Recent research using 

neural networks for trend visualization in other fields (outside hydrology) was also explored to 

identify interesting methods that may have the potential for adaptation to water-related 

applications. For instance, neural networks are widely used to reveal trends and identify 

clusters in financial time series analysis and knowledge domain visualisaton (eg. Tay et al., 2001, 

Fung et al., 2002, Yu et al., 2005, Wu et al., 2012, Powell et al., 2008, Skupin, 2004, Mothe et 

al., 2006, Segev & Cantola, 2012, Lee & Chen, 2012, Abe & Tsumoto, 2011, Borner, 2003, 

Skupin et al., 2013, He et al., 2005, Fenn et al., 2012).  

The outcome of this broad review was the perception that recent research is tending to 

become increasingly concerned with methods for the incorporation of data from various 

sources and disciplines into data-driven analyses, for defining relationships and dependencies. 

In particular, the potential for neural networks to provide innovative spatiotemporal 

estimation and trend analysis was noted, with the possibility of incorporating information from 

in-situ, remote measurements and anthropogenic influences. The SOM neural network, 

specifically, appeared to exhibit an interesting capacity for data-driven, multi-objective analysis 

that is well suited to hydrological data, and provides an effective visual communication of the 

results. 
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2.2 SELF-ORGANIZING MAP CURRENT KNOWLEDGE BASE AND APPLICATIONS 
A focused literature review on SOMs ensued, identifying basic theory, recent theoretical 

advances, current SOMs usage in water-related applications and potential areas for 

improvement in the method and applications. This review is presented in Paper 5, with specific 

aspects incorporated into Papers 1-4. The principal findings are summarised here.  

General gaps in the knowledge base of SOMs have become evident in the following key areas:  

1. Spatiotemporal clustering. Hydrological, water quality, and climate applications to date 

customarily apply the SOM to the extraction of data patterns and identification of 

clusters in either the spatial (cross-sectional) or the temporal domain. The preferred 

contemporary methods in the literature for spatiotemporal analysis are the creation 

of either: 1) a series of SOMs, one for each time step of the data set - these must be 

visually compared to extract patterns and trends, or 2) a single SOM produced with 

the entire data set on which trajectories or subsets of data (representing different 

areas or time periods) are mapped. These popular methods do not account for: 1) 

possible differences in the data structure at each time step, 2) the incomparability of 

maps created from data subsets of differing structures, or 3) the subjective 

interpretation of each user in the comparison phase. The self-organizing time map 

(SOTM, Sarlin, 2012), the first spatiotemporal SOM method to provide results on a 

single visualization, attempts to address these issues, but gaps remain: the map size 

and shape of the SOTM do not adapt to the data at each time step, the SOTM cannot 

process data sets with missing values, and it remains difficult to track individual data 

items through the evolution of the dynamic cluster structure. (Further background 

information on spatiotemporal clustering issues is provided in Papers 1, 3 and 5.) 

2. Parameter selection. The map configuration (number and formation of nodes in the 

grid) is a choice to be specified by the user before each separate application of the 

SOM. The grid setup influences the patterns and clusters revealed on the final map 

(Kohonen, 2013), though little consolidated guidance is provided in the literature 

informing the selection process. Popular heuristics are often used, users ‘borrow’ 

parameters from previously published SOMs applications which are likely irrelevant 

for their current data set, or quality measures are applied to a series of maps trained 

with various parameters to determine which map best represents the data. It is widely 

accepted that SOMs have the potential to reveal more information from a data set 

with the use of carefully chosen parameters, however there is no consensus on the 

best method for parameter selection. (Details of this portion of the literature review 

are provided in Papers 2 and 5.) 

3. Representation of highly nonlinear intervariable relationships. The SOM algorithm 

encounters limitations when attempting to represent data with nonlinear underlying 

manifolds (nonlinear in the sense of being more than a simple perturbation from 

linear) (Demartines & Herault, 1997; Shao et al., 2015). Due to the linear principal-

component-based initialization method, the SOM method can tend to flatten a data 

structure during the projection stage, rather than unfolding it. In general, the map 

setup is chosen to represent a data set before any understanding of a possible 

submanifold is gained. Attempts in the literature to address this issue by tacking a 
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nonlinear initialization method on to the beginning of the SOM algorithm result in: a 

restriction of the movement of map nodes to the dimensions of map space (rather 

than data space), and the possibility that a single node may represent data from 

distinct parts of the geodesic surface. (Paper 3 contains a review of discussions in the 

literature on this issue.) 

4. Objective function minimisation. It has been demonstrated in the literature that the 

SOM algorithm does not minimize a single objective function, but instead the training 

method attempts to optimize two competing objectives: quantization of the data 

items and preservation of the topology of the data set (Erwin et al., 1992; Yin, 2008a). 

The lack of an objective function is a popular source of discussion in the literature, as 

it restricts the possibility to select parameters based on current information theory 

techniques using maximum likelihood estimation. The literature contains many 

attempts to describe an objective function that the SOM may follow, or to alter the 

SOM algorithm to force it to follow a certain objective function. These methods are 

not being adopted by researchers however, and the traditional SOM continues to be 

used.  (This issue is discussed in detail in Paper 2 and Paper 5.)  

5. Crossover of theory into applied research. It has become evident through the review of 

a substantial number of SOMs papers that statistical innovations in the SOMs 

methodology are not being embraced by researchers concerned with using SOMs for 

practical applications. The theoretical research may be inaccessible to researchers 

who are interested only in the use of SOMs as a data exploration tool, and do not have 

the time to sift through and interpret numerous statistical papers or an interest in 

advancing the method themselves. This lack of crossover between theoretical 

innovations and practical applications is causing possibilities to be overlooked for 

SOMs finetuning that may lead to an improved representation of each specific data 

set.  

The current state of SOMs in relation to hydrology and water resources research is: 

• SOMs are an increasingly popular method within these fields, for exploratory data 

analysis of large, multivariate data sets, with approximately 180 articles currently 

published per year (website 2).  

• SOMs water-related applications involve a wide range of pattern extraction, clustering, 

missing data infilling, prediction and time series analysis tasks. 

• SOMs are particularly well suited to noisy data or data with missing values, as are 

common features of environmental measurements collected remotely and in the field. 

• The SOM has the potential to be tailored to best suit a specific data set through the 

tweaking of map configuration and training parameters. However most hydrologic 

applications continue to use software defaults or arbitrarily chosen parameters, 

forfeiting some of the potential benefits of the method. 

• Variants to the traditional SOM method, such as temporal SOMs and growing SOMs, 

are appearing widely in theoretical papers though rarely in water-related application 

literature, indicating that technical advances are not being transferred into practical 

implementations. 
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2.3 ORGANISATION OF LITERATURE REVIEW 
Theoretical background information on the SOMs method including algorithmic details, recent 

advances in theory, a general literature review on SOMs usage in water-related and 

environmental research, and a comparison of SOMs with related methods is contained in Paper 

5. The background and method sections of Papers 1-4 contain literature reviews focused on 

their specific areas of concentration, reviewing and discussing the state of contemporary 

research in each area.  

The necessity for expressing the direct context of each paper of this thesis within past and 

contemporary research, combined with an attempt to avoid unnecessary repetition in the 

thesis as a whole, has led to a fragmented presentation of the literature review. Table 1 lists 

specific sub-areas that were covered in the literature review process and directs the reader to 

the relevant areas of the thesis in which they are reported.  

Table 1: Literature review table of contents 

Literature review topic Discussed in thesis paper(s) 

Spatiotemporal analysis and clustering 1, 4, 5 

Temporal use and extensions of SOMs 1, 4, 5 

SOM initialization 2, 3, 5 

SOMs for missing data 1, 5 

SOMs for geographic comparisons 1, 2, 4 

Water-related SOMs hydrologic applications 5 

SOM size and shape selection 2, 4, 5 

SOMs quality measures 2, 4, 5 

Trend prediction 5 

Associated variables 1, 5 

Comparison with related methods 5  

Nonlinear manifold learning and dimension reduction 3 

General SOM development 5 

Cluster theory and cluster evolution 1, 2, 3, 5 

Interpretation of the output map 1, 2, 5 

SOM second-level clustering methods 1, 4, 5 

Objective functions of the SOM 5 

Probabilistic alternatives to the SOM 5 
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3 APPROACH 

3.1 OVERVIEW 
The investigations and innovations developed in this thesis were performed through the 

production of a series of distinct, consecutive projects, each presented in a separate paper 

(Papers 1 to 5). In general, the preparation of Papers 1 to 4 entailed:  

• a focused literature review conducted into the state of SOMs in the area of 

concentration,  

• a gap identified in the existing SOMs method,  

• a technical innovation envisaged, troubleshooted and implemented in MATLAB, and  

• a demonstration of the innovation on water resources or hydrologic data.  

Paper 5 involved a different process. This paper was devised during the initial literature review, 

written concurrently with the other four papers to incorporate the base of knowledge gained 

during their production, and finalized at the completion of the thesis.  

3.2 RELATIONSHIPS OF THESIS ELEMENTS 
The flow of the project through the distinct elements of the overall thesis, and the links 

between these elements, are described in this section and depicted in Figure 1.

 

Figure 1: Flow of the project 
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The self-organizing map was selected as the subject of the thesis, after a broad review of 

literature concerning statistical methods in hydrology, due to its significant intuitive appeal and 

evident popularity amongst environmental researchers combined with the vagueness and 

ambiguity with which it is currently applied and the potential for improvements in both 

technical and applied aspects of the method.  

It became apparent during the literature review that the most substantial gap in current SOMs 

practice concerns the representation of spatiotemporal data with SOMs. The majority of data 

sets in hydrology and water resources contain a temporal component as well as geographical 

(or otherwise cross-sectional), making this a notable issue. A goal was formed to develop a 

method to effectively present as much spatiotemporal information as possible on a single SOM, 

enabling the use of the popular SOMs attributes of data analysis and visualization without as 

much of the current requirement for subjective user analysis. A technique was developed in 

Paper 1 to produce a single output visualization that could track and compare the trajectories 

of individual data items through changes in a one-dimensional projection of the system cluster 

structure over time.  

It also became evident during the literature review that many SOMs issues arise due to the lack 

of a best practice for determining the number and configuration of nodes in the output map. 

It was noted during the preparation of Paper 1 that unless a lot of care was taken, the one-

dimensional map at each time step tended to span much more of the variance of one 

dimension than another. Also, each time step was represented by the same size of map 

regardless of the distribution of that subset of the data. A goal was outlined to pursue a 

relatively even coverage of each data dimension by the map through an update to the map 

size and shape selection process. It was initially anticipated this might be accomplished through 

the use of an objective function and maximum likelihood estimation; however, as the 

traditional SOM does not follow a single objective function and cannot be made to follow one 

whilst maintaining its fundamental goals of data quantisation and topological preservation, a 

novel method was required. In Paper 2, a method was developed and presented for 

determining an optimal number and configuration of map nodes to represent a data set with 

a minimum of user input. This new method quantifies the range of each dimension of the data 

represented by individual nodes on a series of potential maps. The information lost through 

the use of non-optimal SOM setups is quantified, aiding in selection of the map to best 

represent a specific data set.  

During development of the method in Paper 2, it was found that the proposed technique 

worked well for generally ‘cloud shaped’ data sets in which the information of interest could 

be extracted through a direct ‘pressing’ of the data, but not for data sets with highly nonlinear 

manifolds that require a more careful ‘unrolling’. This is a considerable drawback in 

environmental sciences, which frequently contain nonlinear data, motivating Paper 3 which 

introduces a unique integration of nonlinear dimension reduction theory within the traditional 

SOM framework.  

Paper 4 delves further into spatiotemporal and map size/shape issues, expanding on 

developments from Papers 1 and 2. This paper presents a high-interest water resources 
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analysis through an updated temporal method incorporating the new map size and shape 

selection method at each time step. Temporal changes are revealed in the overall data 

structure and the usual requirement to represent the data at each time step by a map of the 

same size and shape is overcome.  

The research and ideas in this thesis revolve around Paper 5 in which the information needed 

to begin, as well as the knowledge gained throughout the process of researching the other four 

papers, is summarized. Consisting of the main parts of the literature review as well as a 

summary of practical experience gained through modelling, it was created as a publishable 

paper to transfer this knowledge forward and save future researchers considerable time and 

effort in piecing together background information, practicalities of the method, and 

mathematical details of the SOM from a wide variety of highly-focused papers.  

3.3 APPLICATIONS 
The applications included in the papers of this thesis apply the advances in SOMs techniques 

in each paper to statistical investigations of changing patterns of water use and water 

availability over time with nonlinearly related variables. A clear understanding of the 

intervariable relationships affecting freshwater resources is imperative to ensure sustainable 

management (Vorosmarty et al., 2000). The global distributions of runoff, water use, and 

scarcity are highly variable both spatially and temporally, and correspond poorly to the global 

population distribution (Postel et al., 1996), making the future adequacy of freshwater 

resources difficult to assess. Vorosmarty et al. (2005) express the need for new methods that 

are able incorporate interdisciplinary data sets to provide a complete understanding of human-

water interactions and achieve sustainable environmental management.  

Focussing on these issues, each project of this thesis applies the new methods to an analysis 

of nonlinear aspects of human/water interactions. Topics addressed include: 

• water consumption and virtual water flows implicit to international trade, 

• the attainment of Millennium Development Goals with respect to access to improved 

water and sanitation,  

• water scarcity in river basins influenced by a combination of availability and 

management, and 

• projected changes in urban flood impacts due to socioeconomic development and 

climate change.  

Data used in the applications has been obtained from a variety of sources: UN databases (eg. 

website 3), satellite data/remote sensing (eg. website 4), institutional published data sets (eg. 

websites 5 and 6), and national hydrologic measurements (eg. website 7). 

3.4 PUBLISHING OF PAPERS 
The papers in this thesis were/will be published in international journals as a deliberate step 

to fulfil the objective of effectively influencing contemporary practice by making innovations 

immediately available. Ranging from purely statistical through a spectrum of numerically-
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inclined environmental journals, both traditional and open-source publications were chosen 

to provide exposure of the new developments to researchers, engineers and scientists using 

SOMs for research and applications. A list of the journals, with reasons for their selection, is 

given below. 

Paper 1 Journal: Ecological Informatics 
5-year impact factor: 2.29 
Comments: This journal was chosen as it is concerned with the growing capacity of 
computational technology to harness complex data for the use in informing sustainable 
environmental management decisions. Paper 1 was published in a special issue on 
ecoinformatics decision support systems.  
 

Paper 2 Journal: Pattern Recognition 
5-year impact factor: 4.99 
Comments: The official journal of the Pattern Recognition Society, this journal is dedicated 
to presenting papers with original contributions to theory, methodology and application of 
pattern recognition in fields including neural networks. 
 

Paper 3 Journal: Environmental Modelling & Software 
5-year impact factor: 4.98 
Comments: This journal was chosen due to its aim to improve the representation and 
communication of the behaviour of environmental systems, with generalizable 
interdisciplinary techniques that provide insights into real-world applications and integrate 
modelling with environmental system management. 
 

Paper 4 Journal: Hydrology and Earth System Sciences (requested revision stage) 
5-year impact factor: 5.06 
Comments: This journal is concerned with multi-disciplinary approaches concerning 
interactions between water, the earth and humans. It was selected due to its interactive 
public peer review discussion process and open access status, contributing to the goal of 
bridging the gap between SOMs theoretical advances and applications through improving 
the accessibility of new methods to researchers and commercial users.  
 

Paper 5 Submitted 

3.5 INTRODUCTION TO PAPERS 
The papers are introduced in this section with paragraphs describing the motivation, methods, 

applications and contributions of each study. The full-length papers, as published or submitted, 

follow in Sections 4-8.  

Research, modelling and manuscript preparation was performed by the first author. Other 

authors provided valuable reviews and suggestions for improvements to the manuscript. By 

nature, each paper needs to begin with a description of basic SOM methodology and recent 

relevant literature, and therefore some overlap in material will be found within the following 

chapters of this thesis.   
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Paper 1: Increasing dependence on foreign water resources? An assessment of trends in global 

virtual water flows using a self-organizing time map. 

Journal: Ecological Informatics     

Published: June 2014 
http://dx.doi.org/10.1016/j.ecoinf.2014.05.012 
 

The current use of SOMs for analysing temporal cluster evolution in spatiotemporal data is 

extended in this paper, with particular focus on tracking the individual data item within the 

changing global structure of the data. A method is introduced for following the flow of each 

data item through the shifting cluster structure. Motivated by the potential to improve upon 

the current practice of using a series of maps to represent spatiotemporal data, which requires 

significant effort from the user to track individual data items, the aim of this study is to provide 

an automated means to investigate the movement of data through the evolving data clusters 

with a single visualization as output. 

Improvements are made to the self-organizing time map algorithm (SOTM, Sarlin, 2012) 

including: enabling the use of the SOTM with missing data, altering the training mechanism of 

each time step to provide an accurate snapshot of each sequential system state, and 

performing second-level clustering with a 1D SOM which ensures an ordering to the clusters 

and allows an indexed colour scheme to be used. A post-processing technique is created to 

assess changes in cluster memberships over time, determining which data items have 

converging and diverging circumstances, thereby providing relationship and trending 

information of individual data items within the context of the whole data set.  

These improvements are demonstrated with an investigation into the relationship of country-

level virtual water use combined with national renewable water resource assets for 172 

countries. Fifty years of virtual water flow through international trade is compared to distinct 

national water resource situations. Countries are clustered into groups with similar states of 

dependence on foreign water resources, and the change in hydrologic dependency of each 

country is tracked and compared with the others. The association of national health, 

environmental, and socioeconomic variables with states of hydrologic self-sufficiency are 

investigated. The literature contains some regional and national virtual water balances, but 

this is the first visualisation of the evolution of global virtual water patterns over time in 

combination with information on available domestic water resources. 

The primary contributions of this paper are: advancements in the SOTM and a method for 

identifying data items experiencing similar temporal trends through a shifting spatiotemporal 

cluster structure. This can be used as a decision support tool by establishing and 

communicating relationships and trends of individual entities in a global context. 

 

  

http://dx.doi.org/10.1016/j.ecoinf.2014.05.012
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Paper 2: A dimension range representation measure for self-organizing maps 

Journal: Pattern Recognition 
Published: November 2015 
https://doi.org/10.1016/j.patcog.2015.11.002 
 

In the preparation of Paper 1, it was noted that the preliminary map results based on the 

commonly used heuristics for choosing map parameters tended to reveal information 

essentially about only one variable. The map was observed to span a much higher percentage 

of the variance of this variable than the other, due to the attempt to reduce the highly 

nonlinear intervariable relationship to a single dimension. This was discovered through a 

tedious amount of manual checking, inspiring the search for an automated quality measure 

that would alert the user to this situation. A deliberate choice of appropriate map dimensions 

to represent a specific data set, which is commonly based on an assessment of quantization 

and topological map quality, could also benefit from an analysis of the spanning of the map 

over each data dimension. 

A method is introduced in this paper for selection of the optimal number and configuration of 

map nodes to represent a multivariate data set, by exploring the range of each dimension that 

is represented by individual map nodes. A two-dimensional map grid ‘draped’ over a 

multidimensional data cloud will logically leave some edges of the data cloud uncovered, and 

this extent is measured here.  

The real-world application in this paper is an investigation of access to improved rural and 

urban water and sanitation facilities in 142 countries, as provided by the Millennium 

Development Goals database. On this four-dimensional data set, it is demonstrated that using 

the measure introduced here in conjunction with other commonly used quality measures can 

improve the representation of data by the SOM, through ensuring that the distribution of each 

data dimension appropriately influences the size of the map in that direction. 

The primary contribution of this paper is a quality measure that can be used to determine the 

optimal number and configuration of map nodes. The new measure eliminates the need for 

investigation of map coverage by visual comparison of the map and data, a process which 

quickly becomes infeasible for high-dimensional datasets. It is demonstrated that 

incorporating this quality measure into the selection of map setup parameters leads to an 

output map that more effectively reveals the characteristics of each variable.  

 

 

  

https://doi.org/10.1016/j.patcog.2015.11.002


18 
 

Paper 3: Nonlinear manifold learning in natural systems 

Journal: Environmental Modelling and Software  
Published: March 2017 
http://dx.doi.org/10.1016/j.envsoft.2016.11.028 
 

The pattern extraction and clustering capabilities of the SOM are extended here for application 

to data with highly nonlinear underlying manifolds. Environmental data sets often contain 

cyclical, wavy or helical structures due to diurnal, seasonal and hysteresis effects, and the SOM 

encounters known limitations when expected to discover such nonlinear manifolds in data sets.  

In this paper, the SOM is expanded into the ‘SOMersault’, incorporating nonlinear dimension 

reduction techniques and a recurrent transfer of information between high- and low-

dimensional spaces. Existing clustering and visualization algorithms range from very flexible (k-

means clustering) to very rigid (linear principal manifolds), with the traditional SOM (a 

constrained k-means algorithm based on linear principal component analysis) lying somewhere 

in the middle of the spectrum. The SOMersault algorithm shifts the placement of the SOM 

further towards the flexible end of this spectrum whilst still maintaining the distinctive ordering 

of clusters which is the main advantage of the SOM.  

The real-world application in this paper is a demonstration of the use of the SOMersault to 

investigate the uneven global spatial and temporal distribution and management of water 

resources, which leads to water scarcity in certain river basins at certain times of the year. 

Spatiotemporal clusters of basin-specific monthly conditions of water scarcity and availability 

are produced, indicating river basins with comparable circumstances. This highlights global 

similarities between basins sharing similar states of water scarcity due to drought, as well as 

those experiencing scarcity when storage is available (though perhaps in another form such as 

groundwater, swamp or ice), indicating a potential for improvements through technology or 

revised management strategies. 

The primary contribution of this paper is an expansion of the SOM technique resulting in a 

geodesic ordering of output patterns and clusters when representing data with highly 

nonlinear manifolds, creating a map on which the extracted patterns and clusters are better 

aligned with the curves of the manifold. Geodesic error measures are provided to assess the 

quality of the new mapping technique. This method is generalizable to the exploration and 

visualization of patterns in data from all environmental systems in which an underlying 

nonlinear manifold exists amongst the high number of variables collected during field 

measurements. 
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Paper 4: Patterns and comparisons of human-induced changes in river flood impacts in cities 

Journal: Hydrology and Earth System Sciences 
Published: March 2018 
doi:10.5194/hess-2017-162 
 

Dynamic data sets may possess distinct distributions and correlations at each time step, making 

direct comparisons ineffectual. This paper addresses this issue by providing a method for 

tracing similarities in data items based on their relationships to the directions of maximum 

importance in the structure of available data at each time step, as determined by the 

organization of the map.  

Updating the temporal assessment from Paper 1 through incorporation of the map size and 

shape selection process from Paper 2, this study allows a different map size and shape to be 

selected based on the variables at each time step. As initialisations are not based on preceding 

time steps, each map can be created using different variables. The post-processing treatment 

from Paper 1 is updated to investigate transitions of individual data items with respect to the 

main nonlinear directions of importance in the data as determined by the SOM axes rather 

than changes in cluster membership.  

The application in this paper responds to a recent call in the literature for ‘an integrated 

analysis system that can represent the effects of climate and the interface with socioeconomic 

effects as both drivers and receptors of flood risk’ (Sofia et al., 2017). It is an investigation of 

global patterns of urban river flooding at the city level, as influenced by urbanisation and 

climate change. World cities each encompass a unique set of environmental and social 

conditions, with global and local human activities directly and indirectly affecting their 

watercourses. Cities can therefore expect diverse responses to future changes, including 

alterations in urban hydrology due to changing rainfall patterns (from climate change) or runoff 

patterns (from development), and shifting exposures of population and property located in the 

flood zone through migration and unmanaged development. This study highlights the 

dependence of dynamic patterns in local conditions on global processes. 

The primary contributions of this paper are: 1) the incorporation of a shifting map 

configuration into SOMs temporal analysis based on the actual data structure at each time step, 

which still allows individual data items to be traced through the overall temporal form, and 2) 

a demonstration of the improved method on the analysis of a current, high-interest water 

resources issue. This is the first study using an artificial neural network to investigate global 

patterns of city-scale interactions of socioeconomic development and climate change on urban 

flooding. It is shown that prevalent patterns from this complex data set can be successfully 

extracted and communicated with this method to gain insight into intervariable relationships 

for knowledge sharing and resource management.  
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Paper 5: Practical guide for SOMs implementation in environmental science and engineering 

Status: Submitted September 2017 
 

This paper is a conglomerate of the SOMs knowledge deciphered and distilled from many 

theoretical and application papers. Providing a summary of the basics needed to knowledgably 

apply a SOM, separate sections of the paper describe the background, creation and 

interpretation of a SOM. It was written concurrently throughout my candidature, providing 

both an initial literature review and a summary of knowledge that will hopefully aid other 

researchers and free them from expending similar time and effort. 

This paper was motivated by an unsuccessful search through the literature for a cohesive guide 

which would allow a researcher to understand the best current standard of the SOM method, 

and to create a SOM to represent a data set in a timely manner. Much time and effort is 

currently required to sift through heavily specialized statistical literature, decompose the 

algorithm and MATLAB code, and understand the finetuning options relevant to each individual 

application - tasks which every researcher who would like to use SOMs knowledgably should 

not be required to repeat. 

The primary contribution of this paper is a transfer of knowledge to other researchers, 

attempting to bridge the disparity between published SOMs theory and SOMs applications, 

which are concurrent, but currently vastly divided, streams of literature.  
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4 PAPER 1 - TEMPORAL CLUSTER DYNAMICS 

 

This chapter has been published as:  

 

Increasing dependence on foreign water resources? An assessment of trends in global 

virtual water flows using a self-organizing time map.  

Clark S, Sarlin P, Sharma A, Sisson SA.  Ecological Informatics.  2014; 26: 192-202. 

 

4.1 ABSTRACT 
Water resources are continually redistributed across international borders as a result of virtual 

water flows associated with global trade, where ‘virtual water’ is the term describing water 

used in the production of commodities. This transfer of virtual water allows some countries to 

rely heavily on the water resources of other countries without having to transport the water 

itself. This paper contains an investigation into the relationship between international virtual 

water flows and domestically available renewable water resources for a number of countries, 

to determine trends in national dependencies on foreign water resources over time. Countries 

with similar states of dependence are clustered, and changes in these clusters are tracked from 

1965 to 2010 to determine country-specific and global trends. We make use of a temporal 

version of the self-organizing map (SOM), the self-organizing time map (SOTM), which provides 

the means for visualizing structural changes in spatiotemporal data. The SOTM is investigated 

through a second-level clustering to visualize emerging, changing and disappearing clusters in 

the data. A post-processing technique is introduced to facilitate interpretation of individual 

country trends on the SOTM. This study reveals a global trend towards an increased 

dependence on foreign water resources between 1965 and 2010. The method presented in 

this study is a workflow tool that results in a visualization of countries with similar and diverging 

trends of water resource dependencies. This tool can be used to inform national trade, water 

resources, and environmental management decisions which must take international 

hydrologic connectivity into account. The sustainability of current virtual water trade and 

water use trends can be examined with respect to the level of water scarcity experienced by 

individual and groups of countries. 

4.2 INTRODUCTION 
The water resources of a country can be significantly impacted by cross-border virtual water 

flows as a result of international trade (Hoekstra & Mekonnen, 2012). Virtual water is defined 

as the water used in the production of commodities, such as the quantity of water required to 

produce a tonne of apples or cereal (Allan, 1998). The transport of trade items across borders 

can convey large quantities of water virtually ‘embedded’ in the traded items (without 

requiring transport of the water itself). This connects the water resources of separate countries, 
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leading to an effective redistribution of water resources between countries and significantly 

affecting the dispersal of global water resources (Hoekstra 2011, Tamea et al., 2013).  

In general, agricultural production is the largest contributor to global water use and pollution 

(92%) (followed by industrial production (4.4%) and domestic water supply (3.6%)) (Hoekstra 

& Mekonnen, 2012). Consequently, it is not surprising that the international food trade results 

in large fluxes of virtual water across international borders (Hoekstra & Mekonnen, 2012). It is 

less complicated to import crops than to import the water required to grow them, therefore 

domestic water resources can be supplemented by importing water-intensive food from more 

hydrologically advantaged regions (Allan 1998). In this way, countries have the ability to make 

use of more water than they have available domestically due to the influx of virtual water 

through imported agricultural products (Suweis et al., 2013).  

When combined with an investigation of the naturally occurring available water resources 

within a country, the consideration of virtual water flows allows for an appraisal of a nation’s 

actual water scarcity (Ercin & Mekonnen, 2013). In this paper, we will investigate the 

relationship between virtual water imports through agricultural trade and the available 

domestic renewable water resources for a set of countries, in order to explore trends in 

dependencies on foreign water resources. Countries with high virtual water imports and low 

internal water resources will be considered relatively dependent on foreign water resources. 

These dependencies will naturally evolve over time as a result of changing national 

circumstances, policies, consumption patterns, and environmental factors. Considering the 

dynamic patterns of water dependencies in a global context will allow for the exploration and 

comparison of the trends of individual countries. 

The literature provides several applications of statistical methods to the virtual water trade 

network. Konar et al. (2011) used complex network theory to investigate virtual water trade 

connections as a framework for network optimization, creating a model of nodes (countries) 

and links (virtual water flows). This study highlighted how individual countries fit into the global 

structure of the virtual water trade at a certain point in time. Carr et al. (2012) investigated the 

connections of the virtual water network using trade matrices, to describe changes in the flows 

to and from specific countries over time. Tamea et al. (2013) showed trends in the virtual water 

balance on a national basis for a selection of countries. Suweis e al. (2013) calculated the 

‘carrying capacity of nations’ based on the domestic water currently used in food production 

compared with the virtual water imports of each country. Whilst current research is focused 

on quantifying national water footprints (that is the total volume of water used to produce 

goods and services consumed by a country’s population) (Mekonnen & Hoekstra, 2011; 

Hoekstra & Mekonnen, 2012), and investigating flows between countries (Konar et al., 2011; 

Carr et al., 2012; Tamea et al., 2013), there is a gap in research relating virtual water flows to 

available domestic water resources. Investigating this relationship will enable an assessment 

of the actual state of a country’s reliance on external water resources at specific points in time. 

We consider the self-organizing map (SOM) and its temporal extension, the self-organizing 

time map (SOTM), to be useful exploratory approaches for this investigation, due to the 

difficulty in quantifying links between hydrological and other (in this case, trade) data or 
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comparing data collected using different methods in different countries (UN Water, 2009). The 

SOM enables dimension and data reduction of a complex dataset through projection and 

clustering, and has previously been used to illustrate refined relationships between countries 

(Kaski & Kohonen, 1996). Countries can be grouped, and inferences drawn on their relative 

attributes with respect to other countries internationally, leading to the use of SOMs as a 

decision support tool (Kaski & Kohonen, 1996; Shanmuganathan et al, 2006). The SOM has 

been increasingly used in water resources applications over the past decade (Kalteh et al., 

2008), but although water resources data often contain a temporal component, investigations 

frequently focus on either spatial structure or temporal structure, not allowing for an 

assessment of the changes in spatial structure over time. As the virtual water network is 

extremely dynamic (Carr et al., 2012), it is important to understand not only spatial, but also 

temporal, trends in the data. The literature has provided a number of approaches for 

incorporating time in SOMs (Kohonen, 1988; Kohonen, 1991; Chappell and Taylor, 1993; Guo 

et al., 2006). But these SOM-based approaches are not aimed at visualizing temporal changes 

in cluster structures, which is the key aim of the SOTM (Sarlin, 2013). The SOTM includes time 

as a dimension of the map, thereby providing insight into the trends of the data over time. In 

this study, the use of the SOTM will enable assessment of which groups of countries have 

experienced similar transformations in their dependence on foreign water resources over the 

timeline of the study.  

The key focus of this paper is to develop a decision support tool to study the changing 

dependencies of countries on foreign water resources over time, as decisions regarding 

national water resources must account for international hydrologic connectivity (UN Water, 

2009). Recently, interest in applying the concept of virtual water fluxes to government policy 

has grown, recognizing the need to understand the effects of trade on water resources. 

Increased understanding will produce better-informed management decisions, which have 

conventionally relied only on domestic water use statistics (Hoekstra & Mekonnen 2012).  

This tool is exploratory in nature, as it aims to provide visual insights into data that are evolving 

over time. It seeks to cluster countries based on their state of dependence on foreign water 

resources and to investigate how this cluster structure has progressed. In order to achieve this, 

we develop extensions to the existing SOTM framework. In particular the response to missing 

values in the data (which are common in hydrological datasets) is modified, and a post-

processing technique is developed to disentangle the trends of individual countries on the 

SOTM.  

This chapter is structured as follows: Section 4.3 provides a description of the SOM and the 

SOTM algorithm, along with accompanying clustering and visualization tools; Section 4.4 

presents the data and implementation used in this study; a discussion of the results follows in 

Section 4.5; and a conclusion in Section 4.6. 
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4.3 METHOD 

4.3.1 The self-organizing map  

4.3.1.1 Overview 

The SOM is an unsupervised learning algorithm from the family of artificial neural networks, 

used for defining and visualizing non-linear relationships for high-dimensional, multivariate 

systems. Through training of the SOM with a data set, a topology-preserving mapping of the 

data is produced from a high-dimensional input space to a low-dimensional output grid 

(Kohonen, 1998). A key benefit of the SOM is the ability to extract unseen patterns from large 

quantities of data without requiring an explicit understanding of the underlying relationships.   

The SOM grid is first initialized based on the overall structure of the input data set (the training 

data), and then trained based on the individual input data items. The initialized map units 

assume linearly spaced values along a set of axes aligned with the eigenvectors corresponding 

to the principal components of the input data space (Kohonen, 1998). As a primary purpose of 

the SOM is to provide visualization of a data set (Kohonen, 1998), 1D or 2D output grids are 

usually used.  

The training of the SOM consists of applying two iterative processes: selection of the best map 

unit to match each item of input data, and updating of the map to better represent the input 

data. These processes seek the optimal map structure to represent the form of the input data 

(Kohonen, 1998). During the selection step of training, the map node that best matches each 

item of input data is selected (the best matching unit, or BMU) based on minimum Euclidean 

distance. In the updating stage, the BMU and its neighbouring map units (within a specified 

neighbourhood radius) move to become closer to the input. The neighbourhood radius 

decreases with each iteration of selection and updating, producing a smoothed final map. For 

a 2D SOM, Hastie et al. (2009) encourages the reader to consider the map units as buttons that 

have been sewn in a regular pattern onto the 2D principal component plane of the input data 

(the input data may be in two or more dimensions), and the training process of the SOM bends 

and stretches the plane until the buttons best approximate the distribution of the data.  

4.3.1.2 Details 

A more detailed description of the input, output and training process of the SOM are provided 

here.  

The input data, X, are in vector format with a separate vector, xj (where j=1, …, N), for each 

input item. All input vectors have the same number of dimensions, d, (ie. xj = xj1, …, xjd). The 

SOM output consists of M map nodes in a grid format, with a prototype vector, mi (where i=1, 

…, M) associated with each node. The output vectors are of the same dimension, d, as the 

input vectors.   

The selection of BMU for each input item, xj, consists of finding the closest map node, mc, by 

Euclidean distance measure, where c is the index given to the best match (Kohonen, 1998): 

||xj −mc|| = mini{||xj −mi||} 
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The batch updating process (Kohonen, 1993) considers the entire input data set at once, over 

a series of iterations. At each iteration, the input data is divided into subsets that share the 

same BMU, mc, and a Gaussian neighbourhood function is applied as a smoothing kernel when 

updating the map (Kohonen, 1998). The neighbourhood function is computed at each map unit, 

where hic(j) is the value at map node mi of the neighbourhood function centred around the best 

matching unit, mc, of data item xj (Kohonen, 2013). That is: 

hic(j)(s) = exp⁡(
−sqdist(c, i)

2σ²(s)
) 

where sqdist(c,i) is the squared Euclidean distance on the map grid between nodes mc and mi;  

σ is a user specified, monotonically decreasing, neighbourhood radius; and s is the iteration 

index (Kohonen, 1998). The value of hic(s) is the same for all data vectors sharing the same BMU, 

and decreases in size as iterations progress. This produces a global ordering to the map when 

the neighbourhood is large, followed by a fine tuning of the map when the neighbourhood has 

reduced. Each map unit, mi, is updated with the weighted average of the n data items in its 

neighbourhood, where the weight of each item is the neighbourhood function. The updated 

nodes are calculated as (Kohonen, 2013; Vesanto, 2000): 

mi(s + 1) =
∑ hic(j)(s)⁡xj
n
j=1

∑ hic(j)(s)
n
j=1

 

Through this iterative method, a set of vectors is constructed to represent the input data, 

which are projected in a topology preserving manner onto a low-dimensional output grid 

(Vesanto & Alhoniemi, 2000). For more details on training, understanding and interpreting 

SOMs, refer to Kohonen (1998) or Kohonen (2001). 

4.3.2 The self-organizing time map 

4.3.2.1 Overview 

Data often consists of multivariate samples at different points in time, and it is useful not only 

to analyze and visualize the dataset as a whole, but also to understand the temporal changes 

that have occurred along the timeline. The SOTM uses the capabilities of the SOM for the 

abstraction of structural changes in spatiotemporal data, providing an exploratory tool for 

temporally dynamic datasets. In essence, the SOTM is a series of vertical 1D SOMs arranged 

next to each other in order of increasing time, and connected through short-term memory.  

Input to the SOTM takes the same format as input to the SOM with the distinction that it is 

split into a distinct number of time periods (for example a set number of months, years or 

decades). The output map of the SOTM is two-dimensional, with the vertical axis representing 

positions in dataspace and the horizontal axis denoting time. Thus, a single image is created to 

convey temporal changes in the data.  

4.3.2.2 Details 

To observe the structure of the dataset at each time unit, t (where t=1, 2, …, T), the SOTM 

performs a mapping of each input item, xj(t) (where j=1, 2, ..., N(t)), from the input space Ω
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(t) onto a one-dimensional array, A(t), of output units, mi(t) (where i=1, 2, …, M). To preserve 

the orientation of the one-dimensional arrays between consecutive timesteps, the SOTM uses 

short-term memory incorporated into the initialization of the map nodes. At the first timestep 

(t=1), the column of map nodes, A(t1), is initialized based on principal component analysis of 

the data belonging to that timestep, Ω(t1), as was described for the SOM. For the remainder 

of the timesteps, the map units are initialized based on the output of the preceding timestep 

(ie. the output vectors of A(t -1)  become the initial values of A(t)). 

During training of the SOTM, adjustment to temporal changes is achieved by performing a 

SOM-type batch update for each time unit, t (ie. batch updates are performed separately for 

each vertical column of nodes, A(t)). The topology preservation of the SOTM is hence twofold: 

the horizontal direction preserves time topology and the vertical preserves data topology. The 

training of the SOTM follows the two standard steps from the SOM paradigm. First, the BMUs 

are located by a time-restricted matching of each data point to the map unit with the nearest 

Euclidean distance. This means, for example, that an input data item belonging to the second 

timestep can only search for its BMU on the second vertical column of nodes. Then, each 

reference vector, mi(t), is updated through a time-restricted version of the SOM batch update: 

mi(s + 1, t) =
∑ hic(j)(s, t)xj(𝑡)
N(t)
j=1

∑ hic(j)(s, t)
N(t)
j=1

 

where s indicates the training iteration, t is the horizontal location on the timeline, and the 

neighborhood, hic(j)(s,t), is restricted to units mi(t): 

hic(j)(s, t) = exp⁡(
−sqdist(c, i)

2σ²(s, t)
) 

This means that only the nodes in each vertical column are updated concurrently. As with the 

SOM, the radius of the Gaussian neighborhood function is initiated with a user-specified 

neighborhood parameter which decreases with each batch update at each timestep.  Though, 

in contrast to the standard SOM, the neighborhood radius only includes vertical relationships. 

Figure 2 provides an indication of the functioning of the SOTM. 

As in Park et al. (2003), the vertical number of nodes at each timestep is determined using an 

empirical method of minimizing quantization and topographic errors. Quantization error of the 

SOTM is defined as the average distance between each input item and its BMU, mc, at each 

timestep, averaged over all timesteps (Sarlin, 2013): 

QESOTM =
1

T
∑

1

N(t)
∑‖xj(t) − mc(j)(t)‖

⁡

N(t)

j=1

T

t=1

⁡ 
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Figure 2: The functioning principles of the SOTM (adapted from Sarlin, 2013), where Ω(t) is the input data consisting 
of xj(t) (j=1,...,N(t)) at timestep t; hic(j) is the decreasing Gaussian neighbourhood function; mc(t) is the best matching 
map unit for the current input data; and mi(t) are the other map units. A one-dimensional array, A(t), is created to 
represent the input data of each timestep. The arrays are arranged in order of ascending time to form the SOTM, 
with horizontally adjacent arrays connected through short-term memory. 

The topographic error is the average proportion of xj(t) (at each timestep) for which first and 

second BMUs are non-adjacent, u(xj(t)), (Sarlin, 2013). The topographic error of the entire 

SOTM is u(xj(t)) averaged over all timesteps: 

TESOTM =
1

T
∑

1

N(t)
∑ u(xj(t))

N(t)

j=1

T

t=1

⁡ 

4.3.2.3 Missing data 

Motivated by the large number of missing values often encountered in hydrological data, we 

follow the approach put forward by Kaski & Kohonen (1996), and earlier generalized for self-

organization overall by Samad & Harp (1992), to allow for partial missing values in a dataset. 

Kaski & Kohonen (1996) assert that the SOM is robust to data with about two thirds of its values 

missing. In particular, when all variables are not available for an observation, only the available 

data are considered in SOM matching. If an input item is missing a value for one or more of its 

variables, this particular input item is mapped based on the values of its remaining variables. 

Hence, a more formal description replaces the right-hand side of the SOM BMU selection 

equation, as follows: 

||xj −mc|| = mini {∑ (xjs −mis)
2⁡

s∈S(xj)
} 

where S(xjs) is a set of positions in data vector xj that are complete (whereas positions of 

missing values are disregarded). 
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4.3.3 Clustering the SOTM nodes 

Clustering refers to a class of techniques that partition data into clusters (groups) with the aim 

that data in each cluster are more similar to each other than to data in other clusters.  It is 

important to extract clusters from a dataset in order to fully explore its properties and produce 

summary information (Vesanto, 2000). The technique of using second-level clustering to group 

the map units of the SOM (the first level of clustering is performed by the SOM itself) was 

introduced by Vesanto (2000) to distinguish groups of similar output nodes. We follow Sarlin 

& Yao (2013) in performing cluster analysis to group the output map units of the SOTM over 

all timesteps. This divides the SOTM into a number of clusters which may include one or more 

map units at one or more points in time (ie. the cluster boundaries may traverse the map 

horizontally and vertically without restriction). This is a particularly useful technique for SOTM 

analysis as it strengthens the horizontal connection of the timesteps. 

In this paper, clustering of the SOTM nodes is performed using a 1D ‘second-level’ SOM of the 

same size as a single timestep of the SOTM. Initialization of this SOM is based on output from 

the final timestep of the SOTM. The use of a SOM for the second-level clustering, rather than 

an alternative clustering method such as k-means, maintains an order to the clusters, ensuring 

that similar clusters are neighbours. This allows for an indexed colour scheme to be applied to 

the SOTM to depict separate clusters. The colouring of the clusters of the SOTM leads to a 

visualization of the changes in cluster structure of the underlying data, with similarly coloured 

clusters representing similar data. Emerging, changing and disappearing clusters will become 

evident through this method (Sarlin & Yao, 2013). 

4.3.4 Interpreting the SOTM with component planes 

As is common in the SOM literature (Vesanto, 1999), the variables of the SOTM may also be 

represented using component planes. Component planes are regular grids with the same 

format as the SOTM output array, representing the values of the individual variables 

contributing to the SOTM. Each node of a component plane shows the value of one variable at 

that node of the SOTM, as nodes at the same grid location represent the same input data on 

all component planes and the SOTM. The spread of values for each variable becomes evident 

on the component planes, as well as the temporal changes in distributions of each variable. 

This enables a variable-wise examination of the SOTM, indicating structural data properties at 

each timestep (vertically) and changes in these structures over time (horizontally).  

4.3.5 Associating variables to the SOTM 

Beyond standard component planes, we can associate additional variables to the SOTM. The 

introduction of a set of variables onto a SOM that has been trained with other variables is an 

innovative approach in using SOMs for water resource applications (Cereghino & Park, 2009). 

This process, known as associating variables, allows the relationship between the two sets of 

variables to be investigated. The available data can be separated into ‘training variables’ and 

‘associated variables’, with the form of the map determined only by the training variables, and 

the associated variables incorporated during the updating stage. That is, the BMUs are found 

based only on the training variables, but then the map nodes are updated using both the 

training and associated variables. This assigns values to the map for the dimensions of the 
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associated variables without them having an effect on the training of the map. This can be 

useful in depicting how external variables compare to the relationships established by the 

training variables.  

For example, a SOM that maps countries based on the state of their environmental conditions 

could have latitude data ‘associated’ to see if there are any patterns that become evident. 

Creating the map using latitude as a training variable would not be useful as the relationship 

between countries and latitude is already well understood, and it may overshadow the 

environmental factors in the formation of the map structure. But it may be interesting to see 

if there are any patterns between groups of countries with similar environmental states, as 

established by the SOM, and latitude.  

The associated variables can be visualized on component planes as described in Section 4.3.4, 

to allow comparison to the training variables. 

4.3.6 Post-processing the SOTM to explore data trends  

For an exploration of how individual data items are trending over time in relation to the entire 

dataset, trajectories of data items may be tracked horizontally across the SOTM. One way to 

do this would be to label each data item at each timestep of the SOTM and track its movements. 

But since the number of data observations is generally much larger than the number of nodes 

at each timestep, the labeled map has the potential to become indecipherable. In addition, a 

simple labeling of each node would not provide information on the movement of a data point 

through the SOTM; the path would also need to be linked across the timesteps, further 

cluttering the map.   

Therefore, a new post-processing step has been developed in this study to provide a 

visualization of the movements of each data point through the SOTM. After the SOTM has been 

trained and clustered, the cluster memberships of each data point are determined at each 

timestep. These cluster memberships are then used as input into a post-processing SOM. As 

the dimensions of the input data for this SOM are timeframes, data mapping to the same 

output map node share a similar trend over time. Therefore, the result is a map depicting data 

that have trended in a similar manner, as well as those that have diverged over the course of 

time.  

4.4 DATA AND IMPLEMENTATION 

4.4.1 Data  

Data for this study were assembled from a number of databases. Water resource indicators by 

country were obtained from the AquaStat database (http://www.fao.org/nr/water 

/aquastat/main/index.stm) of the UN Food and Agriculture Organization (FAO). Detailed 

international trade data, by country and by product, were obtained from the FAOstat database 

(http://faostat.fao.org/). Water footprint data, (indicating the total volume of water used to 

produce goods) by product and by country, were obtained from the WaterStat database 

(Mekonnen & Hoekstra, 2011). Population and GDP information were obtained from the World 

Bank databank (http://databank.worldbank.org/data/home.aspx). The data, summarized with 

http://www.fao.org/nr/water%20/aquastat/main/index.stm
http://www.fao.org/nr/water%20/aquastat/main/index.stm
http://databank.worldbank.org/data/home.aspx
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sources and units in Table 2, occur in consecutive 5 year blocks from 1965-2010, producing a 

dataset of 10 timesteps containing 172 items (countries) each. 

Table 2: Data, units and sources 

Variable Unit Source 

Total renewable water resources per capita (actual) a m3/inhab/yr AquaStat 

Water stress: Freshwater withdrawal as % of total actual renewable water  % AquaStat 

Water content per crop 
m3/tonne of 
crop 

WaterStat 

Import quantities of all agricultural products Tonnes/year FAOStat 

Export quantities of all agricultural products Tonnes/year FAOStat 

Population total World Bank 

GDP per capita 
constant US 
$2005 

World Bank 

a Total actual renewable water resources per capita is defined on the AquaStat database as ‘the maximum 

theoretical yearly amount of water actually available for a country’ considering both surface water and 

groundwater, including inflows from upstream countries and border waterways. 

 

 

Agricultural products have a relatively high impact on global water resources, with over 90% 

of global water use and pollution attributed to agricultural production, and an estimated 76% 

of the virtual water flow between countries due to trade in crops and derived crop products 

(Hoekstra & Mekonnen, 2012). Therefore, only agricultural trade products are considered in 

this study. For more information on water footprints and the virtual water content of various 

commodities, refer to www.waterfootprint.org. 

The net virtual water imports of each country are calculated in cubic metres (m3) per capita 

imported annually (imports-exports).  FAO trade data (imports and exports of all agricultural 

products) for each product and each country, and the total water content required to produce 

over 200 crops and crop products (from the WaterStat database) are used.  

The calculation of virtual water fluxes follows Hoekstra et al. (2011) with the exception that 

global averages of water footprint per crop are used rather than specific country averages as 

the countries of origin of each product are unknown. The total volume of water required for 

production of each crop is used, including green (rainwater), blue (surface water and 

groundwater), and grey water (volume of water required to assimilate pollution). For each 

country and crop pair, the quantity (tonnes) of crop or product imported and exported per 5 

year interval is determined. Next, this traded quantity is multiplied by the water footprint of 

the crop, providing the quantity of virtual water imported to and exported from each country 

by means of each specific crop in each 5 year interval. These quantities are then summed over 

all products for each country, and converted into net imports of virtual water (m3). This method 

uses the ‘top-down’ approach described by Hoekstra et al. (2011) which is very reliant on the 

quality of the trade data (as opposed to the ‘bottom up’ approach which relies more on 

consumption data).  
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The data is subject to some limitations and assumptions. The estimated water footprints of the 

agricultural products used in this calculation are 10 year averages (1996-2005), as they are 

based on climate data. This necessitates the assumption that the water content required to 

grow each crop doesn’t change over time, though in reality water requirements will differ due 

to climatic variations and changes in agricultural technology. Also, as global averages of crop 

water footprints are used rather than country-specific estimates, it is assumed that there is no 

significant variation in water required for a specific crop in different geographic regions. In 

actuality, water requirements will differ between geographic regions due to many local factors 

including soil conditions, precipitation interception, plant types and climate conditions. The 

effects of this regionalization may be included in future studies. Water content information is 

not available for all the items in the trade data, and so some products which appear in the 

trade data are not included in this study. The trade data has inconsistencies that are more likely 

a result of a change in record-keeping practices than actual changes in trade. No imputation of 

missing data has been attempted. The AquaStat data is assembled from a variety of sources 

which were collected intermittently, and is subject to variations in collection and estimation 

methods (http://www.fao.org/nr/water/ aquastat/metadata/index.stm).  

4.4.2 Implementation 

In this study, the SOTM is implemented using extensions to the MATLAB SOM toolbox 

(http://www.cis.hut.fi/somtoolbox). The SOTM is trained using 100 iterations of the SOM batch 

algorithm at each timestep, and a Gaussian neighbourhood kernel with an initial radius of 2.5, 

decreasing to 1. The following training variables are used: net virtual water imports (m3) per 

capita (1965-2010), and available renewable water resources (m3) per capita (1965-2010). 

Data are considered per capita rather than country totals, to prevent spatial differences in 

country size or temporal changes in population affecting the map. The data is transformed 

variable-wise, into a range from 0 to 1. Approximately 12% of the data is missing for each 

variable. Following the method described in Section 4.3.2 of choosing the number of nodes of 

the SOTM, the optimal size of the map is determined to be 10 vertical nodes at each of the 10 

timesteps, for a total of 100 nodes. At each horizontal timestep, the SOTM training process 

maps the countries that share a similar state of reliance on external water resources (based on 

the training variables) to the same vertical node. Each country will map to exactly one node 

per timestep (column of the map), and therefore will appear 10 times on the map from left to 

right, though possibly in different vertical positions.  

After training is complete, the SOTM nodes are clustered into similar groups to investigate the 

general data structure at each timestep, and to visualize trends over the timeline. It is the 

evolution of the clusters (and the countries which are members of them) that is of interest in 

this study. As described in Section 4.3.3, all the SOTM output map vectors are presented as 

input into a new 1D SOM containing 10 nodes, to perform a second-level clustering. This 

process produces 10 ordered clusters of the SOTM map nodes, allowing for an indexed colour 

scheme to be applied.  

The trained (but unlabeled) SOTM is shown in Figure 3, with time on the horizontal axis and a 

vertical column of nodes for each 5 year interval. The nodes of the SOTM are coloured based 

on their cluster membership as determined by the SOM, with Cluster 1 in the lower right, 

http://www.fao.org/nr/water/
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Cluster 10 in the upper left, and a linear colour scale in between. Through this colouring, the 

temporal evolution of the clusters across the entire timespan becomes evident, providing a 

horizontal linkage to the map. Examining the cluster colours on Figure 3, it can be seen that 

the clusters experience a general upwards trend over time (from left to right), with the upper 

clusters disappearing and the lower clusters emerging and growing.  

 

Figure 3: The trained SOTM. Each vertical column is a timestep representing a 5 year interval from 1965 to 2010. 
Each of the 172 countries maps to exactly one of the 10 nodes at each timestep. Clustering (indicated by colour) links 
similar properties across the map. The evolution of clusters through time becomes evident, as the top left cluster 
disappears and the lower clusters expand upwards.   

At this stage, the SOTM in Figure 3 only provides an indication of the existence of a cluster 

structure in the data, and evidence that the cluster structure is shifting over time. Further 

investigation is needed to extract more useful information from the SOTM. The following 

discussion will provide an interpretation of the properties of the clusters in Figure 3. In 

particular, we will: decipher the meaning of the node colours by analyzing the contribution 

from each variable; explore additional general characteristics of countries mapping to each 

section of the SOTM; and track the course of individual countries along the timeline of the 

SOTM. 

4.5 DISCUSSION 
In this study, the non-linear relationship between national virtual water imports and available 

water resources is investigated, and countries with similar dependencies on foreign water 

resources are clustered and tracked over time through the use of a SOTM. The SOTM highlights 

how these clusters of countries have evolved over the period of the study. It will become 

evident how the water dependencies of certain countries have changed in similar manners, 

and which countries were initially similar but have ultimately diverged towards the end of the 

study period. Possible reasons for any divergence between countries may include unilateral 

changes in: domestic water resource availability due to environmental changes, the type or 

quantity of internationally traded agricultural items, agricultural policy or practices involving 
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water use such as restrictions or technological advances, or changing water requirements with 

regional climate changes.  

This section presents the interpretation and post-processing of the SOTM. 

4.5.1 Component planes 

To decipher the properties represented by the node colours in Figure 3, it is useful to explore 

the individual training variables using component plane visualizations as described in Section 

4.3.4. Figure 4 presents a component plane for each variable, depicting changes in the 

distribution of each variable over time. The grids in Figure 4 correspond exactly to the grid in 

Figure 3, with each node representing the same group of countries on each map. As was done 

with the SOTM in Figure 3, a second-level clustering is used to colour the individual component 

planes, with lighter nodes representing low values and darker nodes representing high values 

(though note that the same shades do not represent equal values on each component plane). 

On the first subplot of Figure 4, a clear trend is evident towards a decrease in renewable water 

resources per capita, as the darker clusters fade out and the lighter clusters become more 

prominent over time. On the second subplot, the emergence and expansion of both the dark 

and light clusters over time indicate that the range of net virtual water imports has expanded 

in both directions over time, with 2010 experiencing clusters with both larger and smaller net 

import values than existed in 1965.  

 

Figure 4: Component planes for the variables of the SOTM: a) Renewable water resources per capita, and b) Virtual 
water imports per capita. Lighter nodes represent low values and darker nodes represent high values. Each node 
represents the same group of countries at the same time on both grids, as well as on Figure 3. The difference in 
colouring between the two planes indicates the non-linear relationship between the training variables. 

Since these component planes are separate visualizations of the same map (the SOTM), and 

the nodes on each represent the same groups of countries, general information about the 

clusters of the SOTM in Figure 3 can be gained from an exploration of the component planes 

in Figure 4. It can be determined that the lower right nodes on the SOTM in Figure 3 generally 

correspond to relatively low renewable water resources (lighter nodes) and relatively high 

virtual water imports (darker nodes) on the lower right nodes of the planes in Figure 4. 

Therefore, countries mapping to these nodes could generally be considered more dependent 

on foreign water resources than those mapping higher up on the SOTM. The upper part of the 
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SOTM represents countries with higher renewable water resources (darker nodes on Figure 4), 

but includes countries with both medium and low virtual water imports (medium to light 

nodes). Therefore, the upper left cluster (Cluster 10) in Figure 3 represents a more 

hydrologically self-sufficient state than the lower right cluster (Cluster 1), with an ordered 

range in between.  

Consequently, the trend that is evident on the SOTM, visualized by the overall general colour 

shift over time, is towards greater dependency on foreign water resources.  

4.5.2 Associated variables 

To provide a generalization of the characteristics of countries that may share similar foreign 

water dependencies, information on population, GDP and water stress (where water stress is 

defined as freshwater withdrawal as a percent of total actual renewable water resources) has 

been investigated. This has been done following the method of associating variables, as 

described in Section 4.3.5. In this way, the map has been created based on virtual water 

imports and available domestic water resources, but the information on population, GDP and 

water stress has been added onto the map for comparison. The associated variables have been 

plotted on component planes in Figure 5, again with groups of countries at each node matching 

those of the grids in Figure 3 and Figure 4. We use the same color coding as Figure 4, ranging 

from light to dark (low to high), and denote empty nodes (due to a lack of water stress data for 

any of the countries mapping to them) with white space.  

 

Figure 5: Associated variables: a) population, b) GDP per capita, and c) water stress. Additional characteristics of 
countries mapping to regions of the SOTM are investigated through these associated variables. Each node on the 
three planes corresponds to the same group of countries (as well as to the equivalent nodes on Figure 3 and Figure 
4). 

When compared with the SOTM in Figure 3, it can be seen that countries with the highest 

dependencies on foreign water resources (lower right nodes) tend to be countries with 

medium population levels and high GDP per capita. They also tend to be countries experiencing 

water stress. Countries that are relatively independent of foreign water resources (upper left 

nodes) tend to have lower populations, average GDP per capita, and of course, low water stress.   

4.5.3 Post-processing SOM 

Whilst the general global temporal dynamics of the data distribution can be gleaned from an 

investigation of the unlabeled SOTM in Figure 3, the countries mapping to each node must be 



35 
 

identified in order to understand country-level trends. But due to the large ratio of input data 

items to map nodes at each timestep, labeling of the SOTM has the potential to become 

indecipherable.  

As an example of country-level SOTM labeling, Figure 6 provides labels for each vertical node 

of the 2005 timestep only. The vertical nodes have been rotated to a horizontal orientation to 

accommodate the list of labels, with Node 1 representing the lowest node of the 2005 timestep 

on Figure 3, and Node 10 the uppermost node (the colouring matches Figure 3 to facilitate 

comparison). Overall, it can be seen that the majority of countries map to the lower nodes, 

which as described above, indicate a relatively higher dependence on foreign water resources 

than the upper nodes. This is to be expected from the 2005 data as the SOTM has indicated a 

trend towards greater global dependence on foreign water resources from 1965 to 2010.  

 

Figure 6: Labels for the 2005 timestep of the SOTM (colours correspond to cluster colours from Figure 3). This shows 
where individual countries map on to the SOTM in 2005, with the majority mapping to the lower nodes, indicating a 
high reliance on foreign water resources. 

The lists of individual countries in Figure 6 indicate that many countries of Europe, the Middle 

East, North Africa, and the Caribbean were amongst those particularly dependent on foreign 

water resources in 2005, whereas countries of North America, eastern South America, the 

South Pacific, and western Africa were amongst the least dependent nations. A further 

investigation links Figure 6 to Figure 5, where it was indicated that countries mapping to Node 

1 in 2005 generally have low to medium populations and high GDP per capita, whereas 

countries mapping to Nodes 5 and 6 generally have higher populations and medium to low 
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GDPs per capita (this remains a generalization as these associated factors have not been taken 

into account in the creation of the map, though are of interest in interpreting it).  

Whilst Figure 6 provides a snapshot of the clusters of countries with similar states of 

dependence in 2005, these clusters will not be consistent over all timesteps. Over the years, 

countries will have transferred between clusters as their individual conditions changed. To 

investigate each country’s change over the timeline of the study, as well as to see which 

countries changed in similar ways, it is necessary to identify the countries mapping to each 

cluster of the SOTM at each timestep. As indicated above, with 172 countries labeled onto only 

10 nodes at each timestep, it would prove difficult to interpret the labeled map to extract 

information about individual country trends or to identify countries that are trending similarly.  

Therefore, a technique has been developed to circumvent the need to directly label the SOTM. 

As described in Section 4.3.6, a ‘post-processing’ SOM has been used to group countries that 

have trended in a similar manner in terms of dependence on foreign water resources during 

the study period. The input to this SOM is each country’s cluster membership at the beginning, 

middle and end of the SOTM timeline. This new method reveals patterns of movement on the 

SOTM and clusters of similarly-trending countries.  

The resulting post-processing SOM is shown in Figure 7a. The groupings of countries represent 

those that have followed a similar path of dependency on foreign water resources over the 

years. The quantities are not necessarily comparable within groups. Rather, it is the relationship 

between the virtual water being traded across the borders and the domestic water resources 

available within the country that is being compared. The map is coloured based on the overall 

change in cluster membership (and therefore the change in dependency situation) from 1965-

2010. Countries in the white region have shifted the least in terms of hydrologic dependency; 

countries to the right have moved towards greater hydrologic self-sufficiency, whilst countries 

to the left of the white region have become increasingly dependent on foreign water resources. 

The more intensely coloured regions at the edges represent the greatest increase (on the right 

of the map) and the greatest decrease (on the left of the map) in hydrological independence.  
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a) 

 

b) 

 

Figure 7: a) A post-processing SOM of the clustering of the SOTM in Figure 3. The groups represent countries that 
have moved in a similar manner through the clusters of the SOTM, indicating similar changes in states of hydrological 
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dependence from 1965-2010. In general: the white region represents a relatively constant state of hydrologic 
dependence, the region to the right represents a move towards greater independence, and the region to the left 
represents an increase in dependence on foreign water resources over the timeframe of the study. b) The post-
processing SOM is shown with the z-axis representing overall change in hydrologic independence from 1965-2010. 
Ethiopia had the greatest decrease in hydrologic independence, and Hungary the greatest increase in self-sufficiency. 
It can be seen that the conditions in certain countries (Ethiopia/Congo, and Fiji/Uruguay) were similar in 1965 and 
diverged over the study period. 

The vertical location on the map approximates the starting condition of each country in 1965, 

with the countries that were relatively hydrologically independent towards the top of the map, 

and more dependent on foreign water resources towards the bottom. (Though note that 

within each cluster the list is alphabetized and centred vertically, therefore for example 

Afghanistan to Zimbabwe are all at the same horizontal level as Greece.) Countries mapping to 

approximately the same horizontal position started with similar conditions. Those within the 

same cluster remained similar, whilst those in different clusters diverged over time.  

Figure 7b shows a 3d representation of Figure 7a with the z-axis representing the overall 

change in hydrologic dependence over the timeline of the study. It can be seen that Ethiopia 

and the Congo started with similar conditions in 1965 and diverged, with Ethiopia becoming 

far more hydrologically dependent over the years than the Congo. The same can be seen when 

comparing Fiji and Uruguay which started with similar conditions, but Uruguay became less 

dependent whilst Fiji became more so. 

4.5.4 Verification of the post-processing SOM 

The post-processing SOM in Figure 7 has separated the countries into groups with similar 

trends of hydrologic dependency from 1965-2010. In order to verify that the post-processing 

SOM has produced successful groupings of countries, Figure 8 shows a selection of countries 

from the SOM coloured with their SOTM cluster colours for each timestep (from Figure 3). A 

legend links cluster colour to number, with higher numbered clusters representing greater 

hydrologic self-sufficiency, and lower numbered clusters representing greater dependence on 

foreign water resources.  

The countries in the top right of the SOM (Solomon Islands to Suriname) were relatively 

independent of foreign water resources in 1965, and have only slightly increased their 

dependence over the years. Countries further down the right hand side of the map (Argentina 

to Uruguay) had slightly less initial independence than the countries above them, with a small 

increase in independence over the years. On the left of the map, Norway to Panama began in 

a similar state as Bolivia to Paraguay on the right, but have experienced a large increase in 

dependency.  The countries located in the lower left corner of Figure 7 (Belgium to Saudi 

Arabia) were highly dependent on foreign water resources in 1965, and have continued to be 

so for the duration of the study period.  
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Figure 8: Cluster membership at each timestep of the SOTM in Figure 3 is shown for a selection of countries from the 
SOM in Figure 8. This confirms that the SOM in Figure 7 has clustered countries that are trending in the same manner 
across the SOTM. Colours refer to the clusters in Figure 3. 

4.5.5 Workflow method summary 

The method for the abstraction of dynamic cluster trends that have been developed in this 

study is summarized in Figure 9. This method combines the SOTM with the traditional SOM, 

and adds extensions to the SOTM framework through new post-processing techniques. The 

output is a single visualization of trends in clusters of data from large, multi-dimensional 

datasets with non-linear relationships between variables. Through this visualization, an 

indication of the relative trends experienced by each of the input observations can be attained. 
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Figure 9: Summary of decision support tool method. 

4.6 CONCLUSION 
In this study, countries have been clustered in terms of their dependence on foreign water 

resources, as defined by the non-linear relationship between net virtual water imports through 

the food trade and available domestic renewable water resources. The temporal dynamics of 

these clusters from 1965 to 2010 have been investigated with a SOTM. Overall, a global trend 

towards increasing dependence on foreign water resources has become evident. Individual 

countries have been grouped based on similar movements through the SOTM, and these 

groups are presented in a single visual output that allows determination of countries with 

similar and diverging trends of water resource dependencies over the timeline of the study. 

This study has introduced a workflow method (Section 4.5.5) resulting in a visual support tool 

that may inform national water resource management decisions, which must take into account 

the global flux of water resources due to the virtual water trade. Issues to be considered 

include whether this trend towards foreign water resource dependence is sustainable, and 

what the result of unforeseen alterations in the global food trade in the future may be.  

The use of the SOTM and SOM have provided a means to reduce the large spatiotemporal 

hydrological and trade datasets into a specified number of representative vectors which are 

ordered based on similarity, providing an indication of similar data points. This allows for the 

possibility of further quantitative analysis of trends over the datasets, without having to 

manipulate the vast amounts of individual observations or define the non-linear relationships 

explicitly. The exploratory nature of the SOTM provides overall insights into the dynamic 

cluster structure of the spatiotemporal data. This method of analyzing trends, with the 
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extensions to the SOTM outlined in this study, could be applied to a wide variety of datasets 

and is well suited to ecological and environmental data with missing values and data structures 

that are changing over time.  

Future work on the decision support tool presented here may include improvements in both 

the technological aspects of the method, and in the data used. For example, more regionalized 

water footprint data could be used within this process, which would provide more accurate 

national results. Also, the specifications of the SOTM could be improved through a formal 

framework for evaluating the adequacy of a proposed configuration (such as the number of 

nodes at each timestep), and an extension of the SOTM for a possible projection of visible 

trends into the next time step could be considered.  
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5 PAPER 2 - PARAMETER SELECTION FOR MAP SETUP 

 

This chapter has been published as:  

 

A dimension range representation measure for self-organizing maps 

Clark S, Sisson SA, Sharma A.  Pattern Recognition.  2016; 53: 276-86. 

 

5.1 ABSTRACT 
A common tool in exploratory data analysis, the self-organizing map, or SOM, is used for 

clustering and visualisation to discover patterns in large, high-dimensional data sets. The 

output map may be interpreted to gain an understanding of the structure of the original data 

set, correlations between variables, and the characteristics the clusters formed by placing the 

data on the map. However, if the map does not represent all dimensions of the data in an 

informative way, map interpretation may be misleading. Currently there is no measure of how 

well a SOM represents a data set in each dimension, and therefore how descriptive the map 

vectors are of the full structure of the data they represent. A dimension range representation 

(DRR) measure is proposed to quantify how well represented each dimension of the data set 

is by the map vectors of the SOM. This can be used to choose between different map size and 

shape options to represent a specific data set. Through examples, it is demonstrated how the 

DRR measure is used to inform the choice of map size and shape, leading to more informative 

insight into the original data set through examination of the output map. 

5.2 INTRODUCTION 
Similarities between individual data items are often difficult to discern when observing 

sizeable, high-dimensional data sets. Therefore, certain patterns inherent to the data set may 

evade observation. Clustering and visualizing the data items can aid in gaining insight into the 

characteristics and patterns in the data [1]. When doing so, however, it is valuable to 

understand if the clustering and visualisation represent the characteristics of all dimensions of 

the data set, or if some dimensions are not as well characterized as others.   

A popular clustering and visualization technique, the self-organizing map, or SOM [2], is used 

in the process of exploratory data analysis to extract patterns and similarities from large, high-

dimensional, nonlinear data sets [3, 4]. The SOM method performs data reduction 

(quantization), dimension reduction, and clustering of the data to produce a more manageable 

data set consisting of a smaller set of vectors in a lower dimension. This is accomplished by 

bending and stretching a (typically) one or two-dimensional map grid comprised of 

interconnected nodes to cover the data set. A map vector attributed to each node takes on 

the (high-dimensional) value of the data space occupied by the node. Each data item is 
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assigned to one node, and the map (with assigned data) is presented as output in its one or 

two-dimensional form. The results are a set of groups, or clusters, of similar data arranged at 

each node with similar clusters close to each other on the output map [2]. 

The output map can be interpreted to gain a visual insight into: the shape of the data set, 

correlations between input variables, and any cluster structure present in the data [5]. The 

visualisation enables an analysis of the distribution of the individual variables in the data [6]. 

Investigating the placement of the data on the output map allows structure and patterns of 

the data set to be observed [1]. All data points allocated to the same location on the map are 

understood to have similar features [1], and it is also assumed that the map vectors are 

representative of all the data mapping to them [4]. 

In light of these common interpretations, it is important that the map vectors represent all 

variables (or dimensions) of the data in an informative way. If a map vector does not represent 

certain variables as accurately as others, interpretation of the map in the ways listed above 

may be misleading. An imbalanced representation of dimensions may occur if the map grid 

does not overlay the data of each variable to a similar extent. If the output map represents 

certain dimensions more fully than others, the resulting groups, or clusters, of data assigned 

to each node will effectively represent clusters based only on the more well-represented 

variable(s). In this case, interpretation of the map may not be as revealing about the structure 

of the entire data set, correlations between the variables, the range of the individual variables, 

or the characteristics of the data clusters assigned to these nodes.  

Insight into the characteristics of the data set could be enhanced by ensuring the map vectors 

represent the ranges of all the variables as completely as possible. The size and shape of the 

output map (the number of map nodes and the length/width ratio of the nodes) influence the 

ability of the map to effectively cover the data. Determination of the optimal map size and 

shape is a key challenge in producing a SOM [3, 7], as these ‘setup parameters’ must be 

specified by the user before the data analysis begins, and different parameter choices may 

result in different SOM output patterns [4, 8]. Therefore, it is of particular importance in 

establishing good map coverage to choose the map size and shape that will best represent 

each dimension of the data. When analysing the output map, there is currently no indication 

if any dimensions are not as well represented by the map as others. Inspection of each map 

vector will show the dimension values of the map, but not the portions of the data range 

outside the map in each dimension; what is missed by the map is not evident.  

In this paper, it is shown how the choice of map size and shape influences whether the map 

fits the data better in some dimensions than in others. A ‘dimension range representation’ 

measure (DRR) is presented to explicitly quantify the representation of the data in each 

dimension by the map grid. This measure can be used to inform the choice of map size and 

shape, leading to more accurate insight being gained from interpretation of the map.  

The paper is structured as follows: Section 5.3 reviews relevant SOMs theory and literature; 

Section 5.4 describes in detail the issue to be investigated and introduces the DRR measure; 

and in Section 5.5 the measure is explored on three examples. It is demonstrated that with the 

use of the DRR measure, the selection of map size and shape can be refined to lead to a better 
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fit by the map to the extents of all variables in the data set, therefore providing better 

representation of the data by the map vectors.  

5.3 BACKGROUND  

5.3.1 SOM overview and map training 

The SOM is from the family of artificial neural networks, and performs a type of non-linear 

regression on complex data sets. It allows clusters, patterns and relationships to be extracted 

from large amounts of data without requiring an explicit understanding of the underlying 

correlations between the variables. The topology of the data set is preserved by the 

arrangement of the nodes on the grid, with the spatial location of each map node 

corresponding to a certain subspace of the input data [2]. Similar input items become located 

close to each other on the output map. Clustering is the most common implementation of the 

SOM [9], as clusters and dissimilarities in the data become easily apparent on the map with 

nearby clusters being more similar than distant clusters.  

A SOM is created by initializing a map grid based on the basic input data structure and then 

training (stretching and bending) the grid to better represent the data [5]. Initialisation is 

typically performed by creating a linearly spaced grid along the largest principal component(s) 

of the data set. Map training follows a nonparametric, recursive regression process [10] where 

each item of input data is assigned to a single map node (its best matching unit, or BMU) and 

then the locations of the map nodes are updated to better match the data. In the updating 

phase, each map node is moved to the weighted average of all the data points mapping to it 

and to its neighbours [2]. The weighting is performed by a neighbourhood function that 

decreases in size with each iteration. SOMs notation used in this paper is as follows: Input data 

size: N; D-dimensional input data vectors: 𝑥𝑖  (where i=1…N); Number of map nodes: M; D-

dimensional map vectors: 𝑚𝑗, (where j=1…M); best matching map unit (BMU) for data vector 

𝑥𝑖: 𝑚𝑐. 

For a more detailed explanation of SOM training, see [2, 7, 11]. 

5.3.2 Literature review 

The literature provides limited guidance on the choice of output map size and shape [12]. Since 

much time and experience is required to optimize these parameters [13], the number of map 

nodes is often simply chosen by the heuristic 5 ∗ √𝑁 (for example as in [14]) based only on the 

number of input data items and not considering the output map vectors. This method is the 

default in the MATLAB SOM toolbox [15]. The most recommended and commonly used 

method for choosing map size and shape, though, is by trial and error of a number of maps 

made with different parameters [4, 7]. This involves the assessment of quality measures 

(discussed below) based on the data and the map vectors, as in [16, 17, 18]. An evaluation of 

the cluster structure of the input data is also a frequently used technique to try to match the 

number of output nodes to the number of clusters existing in the data [3]. Map size may also 

be based on the desired visual outcome or degree of generalization required, as in [19, 20, 21, 

22]. For map shape, Kohonen [7] recommends that the ratio of the length and width of the 



47 
 

map is as close as possible to the ratio of the first and second eigenvalues of the data set; this 

is the default shape used by the MATLAB SOM toolbox. Choosing the number and configuration 

of map nodes presents a specific challenge as the SOM does not follow the minimization of a 

single objective function [23], due to the opposing SOM aims of quantization (data reduction) 

and topology-preserving projection (visualisation). Consequently, it is not possible to 

determine map setup based on a maximum likelihood specification. In the absence of an 

objective function, quality measures are therefore commonly used to choose between 

potential map setups [24, 25].  

A variety of SOM quality measures exist, and some are more widely used than others in the 

selection of setup parameters. Most commonly used are: the quantization error, QE (how well 

the map matches the data) [2], and the topographic error, TE (how well the topology of the 

data set is preserved on the map) [26]. Usually, a combination of quantization and topographic 

errors is investigated, to allow for the competing goals of data reduction and topology 

preservation to be considered [24]. Due to the trade-off between these two competing goals, 

as QE decreases TE will generally increase, though not always monotonically. As it is therefore 

not possible to minimise both QE and TE at the same time, the user must determine the 

balance between them. This is often done by examining plots of QE and TE to choose an 

optimal map from a set of maps [24], and is a subjective exercise based on the weighting 

attributed to each by the user. Other measures which are less commonly used include: the 

distortion measure [2], the goodness measure [27], and cluster measures such as the Davies-

Bouldin index [28]. A brief overview of these measures is given here. 

The quantization error, QE, is a common measure of the ability of the relatively smaller number 

of SOM map nodes to represent the relatively large amount of input data. It is a measure of 

map resolution, and quantifies how close the map nodes are to the input data, in Euclidean 

distance. The optimal map for the same input data will be the one yielding the smallest average 

quantization error, if the main priority is vector quantization. Quantization error is defined as 

the average of the Euclidean distances between each data item and its BMU, for all input items: 

⁡𝑄𝐸 =
1

𝑁
∑ ‖𝑥𝑖 −𝑚𝑐‖

2𝑁
𝑖=1  . QE is useful for comparing the SOM to other clustering or vector 

quantization methods, though it is not particularly useful on its own for comparing maps with 

different numbers of nodes as it decreases with increasing map size. Topographic error, TE, is 

a measure of the preservation of the topology of the input data on the output map. It is defined 

as the proportion of times the first and second BMUs are not nearest neighbours on the map 

grid, summed over all the data points. For each data point, the BMU and second BMU are 

checked to see if they are adjacent: ⁡𝑇𝐸 =
1

𝑁
∑ 𝑢𝑥𝑖
𝑁
𝑖=1  , where 𝑢𝑥𝑖 = 1 if the first and second 

BMUs of 𝑥𝑖 are nearest neighbours, 0 otherwise. A single topographic error value represents 

the entire map, with a higher value indicating more imperfect topological representation of 

the data by the map, and a value of zero indicating perfect topology preservation. The 

distortion measure, DM, is similar to QE, but differs in that each squared distance between a 

data point and map unit is weighted by the value of the neighbourhood function. While QE 

considers distances between each input, 𝑥𝑖, and it’s BMU, 𝑚𝑐, the distortion measure includes 

distances between each input, 𝑥𝑖 , and all map units, 𝑚𝑗 , with these distances weighted 

according to the neighbourhood function, ℎ𝑖𝑐, for the BMU of that particular input value. DM 
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is defined as: ⁡𝐷𝑀 = ∑ ∑ ℎ𝑖𝑐‖𝑥𝑖 −𝑚𝑗‖
2𝑀

𝑗=1
𝑁
𝑖=1  . The goodness measure, C, combines QE and 

the distance on the map grid from the data point to the first and then the second BMU, via 

nearest neighbours. Distances are calculated in input space along the surface formed by the 

SOM, and averaged over all data points. The goodness measure can be used to choose maps 

that do not fold unnecessarily. Cluster measures, based on the ratio of within-cluster and 

between-cluster variation, are often used for estimating the number of clusters existing in a 

data set [29]. The goal is to ensure that the data within each cluster is as similar as possible, 

and as different as possible from data in other clusters [30]. The SOM output map size is often 

chosen based on the number of clusters that are believed to exist in the input data, with the 

number of map nodes matching the expected cluster number [3]. The Davies-Bouldin Index 

provides a measure of a certain clustering of a data set, with lower values indicating better 

clustering. This index reports the ratio of within cluster scatter to the separation between 

clusters, looking at each cluster and its most similar one.  

The literature also offers some research defining the spread of data covered by a SOM, 

focussing on the fraction of variance unexplained (FVU). Lee [31] used the square root of the 

FVU to measure network error in neural networks. Akinduko & Mirkes [32] define FVU as the 

dimensionless least square evaluation of error, and use this to compare SOMs produced by 

different methods of initialization. Mirkes [33] uses the FVU to set the number of nodes in a 

growing SOM (GSOM). The numerator of the FVU is the sum of squared distances from the 

data to the approximating line (ie. the grid line connecting the two nearest map nodes), and 

the denominator is the sum of squared distances from the data to the data mean [32]. The 

FVU is defined as: ⁡𝐹𝑉𝑈 =
∑ 𝑑2(𝑥𝑖)
𝑁
𝑖=1

∑ ‖𝑥𝑖−𝑥̅‖
2𝑁

𝑖=1

 , where 𝑑(𝑥𝑖) is the distance from the data point to the 

grid (including nodes and connecting lines between nodes). The FVU is essentially the ratio of 

the QE to the variance of the data. It has not been developed beyond a 1-dimensional SOM, 

and it seems complications may be encountered in a 2D SOM when the direction to the BMU 

and to the mean are not always the same, and may even be in opposing directions.  

5.4 PROPOSED MEASURE 
To our knowledge, no measure currently exists of how well a SOM represents a data set in each 

dimension, and therefore how descriptive the map vectors are of the full structure of the data 

assigned to them. Such a measure will indicate if the map vectors provide more accurate 

information on some dimensions of the resulting data clusters than others. 

5.4.1 Importance of ensuring a good fit of the map to each dimension 

The creation of a SOM is based upon the assumption that the features of the data set can be 

captured with a one-dimensional line or a two-dimensional rectangle [1]. However, two issues 

are encountered when matching a map to a data set: 1) the map will not ever reach the edges 

of each dimension, and 2) the map may reach closer to the edges of some dimensions than 

others causing an imbalance in their representations. These issues are expanded in the 

following two paragraphs. 
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The updating step of the SOM training algorithm entails the location of each map node being 

updated based on the location of the data points closest to it as well as the data points closest 

to the neighbouring nodes. The involvement of the data assigned to the neighbouring nodes 

results in the nodes being drawn towards each other and towards the centre of the data, 

ensuring that the boundary of the SOM grid will not quite ever reach the boundary of the data 

[9]. Because of this, nodes near the edge of the SOM come to represent larger portions of the 

input space than the interior map nodes [9]. This can lead to a loss of information being 

described by the map vectors at these edge nodes, due to the higher dispersion of data values 

allocated to each node.  This is an important consideration in most SOMs applications as the 

extremities of complex, real-world data sets often contain valuable information which may not 

be captured on the SOM.  

Furthermore, a data set will commonly have different distributions of data in each of its 

dimensions, so the map may come to have a larger proportion of data mapping to a single edge 

node in some dimensions than in others. For example, it can be imagined that a rectangle 

attempting to represent a high-dimensional data set will not necessarily be able to reach the 

same distance towards the boundaries of all of the dimensions. If the map does not reach the 

extremities of some dimensions as well as others, the nodes to which the outer data is 

allocated will have a larger spread of values in the under-represented dimension(s). Data 

assigned to a node may match the node’s corresponding map vector very well in some 

dimensions and not so well in others. When interpreting the clusters created by placing the 

data on the map, this leads to less information being revealed about these dimensions 

compared to the others.  

In order to investigate how well a map represents the data in each dimension, it is currently 

necessary to perform a detailed visual investigation of plots of 2- or 3-dimensional subsets of 

the data with the map overlayed (as shown in Figure 1 for 2-dimensional data). This technique 

is clearly infeasible for high-dimensional data, as it involves too many plots to visually assess.  

 

Figure 10: A synthetic two-dimensional data set representing a uniform grid (grey dots), with different SOMs 
overlayed (black squares). Each of the SOMs consists of 16 nodes in a variety of configurations. On each plot, the 
circled data are all allocated to a single node. On the plots from left to right, the data assigned to a single node 
becomes more dispersed. In the centre plot, the data is more dispersed in the Y dimension than the X dimension, 
indicating that assumptions about data characteristics based on the map vector for that node would be more 
accurate for the X variable. On the right hand plot, no information is gained about the values of either the X variable 
or the Y variable, as the node represents data from 100% of the range of both variables. 
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Figure 10 shows a synthetic two-dimensional data set in a uniform grid (grey dots), with a 

selection of trained SOMs overlayed (black squares). Each SOM consists of the same number 

of nodes (16) in different configurations. On each plot, the data allocated to a single node is 

circled. It can be seen that this circled data comprises certain (possibly different) proportions 

of each dimension. 

On the first plot, data from 22% of the range of the X dimension and 22% of the range of the Y 

dimension are allocated to the corner node. On the second plot, 11% of the range of the X 

dimension, and 44% of the range of the Y dimension are allocated to the example node. The 

cluster of data created at this node is therefore more closely related to each other in the X 

dimension. The output map will provide more detailed information with respect to the X 

variable for the cluster members than for the Y values. Interpretation of this map would also 

imply the data set was rectangular rather than square, as the range of Y values of the map 

vectors is much smaller than the range of X values. On the third plot, data from 100% of the 

range of both dimensions is represented by the example node. Therefore, no information 

about either the X or Y values of the data clustered at this node would be gained by inspection 

of the map.  

When analysing the maps to gain insight into the data set, it can therefore be seen that a map 

representing the extents of some dimensions better than others may lead to: 

• a generalized assignment of map vector values to same-cluster data that are in fact 

very diverse (specifically, each node of the second map of Figure 10 will attribute the 

same Y value to half of the range of that variable’s data), and 

• an under-estimation of the size of the data with respect to the under-represented 

variable(s) (specifically, in Figure 10 the second map will indicate the data has a much 

larger range in the X dimension than the Y dimension).   

5.4.2 The DRR measure 

A ‘dimension range representation’ measure (DRR) is proposed to quantify how well 

represented each dimension of the data set is by the map vectors of a SOM. This measure can 

be used to choose between different map size and shape options to represent a specific data 

set.  

As discussed in Section 5.4.1, due to the training process of the SOM the outer map nodes will 

never quite reach the outer boundary of the data, leaving a gap between the boundary of the 

map and the boundary of the data set. The amount of data outside the map will vary across 

the dimensions (Figure 10 indicates how different maps may reach closer to the boundaries of 

the data in one dimension than in others). No matter how diverse, the data outside the map 

boundaries will be allocated in a group to the closest map node.  

To illustrate what is being measured by the DRR, the boxplot [34] is used in Figure 11 to depict 

the coverage of the map over the data, for each dimension of a synthetic 3-dimensional data 

set. The three dimensions of data are shown separately (white boxplots) with the 

corresponding map ranges for each dimension (black boxes) to the right of them.  This 

visualization removes the need to plot the data points and overlayed map nodes in dimension 



51 
 

pairs in order to inspect map coverage, as was done in Figure 10. The boxplot gives an 

indication of the dispersion and skewness present in the data, as ranked data is split into four 

even groups, each containing a quarter of the data. Due to the non-normal distributions of 

data commonly used in SOMs applications, all outliers are included within the whiskers of the 

data boxplots. The map ranges are represented as solid boxes next to each dimensions’ data 

boxplot.  This comparison of the data and map boxes indicates which dimensions, if any, are 

less well covered by the extents of the map. Data that is outside (above or below) the range of 

the map will be assigned to the closest boundary node, and it is this data that is being measured 

by the DRR. 

It is evident on Figure 11 that in dimension 1 the map does not cover even the inner 50% of 

the data; in dimension 2 the map reaches partway into the upper and lower ranges of the data; 

and in dimension 3 the map reaches the lower boundary of the data and comes closer to the 

upper boundary than the other map dimensions. Therefore, the range of dimension 3 of the 

data is best represented by this particular map, and an analysis of the map vectors and the 

clusters of data produced on the output map will reveal more information about variable 3 

than variable 2, and to a lesser extent, variable 1. 

 

Figure 11: Boxplots of a 3D synthetic data set (white) and its map grid (black) provide a visual indication of the 
coverage of the data by the map, separately for each dimension. The data range is the same in each dimension, but 
the map does not cover the data to the same extent for each dimension (for this data set, dimension 3 is best 
represented by the map). In this way, many dimensions can be shown on a single output, allowing all variables to be 
investigated simultaneously. The data outside the range of the map (where the boxes don’t overlap) becomes 
clustered together at the edge of the map. It is this data that is quantified by the DRR measure. 

The DRR measure assesses the maximum intra-cluster spread of data in each dimension that 

is assigned to a single node. For each dimension, the DRR measure is quantified by investigating 

the maximum difference between all data points allocated to each map node. The node with 

the greatest range of assigned data is determined in each dimension. This range of data is then 

calculated as a proportion of the overall range of values in that dimension. The result is that 

for each dimension, d, the maximum proportion of the input data range assigned to a single 

node of a map is given by the DRR measure: 

𝐷𝑅𝑅(𝑑) = max
𝑗

max
𝑖𝑗

(𝑥𝑖𝑗(𝑑)) − min
𝑖𝑗

(𝑥𝑖𝑗(𝑑))

max
𝑖
(𝑥𝑖(𝑑)) − min

𝑖
(𝑥𝑖(𝑑))
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where ⁡ 𝑥𝑖(𝑑)⁡  are all the data values in dimension d, and ⁡ 𝑥𝑖𝑗(𝑑)⁡  are the data values in 

dimension d that are assigned to map unit j. 

The DRR measure therefore provides an indication of the largest proportion of each dimension 

that is assigned to a single node. This measure differs from the commonly used QE in that 

whilst QE quantifies the average distance of all data points from their assigned node to assess 

overall quantization, the DRR measure is concerned with the diversity between data items 

assigned to the same node. This gives an indication of how well the corresponding map vector 

will represent the assigned data and how much insight the trained map will provide about each 

variable.  

5.5 EXAMPLES 
The DRR measure is illustrated on two synthetic examples and one real-world example. Using 

this measure, we investigate if an optimal number and configuration of map nodes can be 

selected that will ensure the maximum coverage of the data in each dimension. 

The first example highlights how the DRR measure can be used to choose an optimal map size 

from a subset of map size options suggested by the frequently used QE and TE measures. The 

second example shows how the DRR measure can be used to choose an optimal map shape, 

for a user-determined number of nodes. These examples involve 3- and 2-dimensional data 

sets, respectively, mapped to 2-dimensional grids. This allows for straightforward concept 

visualisation, but this method is of most use when the data set is of much higher dimension 

than the map grid, and visually investigating the coverage of the map over the many 

dimensions of the data would not be feasible.  

The third example applies the DRR measure to an investigation of a real-world data set in four 

dimensions (the progress of Millennium Development Goal 7C with respect to water and 

sanitation) in which it is used to improve insights into the clusters of countries with similar 

progress towards the four aspects of the goal. 

The examples have been produced with the aid of the MATLAB SOM Toolbox, employing the 

batch training algorithm and a Gaussian neighbourhood function. For the first example, map 

configurations have been chosen to correspond to the ratio of the two largest eigenvalues of 

the data. 

5.5.1 Example 1: Map size selection  

A 3-dimensional random data set is distributed uniformly on the unit cube, as shown in Figure 

12a. We aim to create a SOM with an ideal number of nodes to ensure that each of the three 

dimensions is represented as fully as possible by the trained map.  

To begin, the QE and TE measures are used to obtain a subset of potential map sizes based on 

the goals of data quantization and topology preservation. Plots of QE and TE versus the number 

of map nodes, in Figure 12b, indicate that there are a number of potential map sizes that could 

be chosen for this data set based on attempting to jointly minimize QE and TE, such as in the 
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vicinity of 90 or 120 nodes. Incorporation of the DRR measure can lead to these options being 

refined. 

  

Figure 12: Random 3D data. a) 500 data points are distributed uniformly over 3 dimensions.  b) Plots of quantization 
error (QE) and topographic error (TE) versus the number of nodes are often used together to choose an appropriate 
map size to best represent the data (by seeking to minimise both). 

The DRR measure indicates that the maximum proportions of each dimension (X, Y, and Z) that 

become assigned to a single node with map size 90 are: 34%, 44%, and 36% respectively. With 

120 nodes, the proportions assigned to a single node are: 39%, 52% and 32%. This implies that 

a map with 90 nodes will provide improved coverage (lower proportions of each variable 

allocated to a single node) over the X and Y dimensions than a map with 120 nodes. The map 

vectors corresponding to these nodes will therefore provide more information about the 

spread of the X and Y variables of the data.  

The DRR measure is therefore able to supplement the currently available information used in 

map size selection, leading to a map that better reveals the characteristics of each variable. 

When comparing choices with similar QE and TE values, the information provided by the DRR 

has been informative in choosing between possible map sizes, as in this case it appears the 

smaller map will be preferable even though QE decreases monotonically with increasing map 

size. 

5.5.2 Example 2: Map configuration selection 

As mentioned in Section 5.3, the number of map nodes (and therefore the number of clusters 

in the output) is often pre-determined by the user based on criteria other than quality 

measures, such as the desired level of accuracy of the output information. Once the number 

of nodes has been selected, there is also the option for the user to specify the node 

configuration (the length and width of the map grid) and the specified length and width will 

have an effect on how much information is retained from each of the dimensions, as described 

in Section 5.4.1. The DRR measure can be used to inform this choice by providing information 

on how well the grid overlays each dimension of the data, for each grid configuration option.  

This process is depicted in Figure 13. The left hand plot shows a data set of 800 points in two 

dimensions (data adapted from [11]). We aim to create a SOM that represents the large data 

set with a much smaller set of map nodes. For this example, we assume the user has specified 

a map size of 15 nodes in the desire to balance output accuracy and generalisation, and to 
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provide an easily observed number of output clusters. Clearly, a grid of 15 nodes could be 

configured either as 1x15 or 3x5 nodes. 

The centre and right hand plots of Figure 13 show the 1x15 and 3x5 map grids covering the 

same data set. Data points that are assigned to a single (example) node have been highlighted 

with circles on each of these plots.  

 It can be seen on the 1x15 map that the data set will be assigned to nodes roughly in vertical 

slices; the data assigned to each node effectively forms a vertical band from top to bottom of 

the data set. Data points with low, medium and high values of dimension Y are assigned to the 

same node. This indicates that the information that can be gained by investigating the groups 

of data assigned to each node pertains mostly to the differences in the values of dimension X.  

 

Figure 13: Data set of 800 points in two dimensions [11]. Maps with 15 nodes (black squares) are trained to represent 
the same data set with different configurations (1x15 in the centre, 3x5 on the right). Data that plots to a single map 
node are highlighted with circles on the centre and right plots. It is evident that nodes in the 3x5 configuration 
represent a smaller range of the Y dimension of the data set than nodes in the 1x15 configuration, and therefore the 
map vectors associated with these nodes will better characterize the data assigned to them. 

On the right, the 3x5 map shows the data is split into more even groups horizontally as well as 

vertically. In this case, data assigned to a single node may only have either high, medium, or 

low values of dimension Y. This indicates an improvement in insight that will be gained from 

investigating the data assignments and the map vectors, as the map vectors will better 

characterize all dimensions of the data assigned to them. Now each node will provide more 

accurate information on both dimension X and dimension Y values of the clusters of data 

assigned to it, and there will be more intra-cluster similarities between data assigned to each 

node.  

It is apparent from Figure 13 that the specified map shape will affect the representation of the 

data by the map vectors, even though the number of nodes in the map remains the same. 

Using the DRR measure, a set of map configurations may be tested to determine which 

provides the best coverage for all dimensions of the data. This will avoid the map being trained 

to effectively represent only a subset of the variables, as in the centre plot where the map 

vectors predominantly represent differences in variable X. Using the DRR measure, it has been 

determined that nodes of the 3x5 grid represent a smaller range of the Y dimension. This can 

be confirmed visually on the 2-dimensional example in Figure 13, but would be difficult to 

visually assess in higher dimensions. 
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5.5.3 Real-world example: Achievement of Millennium Development Goal Target 7.C 

The DRR is applied to an analysis of the achievement of the United Nations’ Millennium 

Development Goal Target 7.C: ‘Halve, by 2015, the proportion of people without sustainable 

access to safe drinking water and basic sanitation’. The aim in creating a SOM from this data is 

to produce a visual clustering of countries, based on similar levels in each of the four areas of: 

improved rural and urban water sources, and improved rural and urban sanitation facilities. 

The goal is to produce clusters of countries with similar conditions to visually compare the 

relative state of development (with respect to water and sanitation) amongst the countries. 

The SOM is a useful method for this data to provide not only a high level visual overview of 

global conditions, but also an indication of countries in similar stages of development with 

regards to water and sanitation.  

Data has been obtained from the Millennium Development Goals Database of the United 

Nations Statistics Division [35] (a detailed description of the data can be found on the website 

of the WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation [36]). The 

data set, as shown in Figure 14, consists of 142 countries and the following four variables (2012 

data): 

• Proportion of rural population using improved drinking water sources 

• Proportion of urban population using improved drinking water sources 

• Proportion of rural population using improved sanitation facilities 

• Proportion of urban population using improved sanitation facilities 

Determining groups of countries with similarities in each of the four variables is infeasible by 

visual inspection alone (as is evident by the complexity of Figure 14). Therefore, a grouping and 

visualisation method such as the SOM is beneficial for finding countries with similar patterns 

across all four variables. 

A SOM trained with this data using default setup parameters would consist of 64 map nodes 

in a 16x4 configuration. The SOM constructs groups at each of the 64 nodes, consisting of 

countries with similar levels in each of the four variables. In the output map created with 

default parameters, though, 49 out of the 64 groups are assigned only 0, 1 or 2 countries.  

For this particular application, larger clusters would be desirable in order to draw conclusions 

about countries with similar states of water and sanitation development. In order to obtain a 

more substantial number of countries in each group to allow for comparisons, whilst also 

maintaining enough groups to allow differences to be evident, we aim for approximately 24 

nodes. This user-specified number of nodes should provide larger groups of countries, whilst 

maintaining a sufficient number of groups to show the various patterns in the data (though of 

course the user may have chosen any number of nodes that they preferred).  
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Figure 14: United Nations’ Millennium Development Goals data consisting of 142 countries and 4 variables. Groups 
of countries with similar states of development with regards to usage of improved rural and urban water and 
sanitation facilities are not obvious from a visual inspection of the data set. Due to minimum text sizes, not all data 
is labelled. 
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It is now important to find the best configuration of the 24 nodes (4x6 or 8x3) to provide the 

most explanatory groupings with regards to the four variables. This will be done using the DRR 

measure.  

We will start with the 4x6 map. Figure 15 shows the SOM (black squares) plotted over the data 

in dimension pairs (grey dots) for a map with 24 nodes in a 4x6 configuration. It can be seen 

that the map does not come close to the boundaries of the data for any dimension, except in 

the top right corner which represents the highest values of each variable. In particular, the 

map does not spread far in the ‘urban water’ dimension, compared with the other dimensions. 

It appears that the map only covers approximately the upper 40% of the range of urban water 

values.  

 

Figure 15: A SOM (black squares) with 24 nodes in a 4x6 configuration overlaying the input data (grey dots) in plots 
of all combinations of dimension pairs. It is clear that the map does not come close to the outer boundaries of the 
data set in any direction except the top right corner. The urban water dimension is the least well covered by the map. 

Figure 16 shows boxplots representing the coverage of the map over the data for each of the 

four dimensions (rural water, urban water, rural sanitation, and urban sanitation), giving a 

visual representation of the DRR measure. The white boxplots represent the (standardized) 

data for each dimension, and the black boxes are the corresponding map ranges. From Figure 

16, it can again be seen that the urban water dimension is not well covered by the map.  A 

large portion of the lower data range is not overlapped by the map range. The data in this 

lower region will all be assigned together to the nearest map node. In comparison, rural and 

urban sanitation, and rural water have more complete coverage by the map.  
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Figure 16: a) Boxplots of the data (white) and the map (black). The four dimensions are shown from left to right: 
rural water, urban water, rural sanitation and urban sanitation. b) The 4x6 SOM (black squares) overlayed on two 
dimensions of the data (grey dots). Circled data is all represented by a single node. Interpretation of the cluster at 
this map node will not provide much information on the state of urban water for the member countries. 

The second plot of Figure 16 highlights with circles the set of data points that are assigned to 

a single node of this 4x6 map. The DRR measure indicates that the proportions of each 

dimension (rural water, urban water, rural sanitation and urban sanitation) that map to this 

node are: 41%, 92%, 42% and 48% respectively. Information gained from interpreting the 

output map will not contain much insight into the state of urban water for the countries 

assigned to this node, as the proportion of the urban water range covered is so large. These 

countries and their respective values for each variable (% of population with access to 

improved water and sanitation facilities) are listed in Table 3. 

Table 3: Percentages of the population with access to improved urban and rural water and sanitation facilities, for 
countries that are assigned to a single node. The DRR measure indicates that this node covers 92% of the range of 
urban water values in the input data. When interpreting the map, little information will be gained about the state of 
urban water in this group of countries. 

Country 
Rural 
Water 

Urban 
Water 

Rural 
Sanitation 

Urban 
Sanitation 

Chad 45 72 6 31 
Congo 39 96 6 20 
DRC 29 79 33 29 
Haiti 47 75 16 31 
Kenya 55 82 29 31 
Madagascar 35 78 11 19 
Mauritania 48 52 9 51 
Mozambique 35 80 11 44 
Nigeria 49 79 25 31 
Papua New Guinea 33 88 13 56 
Sierra Leone 42 87 7 22 
South Sudan 55 63 7 16 
Togo 40 91 2 25 
United Republic of Tanzania 44 78 7 25 

This single map node has data mapping to it from 92% of the range of the urban water 

component (Mauritania, with 52% access to improved urban water sources is in the same 

grouping as the Congo with 96% access). Therefore, the map vector corresponding to this node 

is not as descriptive of the urban water dimension of its allocated data points as it is of the 

other dimensions, and useful information about the state of urban water amongst its member 
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countries will not be revealed. The cluster formed at this node is effectively a cluster based 

only on the other three components.  

This is not the case with other nodes of the same map, though, such as the node detailed in 

Table 4 for which the low DRR values indicate a good clustering in all dimensions. 

Table 4: Low DRR values in all variables indicate this is an example of a node which provides good information about 
each of the 4 variables of the member countries. 

Country 
Rural 
Water 

Urban 
Water 

Rural 
Sanitation 

Urban 
Sanitation 

Estonia 98 100 94 96 
Serbia 99 99 96 99 
Egypt 99 100 94 98 
Bosnia & Herzegovina 99 100 92 99 
United Arab Emirates 100 100 95 98 
Malaysia 99 100 95 96 

The DRR measure shows that the coverage of the map over the data can be improved by 

changing the node configuration to 8x3. This configuration will reduce the proportion of the 

range of each dimension plotting to individual nodes. Table 5 shows the results of applying the 

DRR measure to each map configuration. The maximum proportions of the data range of each 

variable assigned to a single node are given for the 4x6 configuration and the 8x3 configuration. 

In particular, the spread of the urban water component represented by a single node is 

reduced from 92% to 58%. Inspection of the map vector corresponding to this node will now 

provide more accurate information about the state of urban water in these countries. 

Table 5: The DRR measure (maximum proportion of the range of each dimension of the data that becomes 
represented by a single node) on a 4x6 map and an 8x3 map. Lower values indicate the map is spread more effectively 
over the data. The coverage of all dimensions by the map is improved by changing from a 4x6 configuration to 8x3, 
with the most notable improvement being for the urban water variable. 

Configuration Rural 

water 
Urban 

water 
Rural 

Sanitation 
Urban 

Sanitation 
4x6 41% 92% 42% 48% 

8x3 38% 58% 33% 43% 

Figure 17 indicates in circles the data assigned to this single node with the 8x3 configuration. 

In comparison to Figure 16b, is can be seen this is a considerable improvement in the 

representation of the urban water dimension by the map. 
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Figure 17: The 8x3 SOM (black squares) overlayed on two dimensions of the data (grey dots). Circled data is all 
assigned in a group to a single node. The 8x3 configuration provides better segmentation of the data than 4x6, as a 
smaller proportion of the range of urban water is now represented by this node. The map vector related to this node 
will now provide more information about the urban water dimension of the data points it represents. 

As confirmation of the improvement in the clustering of the data as a result of applying the 

DRR measure, Figure 18 shows the Davies-Bouldin cluster index on the nodes of the 8x3 

configuration (right) compared to the 4x6 configuration (left). The 8x3 map leads to fewer large 

values of the index, indicating better clustering. 

 

Figure 18: Davies-Bouldin indices for the 24 nodes in 4x6 (left) and 8x3 (right) configurations. Lower values indicate 
better clustering. 

5.6 CONCLUSION 
The DRR measure has been introduced to quantify how well a SOM represents each dimension 

of a data set, and therefore how representative the resulting clusters at each node are of the 

structure of the data. This will indicate if any dimensions of input data are under-represented 

in the creation of the map. We have shown that the data may match the allocated map vector 

better in some dimensions than others, and yet the map vector will be interpreted as being 

representative of the data in all dimensions. 

The measure may be used in conjunction with existing SOM quality measures to inform the 

choice of the number and configuration of output map nodes. Incorporation of the DRR 

measure in the map setup process allows for comparison between competing map sizes and 
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shapes attempting to represent the same data set, and will reassure the user that the extents 

of the data are being reached by the map grid as fully as possible in each dimension. 

This study has been conducted under the assumption that each dimension of the data is of 

equal interest to the user. The choice to incorporate this measure into the selection of map 

setup parameters is dependent on the importance of representing as much of the extremities 

of the data of each variable as possible. This must be determined by the user through 

knowledge of the data set. 

Future work may include the use of the DRR measure to aid map size and shape selection in 

an automated way (in combination with other quality measures). It may also be used to assist 

in map size selection for variants to the SOM. Automatic, or user-specified, weighting of the 

importance of dimensions could be investigated, as could the response of the measure to noisy 

and redundant dimensions. 
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6 PAPER 3 - NONLINEAR MANIFOLD REPRESENTATION 

 

This chapter has been published as:  

 

Nonlinear manifold representation in natural systems 

Clark S, Sisson SA, Sharma A.   Environmental Modelling & Software.  2017; 89: 61-76. 

 

6.1 ABSTRACT 
Natural systems often contain rhythmically fluctuating individual components which, when 

combined, can result in nonlinear patterns such as cycles, helixes, and parabolas. The self-

organizing map (SOM) is a widely used artificial neural network for exploratory data analysis of 

high dimensional, multivariate data sets, however it encounters limitations when dealing with 

such highly nonlinear patterns. The SOMersault method is an expansion of the SOM, effective 

for gaining an understanding of patterns and clusters in natural data sets containing a low 

dimensional nonlinear manifold set amongst complex high dimensional data measurements. 

With the SOMersault, data clusters become ordered with respect to the nonlinear degrees of 

freedom in the data, and patterns extracted are closely related to the data they represent. 

Results are shown on synthetic data and a real world data set involving water scarcity and 

storage relationships in a global set of river basins, with clustering and pattern extraction 

improvements displayed visually and quantified through a new set of geodesic error measures.    

6.2 INTRODUCTION 
Natural systems (e.g. environmental, ecological, meteorological, and biological) are often 

characterised by nonlinear relationships between the individual system components. In nature, 

countless physical and chemical factors simultaneously exert their influences on the state of 

structures and organizations. Out of this complexity, however, simpler natural spatial and 

temporal patterns can emerge: waves, parabolas, v-shapes, oscillations, spirals, temporal 

cycles, and helixes are each the product of combinations of innumerable complex interactions. 

In the analysis of natural formations, rhythms and organizations, it is therefore beneficial to 

extract information from these more basic patterns (Adam (2006), Stewart (2008), Frank 

(2009), Streit (2015)).  

The self-organizing map, or SOM (Kohonen, 2001), is an exploratory data analysis technique 

that is particularly suitable for finding patterns and producing clusters in data with complex, 

and potentially undefined, relationships between variables. A type of artificial neural network, 

the SOM is able to analyse large amounts of high dimensional data without requiring an explicit 

understanding of the underlying relationships. The SOM is also resilient to data sets with noisy 

or missing data (Kohonen, 2001), issues that are common to data collected in the field. These 
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attributes make the SOM a popular technique for exploring natural spatiotemporal data sets 

(Park (2003), Agarwal & Skupin (2008), Steynor (2009), Cereghino (2009), Morioka (2010), and 

Adeloye (2012)). A data set is summarized and visualized with the SOM method into a low 

dimensional representation of the predominant patterns present in the data. To discover these 

patterns, a mesh of connected nodes (usually rectangular) is effectively stretched over the set 

of input observations and then trained until the location of the map nodes best represents the 

distribution of the data. A prototype vector associated with each map node takes on the value 

of the location of the data space that the node occupies. Each data point is matched to its most 

similar (nearest) node. Generally, there are far fewer map nodes than data points, and the data 

becomes clustered into subsets that share the same nearest node. Therefore, without 

requiring any prior knowledge of potential patterns existing in the data, each prototype vector 

comes to represent a prevalent pattern, the data points are clustered into groups sharing the 

same patterns, and the characteristics that are shared by similar data points can be recognized.   

The performance of the SOM is known to have some limitations, particularly when the data set 

is characterized by an underlying nonlinear, low dimensional pattern (Demartines (1997), 

Zhang (2004), Ota (2011), Shao (2015)). These limitations can affect the pattern extraction and 

clustering results of the SOM. Many seemingly complex natural systems do have an intrinsic 

low dimensionality, even though the data measurements may be of high dimension. In these 

cases, few variables have much variation in the data set compared to the number of measured 

variables, and the high dimensional measurements are essentially indirect measurements of 

the underlying low dimensional source that cannot be, or has not been, measured (Tenenbaum 

(2000), Zhang (2004), Ghodsi (2006)).  

This low dimensional source (or geodesic surface or manifold) may be determined using 

dimension reduction, or manifold learning, techniques. The representation of the data set 

obtained through these techniques characterises the data with the minimum number of 

parameters required to explain its properties (Van der Maaten, 2009). The coordinate axes of 

the low dimensional reduction represent the dimensions that vary meaningfully in the high 

dimensional data (Tenenbaum, 2000). Dimension reduction aids in classification and 

visualization of high dimensional data (Van der Maaten, 2009), which are the two main goals 

of the SOM. A variety of nonlinear dimension reduction (manifold learning) techniques exist 

for discovering low dimensional manifolds within high dimensional data (see e.g. Van der 

Maaten, 2009, for an overview). Popular methods include the ISOMAP (Tenenbaum, 2000), 

local linear embedding (LLE) (Roweis, 2000), and local tangent space alignment (LTSA) (Zhang, 

2004). These techniques all provide a low (usually 2) dimensional projection with the same 

number of points as in the original data.  Dimension reduction is performed, but not a 

clustering or summarizing of the data set. 

The traditional SOM framework performs a type of nonlinear dimension reduction, however 

this is based on an initial linear approximation of the low dimensional manifold. This first 

approximation of the location of the SOM grid is typically performed with principal component 

analysis (PCA). PCA discovers linear principal manifolds in the data by minimizing the sum of 

squared distances to the data points. A set of orthogonal principal components (vectors) is 

found in the directions of maximum variance of the data, and the traditional SOM map uses 
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these vectors as the initial axes of the grid. However, PCA cannot adequately find nonlinear 

structures in data (Tenenbaum, 2000, Van der Maaten, 2009) and therefore a SOM based on 

this initialisation will only discover nonlinear manifolds that are a minor perturbation of the 

initial linear approximation (Shao, 2015). This can impede the applicability of the SOM when 

fitting it to a data cloud with complex structures (Lee & Verleyson (2005), Huang (2013)). It has 

even been claimed that when SOMs are successful at nonlinear mapping, it is only by chance 

(Demartines, 1997), and that any information gained by the SOM about the global structure of 

the data set is obtained from analyzing overlapping structures of the entire data set (Zhang, 

2004). Therefore, upon encountering data sampled from a nonlinear low dimensional manifold 

embedded in a high dimensional space, the traditional SOM tends to generate topological 

defects or become set in locally optimal solutions as a result of the linear initialisation (Shi 

(2006), Ota (2011), Shao (2015)). As many natural data sets contain nonlinear structures which 

are invisible to PCA (Tenenbaum, 2000) and hence also invisible to SOMs, an alternative 

approach is needed to ensure the initial SOM grid topology approximately corresponds to the 

intrinsic shape of any underlying nonlinear data manifold. This would support the application 

of the fundamental SOM functions of clustering and visualization to data with essential 

nonlinear structures.  

While the SOM is useful for clustering and visualizing multivariate data sets but cannot find 

highly nonlinear structure in the data, typical dimension reduction or manifold learning 

methods can discover the intrinsic nonlinear structure of the data but cannot cluster or 

summarize it (Shi (2006), Ota (2011), Shao (2015)). A pairing of the SOM with a nonlinear 

manifold learning technique would therefore broaden the applicability of the SOM with 

respect to typically complex data sets regularly encountered in natural systems. 

The literature contains some endeavors to combine nonlinear manifold learning within the 

traditional SOM framework. The ISOSOM (Guan, 2006) combines the SOM with the ISOMAP in 

a two-step process, with the SOM applied to a low dimensional projection found with the 

ISOMAP. Although the trained SOM is transferred back into high dimensional space, the 

training has already been finalized in low dimensions and therefore the prototypes are not able 

to move off the geodesic surface into the high dimensional space. There is also no restriction 

on matching the high dimensional data points to the trained map through a constraint along 

the geodesic surface and so the final map may be found to stretch between unrelated parts of 

the surface. The GDBSOM (Shi, 2006) first constructs a neighbourhood graph of geometric 

distances between all data points and then sets up the basic (rectangular) SOM with corners 

based on the largest geometric distances between points. The map nodes are updated towards 

the data in Euclidean distance, which may cause a transfer of map nodes between separate 

parts of the geodesic surface. The DSOM (Shao, 2015) searches for the underlying manifold by 

starting with a small amount of training data and a small grid, and expanding the training data 

set and the map according to the identified geodesic structure. Map size is increased by adding 

either a row or a column in a complicated expansion process with a number of user-specified 

parameters. Real world applications for these methods are so far restricted to the field of 

image analysis.  
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In this paper we introduce a method termed the ‘SOMersault’, a type of SOM in which the map 

essentially unrolls itself along the geodesic surface of the data, allowing the discovery and 

representation of nonlinear manifolds by the map. The SOMersault integrates LTSA within the 

traditional SOM process in a method that incorporates both high and low dimensional 

representations of the data. In constructing the SOMersault, adaptions have been made to the 

basic SOM framework including: modification of the initialization stage to ensure the map is 

globally ordered in alignment with the geodesic surface; alteration of the size and shape of the 

neighbourhood kernel during map training to restrict map movement to localised high 

dimensional areas near the geodesic surface; and the development of geodesic error measures. 

These error measures are based on the most popular measures conventionally used to 

evaluate SOMs, modified to assess the alignment of the trained map with respect to the low 

dimensional manifold. We illustrate examples on synthetic data and a real world natural data 

set, with highly favourable results compared to those obtained using the traditional SOM on 

the same data. 

6.3 METHOD 
The traditional SOM technique is described below, followed by a description of the SOMersault. 

6.3.1 Traditional SOM  

A SOM (Kohonen, 2001) consists of a number of nodes connected in a predetermined regular 

grid formation, which become organized (or trained) to represent the patterns and clusters in 

a data set. The map is first placed on the data set in an initial approximate location, and then 

trained to better fit the data. Usually the number of map nodes, M, is much smaller than the 

number of observed data points, N. Training consists of a number of iterations, T (with each 

iteration denoted by t where t=1…T), of first matching each data point to the nearest map node, 

and then updating the locations of all the map nodes to become closer to their matching data, 

as follows. 

1. Initialisation: The initial approximation for the location of the map nodes is 

conventionally based on the linear principal components of the data set. The directions 

of the map axes correspond to the first and second eigenvectors of the data, thereby 

following the linear, orthogonal directions of maximum variance in the data. The 

lengths of the axes are set proportional to the ratio of the two greatest eigenvalues. 

The nodes are placed at uniform intervals along the axes, producing an approximately 

uniform lattice spacing for the initial grid. 

 

2. Matching: A prototype vector (mi, where i=1…M) associated with each map node 

takes on the value of the data space in which it is located. Individual data points (xj, 

where j=1,…,N) are matched to their nearest map node (or best matching unit, BMU). 

The BMU, 𝑚𝑐 , is chosen for each data item by minimizing the Euclidean distances 

between all data and all map nodes: 

𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑖
{‖𝑥𝑗 −𝑚𝑖‖}

⁡
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3. Updating: The location of each prototype vector, 𝑚𝑖, is updated to become a weighted 

average of the data assigned to that node and its neighbouring nodes, whilst 

maintaining the original connections of the grid. The weighting is based on a 

neighbourhood smoothing kernel, ℎ𝑖𝑐(𝑡),  which defines the stiffness of the map. At 

each iteration all nodes are updated concurrently, however, only the data points 

assigned to nodes within the user defined neighbourhood radius, 𝜎(𝑡), measured in 

map space around each node, influence the updating of that node. The neighbourhood 

kernel describes the weighting of data matched to node c on the updating of node i at 

iteration t. The default neighbourhood kernel for the traditional SOM is: 

 

ℎ𝑖𝑐(𝑡) = exp {
−(‖𝑟𝑐 − 𝑟𝑖‖

2)

2𝜎2(𝑡)
} 

 

where 𝑟𝑐 and 𝑟𝑖  are the locations of nodes 𝑚𝑐 and 𝑚𝑖  in map space (Vesanto et al., 

2000). Denoting prototype vector 𝑚𝑗  at iteration t, by 𝑚𝑗(𝑡)  the updating of the 

prototype vectors is given by: 

 

𝑚𝑖(𝑡 + 1) =
∑ ℎ𝑖𝑐(𝑡)⁡𝑥𝑗
𝑁
𝑗=1

∑ ℎ𝑖𝑐(𝑡)
𝑁
𝑗=1

 

 

where c is the BMU index of data point j and N is the number of data points. The 

neighbourhood radius, 𝜎(𝑡), begins relatively large at iteration t=1, and diminishes in 

size at each subsequent iteration according to some user defined schedule. This allows 

for a global ordering of the map nodes along the data set at the start of training, and 

fine-tuning of their locations at the end of training.  

After training, the prototype vectors will each be an average of the subsection of data assigned 

to them, and will therefore represent a characteristic pattern of the data set. The data matched 

to each node form clusters that share these characteristics. Patterns have been extracted and 

clusters have been found without any prior knowledge of the patterns in the data. The nodes 

have maintained their connections throughout training, ensuring the extracted patterns and 

clusters are ordered based on the overall topology of the map.   

6.3.2 SOMersault  

When an underlying nonlinear lower dimensional manifold exists in a data set, globally 

ordering the map grid based on the main directions of variance of the data set as a whole (as 

performed in the traditional SOM technique) will cause the map to disregard any bends or 

twists in the manifold that are more complicated than simple perturbations of the initial linear 

approximation provided by the principal components (Demartines (1997), Zhang (2004), Ota 

(2011), Shao (2015)). The global ordering step is therefore modified in the SOMersault method 

to create a map alignment that corresponds to the main degrees of freedom of the geodesic 

surface rather than that of the data set as a whole. The fine-tuning of the node locations is 

completed within localized neighbourhoods of the input data space to produce high 

dimensional prototypes, allowing the data to join the most representative high dimensional 
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cluster. The SOMersault creates an alignment of the map grid along the low dimensional 

nonlinear manifold in the following manner:  

1. Initialisation: The high dimensional input data set (xj, where j=1,…,N)  is projected into 

low dimensional space using the local tangent space alignment (LTSA) nonlinear 

dimension reduction technique (Zhang, 2004), creating a corresponding low 

dimensional data item (xj,LD, where j=1,…,N)  for each original data item. With LTSA, a 

manifold is unfolded by finding an alignment of all the tangent hyperplanes of the 

manifold. The tangent space is computed in the local neighbourhood of each point, 

and then the alignment of the spaces is optimized. A new set of coordinates is defined 

to represent the principal manifold of the high dimensional data in the low dimensional 

space by finding a linear mapping from both the high dimensional data points and their 

corresponding low dimensional data points to the same local tangent space (see Zhang, 

2004, for further details). A grid of map vectors (mi,LD, where i=1…M) with dimensions 

matching the number of dimensions in the projection, is placed over the projected 

data with axes corresponding to the length and directions of maximum variance of the 

unraveled principal manifold determined with LTSA. These directions correspond to 

the main nonlinear degrees of freedom in the high dimensional data set. For the initial 

grid layout, map nodes are distributed uniformly along these axes.  

 

2. Global ordering: The low dimensional grid is partially trained (~2 iterations) on the low 

dimensional projected data using a large neighbourhood kernel that includes the 

entire map. On the unraveled geodesic surface, the nodes find their approximate 

locations amongst the data points. This produces an overall ordering of the nodes as 

they shift into the general areas where they will eventually permanently settle. For the 

global ordering stage, the SOMersault uses the Gaussian neighbourhood kernel which 

updates all map nodes based on a weighted average of all of the data points: 

 
 

ℎ𝑖𝑐(𝑡) = exp {
−(‖𝑟𝑐 − 𝑟𝑖‖

2)

2𝜎2(𝑡)
} 

 

where ‖𝑟𝑐 − 𝑟𝑖‖ is the Euclidean distance on the map grid between nodes mc,LD and 

mi,LD, and 𝜎  is the neighbourhood radius, or bandwidth of the kernel. This is the 

neighbourhood kernel of the traditional SOM as described above which updates the 

low dimensional map nodes based on all data points in the projection, weighted by the 

distance of their BMU from the updating node. Use of this neighbourhood kernel 

produces a global ordering of the map along the geodesic surface, as it becomes 

stretched over the LTSA projection of the data set. 

 

3. Fine-tuning: The roughly trained grid is projected into input data space to be used as 

the initial grid for map training in the high dimensional space. The map now consists 

of nodes (mi,HD, where i=1…M) with the number of dimensions matching those of the 

input data. The map is further trained (~100 iterations) in data space with a small, 
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localized neighbourhood kernel to fine-tune node locations to lie amongst the high 

dimensional data. At this stage, the prototypes are allowed to leave the embedded 

geodesic surface. This will improve the placement and connections of the nodes within 

data space. For this fine-tuning of node locations in high dimensional space, the 

SOMersault uses a truncated Gaussian neighbourhood kernel rather than the Gaussian 

kernel. This restricts the influence of the data points on the updating of the map nodes 

to a localized area, so that data outside the specified radius have no influence on the 

updating of the nodes. The truncated Gaussian kernel is: 
 

ℎ𝑖𝑐,𝐻𝐷(𝑡) = exp {
−(‖𝑟𝑐 − 𝑟𝑖‖

2)

2𝜎2(𝑡)
} 𝐼(⁡‖𝑟𝑐 − 𝑟𝑖‖

2 ≤ 𝜎) 

 

where 𝑟𝑐  and 𝑟𝑖  are the locations of nodes 𝑚𝑐,𝐻𝐷  and 𝑚𝑖,𝐻𝐷  on the map grid. This 

modification is necessary in high dimensional space since the use of the Gaussian 

neighbourhood kernel would lead to the updating of the entire map based on all data 

points, pulling the nodes towards the data based on Euclidean distance and not 

geodesic distance. For highly bent or twisted manifolds, this could result in the 

movement of nodes between sections of the manifold that may be close in Euclidean 

distance but distant in geodesic distance. Since the global ordering of the map nodes 

has already been achieved by the initial training on the low dimensional projection, 

the fine-tuning of the map on the high dimensional data does not require a large 

neighbourhood. The localised neighbourhood radius at this point includes only the 

data points that can be expected to lie on a linear subspace around the updating node, 

and the data outside this should not be updated linearly. The updating of the high 

dimensional map nodes proceeds as:  

 

𝑚𝑖,𝐻𝐷(𝑡 + 1) =
∑ ℎ𝑖𝑐,𝐻𝐷(𝑡)⁡𝑥𝑗
𝑁
𝑗=1

∑ ℎ𝑖𝑐,𝐻𝐷(𝑡)
𝑁
𝑗=1

∙ 

 

This method will lead to a better correspondence of the size and shape of the map grid with 

the main directions of variance of the nonlinear manifold, thereby creating a map that better 

represents the intrinsic structure of the data set. The SOMersault algorithm is summarized in 

Section 6.3.2.1 and demonstrated in Figure 19 on the Swiss roll data set, a 2D manifold 

embedded in 3D data space (data from Wittman, 2005). 

6.3.2.1 SOMersault Algorithm 

1. The data set (Figure 1a) is projected into low dimensional space by performing LTSA 

on the high dimensional data set (Figure 1b), 

2. The directions of maximum variance of the low dimensional projection are discovered 

and the map grid is draped over the low dimensional data, aligned in these principal 

directions (Figure 1c, black nodes), 

3. The map is coarsely trained to stretch over the low dimensional data (Figure 1d, pink 

grid), 
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4. The nearest low dimensional data point is found for each low dimensional map node 

(by Euclidean distance) (Figure 1e, red circles), 

5. The corresponding high dimensional data point is determined for these nearest points 

(Figure 1f, black nodes), 

6. These high dimensional data points are joined together to form a mesh retaining the 

connections between the map nodes in low dimension (Figure 1g, black mesh), 

7. This mesh is used as the initial high dimensional map for the fine-tuning stage, 

8. The map is trained in high dimensional space using a narrow, truncated 

neighbourhood kernel (Figure 1h, pink mesh is trained map).  

 

Figure 19: Demonstration of the SOMersault algorithm on the Swiss roll data set (data from Wittman, 2005). The 
trained map in the lower right plot (pink) closely follows the underlying manifold of the curved data. a) data; b) LTSA 
low dimensional projection; c) initialized grid on low dimensional projection; d) globally trained grid; e) nearest 
neighbours of globally trained grid; f) high dimensional corresponding data points of nearest neighbours of low 
dimensional trained grid; g) mesh of high dimensional initial points; h) map trained in high dimensions. 

6.3.3 Quality assessment measures 

To provide meaningful information, the metrics used in the error measures must match the 

distance metrics of the quantization and clustering methods used on the data (Hardle & Simar, 

2007). Accordingly, we develop new measures for quantifying the quality of the data 

representation based on geodesic distance, to replace the conventional SOM error measures 

which are based on Euclidean distance. These geodesic error measures rely on the assumption 

that the low dimensional projection is a correct representation of any geodesic surface present 

in the data. 

6.3.3.1 Quantization 

Map training performs vector quantization on the data set by producing a smaller, 

representative set of vectors (Vesanto, 1999). The quantization error, QE, is conventionally 

used in SOM applications to measure how closely these vectors represent the input data set. 
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This measure can be used to compare the representation of a data set by maps with equal 

numbers of nodes. QE is the average sum of squares of the distances between each data point 

and its BMU in Euclidean distance: 

𝑄𝐸 =
1

𝑁
∑ ‖𝑥𝑖 −𝑚𝑐‖

2𝑁
𝑖=1 . 

We introduce the geodesic quantization error, GQE, to measure the data quantization whilst 

taking the shape of the manifold into account. GQE measures the average sum of squares of 

the distances between each data point and its closest node along the geodesic surface: 

𝐺𝑄𝐸 =
1

𝑁
∑‖𝑥𝑖,𝐿𝐷 −𝑚𝑐,𝐿𝐷𝑇‖

2
𝑁

𝑖=1

 

where 𝑥𝑖,𝐿𝐷  is the low dimensional projection of data point 𝑥𝑖 , and 𝑚𝑐,𝐿𝐷𝑇  is the low 

dimensional projection of the high dimensional BMU of (high dimensional) data point 𝑥𝑖, as 

described below. 

The BMUs of the data points are found in input data space, defining the Voronoi sets, or groups 

of data points that share the same nearest node. The Voronoi set of data points sharing node 

𝑚𝑖,𝐻𝐷 is 𝑅𝑖: 

𝑅𝑖 = {𝑗:⁡ ‖𝑥𝑗,𝐻𝐷⁡
−𝑚𝑖,𝐻𝐷‖ ≤ ‖𝑥𝑗,𝐻𝐷⁡

−𝑚𝑘,𝐻𝐷‖ , ∀⁡⁡𝑘 ≠ 𝑖⁡} 

The high dimensional, trained map is then projected into low dimensional space by setting the 

location of each node to the mean of the low dimensional data points whose corresponding 

high dimensional points comprise the Voronoi set for each node: 

𝑚𝑖,𝐿𝐷𝑇 =
1

|𝑅𝑖|
∑ 𝑥𝑗,𝐿𝐷

⁡

𝑗∈𝑅𝑖

⁡ 

where |𝑅𝑖| is the number of data points in 𝑅𝑖. 

Note that 𝑚𝑖,𝐿𝐷𝑇 is a low dimensional projection of a node on the final map that has completed 

training in high dimensions, whereas 𝑚𝑖,𝐿𝐷 is a node of the original low dimensional initial map 

that has not yet been trained.   

The distance from the low dimensional projection of each data point to the low dimensional 

projection of its closest trained map node is found, and averaged over all data points. 

Determining these distances on the unravelled manifold provides a measure of how well the 

data is quantized with respect to the geodesic surface. A higher GQE may indicate that nodes 

are picking up data from distant parts of the geodesic surface that become close in Euclidean 

distance through the bending or twisting of the manifold in high dimensional space.  

The GQE may be expected to be lower for the SOMersault than the traditional SOM as the map 

is designed to align with the geodesic surface rather than with the overall directions of 

maximum variance of the data, in which case the map may cut through the geodesic surface. 

Data points will be matched to nodes that are on the same portion of the geodesic surface, 
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even if another portion of the surface is also nearby due to the curvature of the surface. The 

map nodes are drawn towards the data points in both methods, though in the SOM they are 

moved according to Euclidean distance, and with the SOMersault they are drawn along the 

geodesic surface. The alignment of the SOMersault grid with the geodesic surface also means 

the nodes are less likely to settle in the empty spaces between areas of high data density, as 

can happen with the SOM when it follows the linear principal components. 

6.3.3.2 Topographic preservation 

The frequently used topographic error, TE, indicates how well the topology of the input data is 

preserved by the output map. This error is defined as the proportion of data points for which 

the first and second BMUs are not nearest neighbours on the trained map grid. The TE indicates 

if the map is folded, bent or twisted. With a low dimensional nonlinear manifold present in the 

data, however, the map may become folded, bent and twisted in order to best represent the 

manifold. In this case, the TE will indicate a higher error than a linear map though it may be 

providing a more true characterization of the topography of the data. The standard TE is 

therefore not ideal for use with such nonlinear manifolds. 

We define the geodesic topographic error, GTE, to evaluate the topological ordering of the 

high dimensional map nodes of the SOMersault. The GTE indicates if the map smoothly follows 

the manifold, whilst allowing for bending and folding of the map if required by the topology of 

the data it aims to represent. It assesses if the local structure of the geodesic surface of the 

data is retained on the map by evaluating whether adjacent map nodes represent closely 

situated data. This is done by measuring if the first and second closest nodes to each data point 

are adjacent along the geodesic surface. The GTE is calculated as:  

𝐺𝑇𝐸 =
1

𝑁
∑ 𝑢𝑥𝑖
𝑁
𝑖=1  , 

where 𝑢𝑥𝑖 = 0 if the nearest and second nearest nodes to data point 𝑥𝑖 measured along the 

geodesic surface are adjacent on the map grid, 1 otherwise.  

A GTE of zero indicates perfect geodesic topological preservation by the trained map. The GTE 

is expected to show an improvement in the ordering of nodes by the SOMersault, as the grid 

is designed to follow the geodesic surface. Though the nodes of the traditional SOM may end 

up in similar locations of data space, the SOMersault nodes will be linked in a manner that 

more closely represents the manifold.  

6.3.3.3 Clustering 

Clustering of the data, with the map nodes defined as the cluster centres, is evaluated using 

the Davies-Bouldin (DB) clustering index (Davies & Bouldin, 1979) (as in Vesanto & Alhoniemi, 

2000). This is a general clustering index (not specific to the SOM) which assesses the ratio of 

within-cluster scatter to between-cluster separation, and is not dependent on the number of 

clusters being analysed or the method of clustering. The goal is to ensure that the data within 

each cluster is as similar as possible, and as different as possible to data in other clusters 

(Hardle & Simar, 2007). Lower DB values indicate a better clustering of the data set. The DB 

index on the trained map projected to the geodesic surface, GC, is defined here as: 



74 
 

𝐺𝐶 =
1

𝑀
∑max

𝑘≠𝑖
{
𝑆𝑖 + 𝑆𝑘
𝑑𝑖𝑘

}

𝑀

𝑖=1

 

where  𝑆𝑖 =
1

|𝑅𝑖|
∑ ‖𝑥𝑗,𝐿𝐷⁡

−𝑚𝑖,𝐿𝐷𝑇‖
⁡
𝑗∈𝑅𝑖

⁡⁡is the within-cluster scatter, and  

𝑑𝑖𝑘 = ‖𝑚𝑖,𝐿𝐷𝑇⁡
−𝑚𝑘,𝐿𝐷𝑇‖ is the between-cluster separation. 

The GC index is expected to indicate significantly improved clustering of the data set with the 

SOMersault compared to the traditional SOM, as the prototypes of the SOMersault will 

represent data drawn from a localised region of the underlying manifold, and therefore more 

similar data.  

6.4 RESULTS 
We demonstrate the performance of the SOMersault on two- and three-dimensional synthetic 

examples and a real world hydrologic application. Comparisons of the SOMersault output are 

made with the output of the traditional SOM through error measures and visualisations. The 

quantization, topological representation and clustering of the data by the maps is evaluated 

with the error measures, for which lower values indicate better data representation. 

6.4.1 Synthetic examples 

In this section, the SOMersault and SOM are applied to a variety of data sets in two and three 

dimensions. The SOMersault is implemented in MATLAB, with the LTSA component performed 

by the Nonlinear Toolbox (Van de Maaten, 2007) and mani.m (Wittman, 2005). 

6.4.1.1 2D examples 

Figure 20 illustrates three synthetic two-dimensional data sets with shapes commonly found 

in natural dynamic and organizational systems. These systems could include, amongst many 

other possibilities: population dynamics, hydrologic systems and events, geological forms, 

diurnal or seasonal meteorological systems, orbits, fluid dynamics, or biological structures 

(Stewart, 2008). The one-dimensional manifolds embedded in the two-dimensional space are 

shown in the first column, the traditional SOM linear initialisation (black) and trained map 

(blue) in the middle column, and the SOMersault nonlinear initialisation (black) and trained 

map (red) in the right column.  
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 Data SOM SOMersault 

Parabola 
 

 

Sine wave 
 

Spiral 

Figure 20: The SOMersault and SOM methods implemented on 1D manifolds embedded in 2D space. On the left is 
the data set, in the middle is the linear initialization (black) and resulting traditional SOM (blue), on the right is the 
non-linear initialization (black) and resulting SOMersault (red). It can be seen that the map on the right better 
discovers the structure of the 1D manifold present in the data, the prototype vectors corresponding to each node 
have values that are close to the data points, and the nodes are ordered (linked) according to the manifold.  

The quantization, topological preservation, and clustering of the 2D data sets in Figure 20 are 

assessed with the geodesic error measures, GQE, GTE and GC. The results are listed in Table 6. 

The GQE is improved for each of the examples with use of the SOMersault, as the map nodes 

are positioned closer to the data they represent, and are not located away from the dense 

areas of data (in the white space) as has occurred with some of the SOM nodes due to the 

Euclidean updating process. The GTE indicates perfect topological preservation on each of the 

SOMersault maps, as the grids follow the data surface without crossing it, bending, or jumping 

from one area of data to another. The GC shows the data is clustered well with the SOMersault, 

as the data assigned to each node originates from the same local region of the data surface. 

These noiseless synthetic examples demonstrate that even the tidiest nonlinear manifold may 

not be well discovered with the use of a linear map initialisation. 

Table 6: 2D results. Geodesic error measures on the representation of the three data sets in Figure 20 after applying 
the SOMersault and the traditional SOM.  

 
Method 

GQE 
(quantization) 

GTE  
(topological 
preservation) 

GC 
(clustering) 

Parabola 
SOMersault 0.014 0.00 0.6 

SOM 0.019 0.44 5.5 

Sine wave 
SOMersault 0.005 0.00 0.5 

SOM 0.006 0.42 0.7 

Spiral 
SOMersault 0.008 0.16 5.1 

SOM 0.028 0.56 19.3 
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6.4.1.2 3D examples 

Figure 21 displays three data sets with lower dimensional manifolds embedded in three-

dimensional space (left column). The centre column shows the SOM linear initialisation (black) 

and trained map (magenta), and the right column illustrates the SOMersault nonlinear 

initialisation (black) and trained map (magenta). While all maps have the same number of 

nodes, it is visually apparent that the SOMersault maps follow the underlying manifolds more 

smoothly, with fewer nodes caught in empty space between regions of the manifold. 

 Data SOM SOMersault 

Swiss roll 
 

 

Toroidal 
helix 
 

Punctured 
sphere 

Figure 21: The SOMersault and SOM methods implemented on data in 3D space: a) data sets (from mani.m, Wittman, 
2005); b) linear initialization (black) and resulting traditional SOM (magenta); c) nonlinear initialisation (black) and 
resulting SOMersault (magenta). Visual comparison of the final SOMs and SOMersaults indicates that the 
SOMersaults better discover and follow the underlying manifold of each data set. 

The quantization, topological preservation, and clustering of the 3D data sets in Figure 21 are 

assessed with the geodesic error measures, GQE, GTE and GC. The results are listed in Table 7. 

With the use of the SOMersault compared to the SOM, for all examples the data quantization 

is improved or maintained, topology of the data surface is better preserved, and clustering is 

improved or maintained. Due to the already decent clustering and quantization of the 

punctured sphere by the linearly initialized SOM, this example shows the least improvement 

with use of the SOMersault. 

Table 7: Geodesic error measures on the representation of the three data sets in Figure 21 after applying the 
SOMersault and the traditional SOM.  

 
Method 

GQE 
(quantization) 

GTE  
(topological 
preservation) 

GC  
(clustering) 

Swiss Roll 
SOMersault 0.030 0.22 0.9 
SOM 0.050 0.34 21.2 

Toroidal helix 
SOMersault 0.005 0.33 0.3 
SOM 0.010 0.55 121.7 

Punctured sphere 
SOMersault 0.026 0.42 0.9 
SOM 0.026 0.45 0.9 
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6.4.1.3 Discussion of synthetic results 

We investigate the results on the Swiss roll data set in further detail with Figure 22, in which 

the SOM output is in the left column and the SOMersault is in the right column. From top to 

bottom, the rows represent: a) the three-dimensional input data with the trained map grid 

overlaid; b) the unraveled low dimensional manifold with the map overlaid; c) the 12x12 output 

map grid with each node populated by the actual data points assigned to it; and d) the output 

map grid with each node coloured in the mean colour of its subset of data points (black boxes 

represent nodes which do not have any data points assigned to them - that is they are 

positioned in areas of no data). The four rows of Figure 22 help us visualize the differences in 

quantization, topological preservation and clustering between the SOMersault and the SOM. 

In row a, we can see that the SOMersault map grid follows the surface of the data more 

smoothly than the SOM grid. The connections between the nodes do not cross the areas where 

no data lies, between parts of the geodesic surface. On the left, the SOM grid has connections 

which stretch between distinct parts of the surface (such as the red and blue areas), and nodes 

which are situated in the gaps between sections of the surface. 

Row b shows the map grids laid on the unraveled low dimensional surface. The SOMersault 

grid is aligned smoothly on the surface, without node connections crossing each other. The 

map is not twisted or folded in relation to the geodesic surface. However, three large regions 

of the SOM have been pulled out of place and towards the left of the map, indicating that the 

map jumps from one part of the manifold to another in high dimensional space rather than 

running smoothly along it. The node connections cross each other, and nodes that are 

neighbours on the grid are not neighbours when it is placed on the data. This is reflected in the 

GTE error measure, which measures if the map follows the topology of the data. 

Row c shows that the data assigned to each of the SOMersault nodes corresponds well with 

the location of the node on the grid. Like the data set, the colour of data assigned to each 

SOMersault node transitions smoothly across the grid from dark blue to red. However, for the 

SOM, three isolated areas are evident. The map begins in the light blue region, and the dark 

blue data is assigned to patches of the map situated amidst the other colours indicating that 

the trained map jumps between sections of input data space that are not adjacent. We can 

also see that the data mapping to each node is more consistent in the SOMersault than the 

SOM, which has a few nodes in the lower left area of the grid containing data of varied colours. 

Some nodes of the SOM do not contain any data points at all, as they are located in empty 

space between areas of high data density. This quality is reflected in the GQE measure.  

In row d, the nodes are coloured by the average colour of their assigned data. In this way, the 

colours represent the typical ‘patterns’ extracted from the data set. Cluster ordering is shown 

by the differences in colours along the map. More black areas appear on the traditional SOM 

than the SOMersault, indicating that the SOM has nodes positioned in regions with no data. 

Some colours appear on the SOM that do not appear in the input data, indicating that the SOM 

is ‘extracting’ patterns that do not actually exist in the data set. 
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Figure 22: Detail of the Swiss roll data set analysis using the traditional SOM and the SOMersault. a) 3D data set and 
fitted 12x12 maps; b) Same as above but the maps are ‘unravelled’ along the geodesic surface. c) The 12x12 map 
grid, showing each node populated by the actual data points that map to it. d) The 12x12 map grid with nodes 
coloured by the mean colour of the data assigned to them. Further information is provided in the text. 

The visualisations and error measures indicate that the quantization, topological preservation 

and clustering of the data by the SOMersault are improved compared to the traditional SOM. 

The improvement in quantization is a consequence of the grid more closely aligning with the 

geodesic surface and not stretching over gaps between distinct regions of the manifold. Data 

from one region does not tend to get assigned to nodes from another region. Topological 

preservation is also improved, showing a smooth transition of node values along the grid. The 

SOMersault nodes follow the unravelled colour scheme of the geodesic surface without any 

cross-over of connections between nodes.  The significant improvement in the clustering of 

the data results from the data within each cluster of the SOMersault being more consistent as 

it is drawn from the same region of the geodesic surface.  
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6.4.2 Real world application – Water scarcity in global river basins 

We now use the SOMersault method to investigate the relationship between the quantity of 

water present in a river basin in all forms (groundwater, surface water, soil moisture, snow, 

and ice) and the water scarcity experienced within the basin due to anthropogenic water 

consumption. Seasonal fluctuations of this relationship are explored for a global selection of 

river basins representing a variety of latitudes, geographies, population densities and climates.  

The motivation behind this study stems from the uneven global spatial and temporal 

distribution of water resources as highlighted by Postel et al. (1996) and Oki (2006), who state 

that even though more than enough fresh water exists globally and annually to provide for all 

of humanity’s needs, spatial and temporal variations of the resource lead to water scarcity in 

certain regions at certain times.  

Here we use the SOMersault method to make a spatiotemporal assessment of the patterns of 

scarcity and water availability in a global context, which could assist in promoting the sharing 

of modifications in practices, trade, and agricultural management amongst basin authorities. 

Spatiotemporal clusters are produced, indicating river basins with similar circumstances 

regarding the amount of water actually existing within a catchment compared to the scarcity 

experienced for a given month, without requiring an explicit account of differences in basin 

sizes, runoff magnitudes, river lengths, geographic locations, and the degree of urbanization.  

6.4.2.1 Application of SOMersault to hydrological data 

In this application, we explore the use of the SOMersault with hydrological data. As with data 

from most environmental fields, hydrological data contains many forms of fluctuations 

resulting from diurnal, seasonal, or longer term variations in climate related variables. 

Temporal fluctuations in hydrological data could be linked to precipitation, snow melt, river 

discharge, groundwater storage, water chemistry, suspended loads, temperature (air and 

water), surface water level, soil wetting and drying, or water table oscillations. Spatial 

fluctuations may be due to changing geography and climates over the region of study, such as 

variations in altitude or vegetation. Anthropogenic influences on the water cycle, such as 

seasonal groundwater extraction for agricultural use, could also lead to temporal or spatial 

fluctuations.  

When multivariate data sets include these types of rhythmic fluctuations of more than one 

variable, hysteresis loops may form. Hysteresis behaviour is characterised by the output of a 

system forming a loop due to a dynamic lag between the input and output variables in systems 

with alternately increasing and decreasing inputs. For example, in a system with two variables 

this leads to a situation where two possible values of one variable exist for a single value of the 

other, with the actual relationship at any time depending on the current stage of the cycle. 

This is a common occurrence in hydrological data, in which output (e.g. runoff) during the latter 

part of a process (e.g. a rainfall event) may not exactly mimic the beginning of the process due 

to changes in the physical system (e.g. available storage areas filling up with precipitation) 

during the time difference.  
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In a data set consisting of multiple fluctuating variables with differing frequencies and 

amplitudes, it can be challenging to identify any similarities between individual data items. The 

SOMersault can be useful for clustering such data; the clusters will discern between opposing 

limbs of a cycle, loop or parabola, providing a separation in the data and the extraction of 

patterns from both regions. A traditional SOM may not differentiate between the distinct 

portions of the relationship, placing data items from both sides of a loop into the same cluster 

and thereby not providing a complete extraction of the pertinent features of the data set. 

Furthermore, the SOMersault will not only discover the prevalent patterns, it will order the 

clusters to naturally follow the curve that describes the relationship between the variables. 

6.4.2.2 Data 

The data set for this analysis consists of a global set of river basins, in which two variables of 

interest each undergo seasonal fluctuations separated by changeable time lags. These 

variables are:  

1) terrestrial water storage, and  

2) anthropogenically induced water scarcity.  

The annual cycles of these variables exhibit phase differences and hysteresis behaviour. 

Differing frequencies and amplitudes are present for both variables across the data set due to 

geographical, climatic, soil, vegetation, and anthropogenic differences among the basins. 

These variables will be referred to as ‘storage’ and ‘scarcity’ in this paper. 

River basin water storage data has been obtained from the GRACE (Gravity Recovery and 

Climate Experiment) satellite system, which produces spherical harmonic coefficients 

describing time-variable gravity field variations (Landerer & Swenson, 2012) (websites 1 and 

2). The redistribution of water, snow and ice is the main source of changes in Earth’s gravity 

field on a monthly timescale, and therefore these gravity changes can give an understanding 

of global hydrological processes (Swenson, 2002). The average GRACE monthly terrestrial 

water storage (TWS) values for each basin (in units of ‘mm of equivalent water thickness’) are 

available for 2002-2012, though some months are missing. The data was downloaded by 

individual basin using Total Runoff Integrating Pathways (TRIP) basin boundaries with a 

Gaussian smoothing kernel of 300km radius, from data centre CSR RL05 DS. ‘Scaled’ (rather 

than raw) TWS GRACE data, which has been corrected for signal modification due to filtering 

and truncation, has been downloaded and used in this study based on the recommendation of 

Landerer & Swenson (2012). Monthly values have been averaged over the time series to 

produce a typical year of average monthly data for use in this study. 

Water scarcity data by river basin was obtained from Hoekstra et al. (2012). This data indicates 

the ratio of surface water and groundwater consumption to the estimated water availability in 

a river basin, where water availability is defined as the runoff that would occur in the basin 

under natural (uninhabited) conditions minus the flow estimated to be required for 

maintaining critical ecological functioning within the basin. The seasonal variability of water 

scarcity has been captured in this data by producing monthly estimates, which are a ten year 

average of data from 1996-2005. Water use has been measured in terms of consumptive use 
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rather than water withdrawals to account for water that is typically returned to the basin and 

is available for reuse. Hoekstra et al. (2012) adopted a value of 20% of the natural runoff being 

available for consumptive use (the remaining 80% can be used as long as it is returned for reuse 

and not permanently depleted). Low scarcity is defined as less than this available amount being 

depleted, with moderate, high, and severe scarcity levels indicating that more than this 

amount has been consumed and therefore environmental flow requirements are not met.  

Severe scarcity is defined as twice as much water removed from the river than has been 

estimated as being available for consumption without impinging on environmental flows, a 

value which coincides with the definition of ‘severe water stress’ used by Oki and Kanae (2006 ). 

The data set consists of 40 river basins of various sizes from 6 continents, representing differing 

discharge patterns, basin sizes, climates, topographies, vegetation zones, population densities, 

and water consumption patterns. A list of the basins and their characteristics is given in Table 

8. This global selection of river basins incorporates a broad variety of flow regimes and scarcity 

issues. Each river in this study experiences a range of scarcity levels throughout an average 

year, from low to severe, meaning that during at least some months the environmental flow 

requirements are met and in some months they are not.  

The mean annual time series of storage and scarcity for each river are shown in Figure 23. The 

values for each river follow roughly sinusoidal patterns within each variable. Basin total water 

storage data has been normalised to a mean of 0 and variance of 1 to allow the comparison of 

river basins with vastly differing sizes. To identify periods when the relationships between the 

variables are similar for more than one river is a difficult task using these separate curves. It 

can be seen that some rivers follow similar patterns of monthly storage or scarcity, though due 

to the various lags it is not easy to discern which rivers are similar in both variables at a given 

time. Grouping the data with a clustering technique will aid in this task.  

a)      Storage b)            Scarcity 

  
Figure 23: Average 12 month time series for all rivers: a) storage (normalised) and b) scarcity (raw).  

Figure 24 shows normalised storage (blue) and scarcity (red dashed) time series for a few 

sample river basins. This indicates that although all storage and scarcity curves rise and fall 

during the year, the patterns and ratios between them vary greatly between rivers for reasons 

unique to each basin.   
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Table 8: River basins, sorted by continent and population density. Units of population density are ‘people/km2’; units 
of scarcity are ‘% of water available for consumptive use that has been depleted’ (see Section 6.4.2.2 for further 
information); and units of storage are ‘mm of equivalent water thickness’. Sources: river basin area, population, and 
scarcity data are from Hoekstra et al. (2012); storage data is from GRACE (website 1). 

River basin Region Area (km2) Population 
Pop 

density  

Annual 
average 
scarcity 

Annual 
storage 

variation 

Chira Peru 16,700 651,347 39 212 55 

Biobio Chile 24,109 655,158 27 25 213 

Lempa Guatemala, Honduras, El Salvador 11,780 141,848 12 210 314 

Solo Indonesia 15,146 11,102,900 733 113 200 

Ganges India, Bangladesh 1,024,463 454,094,000 443 241 315 

Krishna India (southeast) 269,869 76,933,400 285 334 344 

Indus Tibet, Pakistan 1,139,075 212,208,000 186 271 69 

Dead Sea Basin Jordan, Israel, West Bank, 
Lebanon, Egypt 

35,444 6,149,610 174 328 34 

Huang He (Yellow) China 988,063 160,715,000 163 205 36 

Chao Phraya Thailand 188,419 26,782,400 142 132 405 

Ishikari Japan 13,783 1,941,950 141 116 189 

Sakarya Turkey  62,483 5,654,860 91 176 181 

Mekong China, Burma, Laos, Thailand, 
Cambodia, Vietnam 

787,257 57,932,400 74 135 350 

Tigris & Euphrates Turkey, Syria, Iraq, Iran, Kuwait 832,579 49,255,700 59 180 148 

Volga Russia (central) 1,408,279 61,273,800 44 56 150 

Ural Russia, Kazakhstan 339,084 4,062,630 12 53 121 

Ob Russia (western Siberia) 2,701,041 29,372,200 11 33 105 

Tarim China (northwest) 1,051,731 9,311,040 9 346 50 

Thames England 12,359 9,674,080 783 63 45 

Escaut (Schelde) France, Belgium, Netherlands 21,499 9,448,070 439 102 86 

Seine France (Paris basin) 74,228 15,598,100 210 83 98 

Guadalquivir Spain (southwest) 56,955 3,947,090 69 238 70 

Douro Spain, Portugal 96,125 3,744,450 39 101 99 

Ebro Spain (eastern) 85,159 2,922,480 34 83 77 

Sebou Morocco 36,201 5,479,260 151 188 48 

Nile Uganda, South Sudan, Sudan, 
Ethiopia, Egypt 

3,078,088 162,346,000 53 85 92 

Pangani Tanzania 50,365 2,174,380 43 186 124 

Limpopo South Africa, Botswana, 
Zimbabwe, Mozambique 

415,623 15,637,400 38 214 79 

Niger Guinea, Mali, Niger, Benin, Nigeria 2,117,889 76,930,900 36 36 210 

Orange South Africa 972,388 12,665,700 13 146 35 

Senegal Senegal, Mauritania 436,981 5,134,070 12 9 208 

San Joaquin  USA 34,366 1,681,380 49 323 174 

Sacramento  USA 77,209 3,015,150 39 172 204 

Brazos USA 117,853 2,820,050 24 269 56 

Mississippi  USA 3,196,605 74,637,300 23 67 86 

Nelson  Canada (Manitoba) 1,099,380 5,565,740 5 95 45 

Klamath  USA 40,040 137,158 3 54 171 

Murray Australia (southeastern) 1,059,508 2,348,090 2 234 26 
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Ord Australia (northwestern) 55,686 2,473 0 495 278 

 

For example, the San Joaquin River provides drinking water to more than 4.5 million people 

including the city of San Francisco as well as irrigating one of the most productive agricultural 

regions in the world, generating hydropower and supporting the habitat of many endangered 

and declining species. Outdated water management approaches have made it America’s most 

endangered river (website 3), with severe scarcity occurring from May to November, coinciding 

with intense agricultural needs and low precipitation. The basin of the 1300km long Tarim River 

in northwest China is inhabited by 9.3 million people in desert conditions. Severe scarcity is 

experienced for 9 months of the year, from February to October. Even though January has low 

scarcity, very low river flow in February increases scarcity levels to severe which then decline 

into the summer, with high water in July caused by snow melt. A recent World Bank project to 

restore the waterway has led to environmental revitalization, increased agricultural output, 

water conservation and poverty reduction (website 5). In the Thames, even though storage 

starts to increase in June, scarcity increases throughout the summer months due to increased 

consumption. The principal river of western Africa, the Niger, floods for 9 months of the year 

and incorporates an immense inner delta of marshes, lakes braided streams. Though the Niger 

basin experiences very low scarcity for most of the year due to this flooding, in February and 

March when there is no flow, severe scarcity occurs. The Indus River, flowing from Tibet 

through Pakistan, sustains over 212 million people, and experiences 8 months per year of 

severe scarcity leading to unsustainable groundwater depletion (Hoekstra et al., 2012). In the 

Murray basin, high levels of consumption lead to aquifer depletion during certain parts of the 

year. The Pangani River, flowing from Mt Kilimanjaro to the Indian Ocean, has been extensively 

dammed for irrigation in the highlands. The reduced outflow is affecting coastal communities 

by the depletion of fish stocks. Even though basin water storage levels are above average, low 

river flows from January to March create conditions of severe scarcity. The Nelson River in 

northern Canada experiences low scarcity except when frozen at the beginning of the year. 

The gentle increase in storage from October onwards represents snowfall which does not 

alleviate scarcity until the melt begins in March. 

San Joaquin Tarim Thames Niger 

    
Indus Murray Pangani Nelson 

    
Figure 24: Normalised storage (blue) and scarcity (red dashed) average 12 month time series for a selection of rivers.  
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When combined, the storage and scarcity annual time series form hysteresis loops. Figure 25 

shows these loops for a selection of rivers, with the time series of each separate river forming 

a cyclical path throughout the year. Normalised data for both scarcity and storage is used. 
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Figure 25: Storage-scarcity annual hysteresis loops for a selection of rivers. 

6.4.2.3 Implementation  

We first convert the cyclical annual data in Figure 25 to polar coordinates to align the individual 

river loops. The use of polar coordinates allows data from more than one cycle to be overlaid, 

and is recommended for analyzing patterns in cyclic data and identifying characteristics of 

spatiotemporal systems [Streit (2015), Andrienko (2006), Cheng (2001) and Wickham (2008)]. 

The axes of the ellipse formed by the data points in polar coordinates correspond roughly to 

the standard deviation of each variable, with the divergence of each point from the origin 

based on the level of scarcity of that river-month (further out data has a higher level of scarcity). 

The alignment of the hysteresis loops of the rivers through polar coordinates will allow for a 

comparison across the multiple cyclic patterns (Streit, 2015).  

An artefact of the scarcity calculations leads to river-months with no flow (through aridity or 

ice) having extremely high scarcity values, regardless of the amount of water that is sought to 

be withdrawn. Data from these river-months has therefore been omitted from this study as it 

is the relationship involving actual water consumption that we are investigating.  

The SOMersault will be used to produce spatiotemporal clusters of river-month combinations 

that experience similar conditions in the relationship between basin water storage and water 

scarcity. This will provide information on basins that experience similar conditions, even 

though the basins themselves may be dissimilar in many other ways. Clusters will be ordered 

in alignment with the curves of the data and will discern between the rising and falling limbs 

of the hysteresis loops produced by the combination of the variables.  
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The SOMersault method has been applied in MATLAB with modifications to the SOM Toolbox 

(Vesanto, 2000). The LTSA reduction was performed with MATLAB code mani.m (Whitman, 

2005), with 6 nearest neighbours and sigma of 10.  

6.4.2.4 Results  

The application of the SOMersault and the SOM to the set of global river-months is shown in 

Figure 26. The map nodes (squares) are coloured in smoothly transitioning colours, and linked 

with a black line, to indicate the ordering of the clusters on each map. The data points mapping 

to each node are indicated by colour.  

The SOMersault has performed a spatiotemporal clustering of the data whilst maintaining the 

cyclic nature of the data set. Adjacent nodes of the SOMersault represent adjacent items of 

data, and the nodes are positioned amid the data items rather than in empty space away from 

areas of high data density. The values of each variable flow smoothly along the length of the 

SOMersault. Starting at the left of the SOMersault in Figure 26 and travelling clockwise, the 

nodes represent: low storage and average scarcity, high scarcity and average storage, high 

storage and average scarcity, and average storage and low scarcity.  
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Figure 26: The hydrological data set is represented with the SOMELSTA on the left, and the traditional SOM on the 
right. Data points are coloured to match the node they are assigned to. It can be seen that the SOMersault separates 
the data into clusters closely following the curve of the data, whilst the SOM only clusters the data vertically, with 
both high and low storage data represented by the same node. The SOM has nodes in areas of white space, in which 
case the prototypes will have values that are not actually present in the data set. The SOMersault nodes, on the other 
hand, are located in close proximity to the individual data items.  

The traditional SOM trained to represent the same data set with the same number of map 

nodes has also clustered the data, but the clusters do not discern between data located on the 

left and right reaches of the loop. It can be seen from the coloured data items that for a given 

level of scarcity, river-months with both high and low storage values are assigned to same map 

node. This means that basins experiencing above average scarcity, for example, with very little 

or no water storage available and those that actually have a lot of water present (perhaps in 

other forms such as snow, swamp, or groundwater) are represented by the same node (yellow). 

Most nodes are located in the empty space between areas of high data density and therefore 

the prototype vectors associated with the nodes, which take on an average value of all the data 

assigned to them, will not be similar to any of the data items they represent. The map never 

reaches high or low values of the storage variable. 
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In order to simulate the annual cycle with 12 readily understood (~monthly) divisions, the 

SOMersault is applied again, this time with 12 nodes. The results are shown in Figure 27. 

 SOMersault  SOM 

sc
ar

ci
ty

 

 

sc
ar

ci
ty

 

 
 storage  storage 

Figure 27: Annual data is divided into 12 clusters. The SOMersault is on the left, and the traditional SOM is on the 
right. 

Error measures calculated for the representation of the river basin data by the SOMersault and 

the traditional SOM are given in Table 9. The error measures indicate that for this data set, the 

quantization, topographic preservation and clustering are improved by use of the SOMersault 

over the traditional SOM. 

Table 9: Error measures for maps created with the SOMersault and traditional SOM methods on the river basin data. 
The quantization, ordering and clustering of the data set by the prototypes are evaluated. It can be seen that for 
each criteria, the SOMersault produces the lower result, indicating a better representation of the data set by the 
map. 

Method 
GQE 
(quantization) 

GTE  
(topological 
preservation) 

GC 
(clustering) 

SOMersault 0.037 0.00 0.5 
SOM 0.044 0.04 1.2 

 

6.4.2.5 Discussion of real world application 

A spatiotemporal clustering of the river basins has been performed with the SOMersault. Each 

month of the year at each river is attributed to a cluster. The clusters represent specific 

relationships between the total water available in the basin as measured by satellite, and the 

scarcity experienced in the river basin due to water consumption.  These clusters have been 

determined without explicitly defining the complex relationships that climate, natural 

geographic features, and human development have on the water in the basins. 

The ordering of the clusters by the SOMersault smoothly follows the varying conditions of the 

river-months around the hysteresis loop, with more distant clusters containing more different 

data. The SOMersault nodes exist in close proximity to the data items rather than in empty 

space on the interior of the loop as the SOM nodes do, and therefore the SOMersault vectors 

are more similar to the data they represent. In the SOM, the middle clusters are ordered by 
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scarcity alone regardless of the state of storage within the basins, and the storage values of 

the prototypes are therefore an average of the high and low values on each side of the loop. 

To further analyse the clusters of Figure 27, the nodes are numbered starting at the left with 

node 1 and proceeding clockwise to node 12. Each node is associated with a prototype vector 

that is representative of the section of data assigned to it. The smooth transition between the 

prototype vector values for each variable along the length of the SOMersault is shown in Figure 

28. From one node to the next, the characteristics of the neighbouring clusters evolve 

smoothly around the hysteresis loop.   

 

Figure 28: Prototype values by node for the SOMersault in Figure 27 (Node 1 is the first on the left, with numbering 
proceeding clockwise to Node 12 at the bottom). The smooth transition of values for each variable can be seen along 
the set of ordered map nodes. That is, neighbouring nodes have similar values for each variable. This allows the 
characteristics of data clustered to each map node to be compared based on the distance between nodes along the 
map.  

Analysing the cluster characteristics described by the prototype values of each node provides 

information on the river-months assigned to each cluster. For example, in the SOMersault, 

average storage is a characteristic of both clusters 6 and 12, but cluster 6 is associated with 

high scarcity whereas low scarcity is a characteristic of cluster 12. The Nelson River is attributed 

to cluster 6 of the SOMersault in February and March (during frozen conditions) and the rest 

of year to cluster 12. The Dead Sea basin has very low variability in annual storage, and yet is 

in cluster 12 from December to April and cluster 6 the rest of the year when consumptive 

requirements are higher. The traditional SOM, however, effectively only clusters the data by 

scarcity in the mid-portion of nodes and storage in the lower nodes. Node 8 of the SOM 

(counting from the bottom), for example, is characterised by average scarcity but both high 

and low values of storage are assigned to it. The Ishikari River, in Japan, experiences low 

storage for the months of May, June, July and August and higher storage for the autumn and 

winter months. With the SOMersault, the months are divided up with these four months (May 

to August) attributed to nodes 1 and 2, and the rest of the year attributed to nodes 9 and 10. 

However, on the SOM all the months are attributed to nodes 7, 8 and 9 in the middle of the 

map, providing no distinction between months with high or low values of storage. 

The characteristics of Node 8 of the SOMersault are above average storage and severe scarcity. 

This is an interesting combination as it shows that perhaps there is water available from 

sources other than direct river withdrawal which could potentially be used to alleviate the 

scarcity experienced in the basin.  River-months in this cluster are: the Ord in May, the Tigris 

and Euphrates, Sakarya and Sacramento in June, the Yongding He in September, and the 

Krishna in December.  
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A further benefit of this process is the ability to identify rivers following similar patterns 

throughout their annual cycles. For this we use a post-processing SOM with each cluster 

number as input for that river-month, as in Clark et al. (2015). This results in an identification 

of groups of rivers that are relatively similar to each other in their storage and scarcity 

characteristics throughout the year. Some examples are shown in Figure 29: the Volga and 

Pangani (Russia, Tanzania); the Lempa, Niger, Krishna and Biobio (Central America, West Africa, 

India, Chile); the Guadalquivir, Limpopo, Ord, and San Joaquin (Spain, South Africa, Australia, 

USA); and the Chira, Solo and Orange (Peru, Indonesia, South Africa).  

 

Figure 29: Clusters of rivers whose scarcity and storage relationships are similar throughout the annual cycle. The 
SOMersault has identified rivers with similar annual patterns in both variables.  

The ordered clustering information produced by the SOMersault determines patterns of water 

resource conditions across basins of varying geographic, climatic and anthropogenic influences, 

revealing similarities experienced during certain phases of the annual cycle. This understanding 

could support: the sharing of management strategies between basins, decision making 

regarding the allocation of funding for water resources projects, agricultural planning, and the 

identification of further possibilities for water acquisition and water efficiency. The concept of 

sharing management principles between basins has been exemplified with ideas implemented 

in the Tarim River Basin project in China having been based on previous experience gained in 

the Murray basin in Australia (website 4). Consideration of alleviating water stress by close 

attention to the virtual water trade could also be informed, such as importing products that 

require high consumption during times of low storage. Certain basins may also benefit from 

attention to agricultural planning, such as the Tigris and Euphrates, Indus, Ganges, Tarim, 

Murray, and Limpopo in which 50-85% of consumption is a result of irrigation of three different 

crops or less  (different crops by basin) (Hoekstra & Mekonnen, 2011) usually coinciding with 

times of low natural water storage in the basins.  
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Improvements in the application of the SOMersault to this real world data could include a 

method of linking the similarity between the end nodes representing the cyclic data (such as 

nodes 1 and 12 on Figure 27). In general before applying the SOMersault to real world data 

one should ensure that there is a low dimensional manifold present in the data set that is able 

to be discovered by LTSA. 

6.5 DISCUSSION 
The initialisation of the SOM grid is important to ensure an optimal clustering of the data 

(Abbas, 2008). Conventionally, initialisation is based on linear principal components which 

correspond to the overlapped structure of the entire data set, regardless of the shape of any 

manifold that might exist (Demartines, 1997). Due to their fundamental linearity, however, 

principal components are a suitable approximation for low dimensional manifolds only when 

the manifolds are embedded linearly, or nearly linearly, in the input space (Tenenbaum (2000), 

Guan (2005), Gorban (2008)).  

When embedded manifolds are not simply perturbations of linear approximations of the data 

set, nonlinear techniques are useful as they are able to discover a low dimensional 

representation of the data in a coordinate system that captures the intrinsic degrees of 

freedom of the nonlinear data. Many nonlinear dimension reduction techniques exist, most of 

which are suitable to the investigation of a particular amount and type of data (for an overview 

of popular techniques refer to Wittman (2005) and Van der Maaten (2009)). Most nonlinear 

techniques guarantee global optimality due to the convexity of the cost function, though they 

cannot deal with data sets with high intrinsic dimensionality, or discontinuous manifolds (Van 

der Maaten, 2009).  

The LTSA dimension reduction technique is used in the SOMersault, though others could also 

have been used. LTSA is a ‘local’ nonlinear technique which was chosen for the SOMersault as 

it draws inspiration from and improves upon the popular techniques of ISOMAP and LLE (Zhang, 

2004). The ISOMAP, a ‘global’ technique, attempts to estimate and preserve the global 

properties of the original data by using geodesic distances to find the shortest paths between 

distant points (Tenenbaum, 2000). The ISOMAP is guaranteed for manifolds that are a convex 

region of Euclidean space but may be folded or twisted in high dimensional space. The 

algorithm involves finding the k nearest neighbours of each data point, graphing the shortest 

distances between all points with edges connecting neighbouring points, and then performing 

multidimensional scaling (MDS). LLE, a ‘local’ technique, attempts to estimate and preserve 

local properties of the input data by assuming the data and neighbours lie on the same patch 

of the locally linear manifold (Roweis, 2000). This eliminates the need to estimate distances 

between far data points. The LLE algorithm consists of finding the k nearest neighbours of each 

point and determining reconstruction weights assuming these neighbourhoods are linear.  

For successful visualization and clustering of data, only the local structure of the input data 

needs to be retained in the reduction (Van der Maaten, 2009), and since the main functions of 

the SOM are visualization and clustering we have chosen to match it with a local nonlinear 
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technique. As LTSA cannot be used directly for classification (Zhang, 2004), it is practical to 

combine it with a clustering or classification method such as SOMs. 

As we have seen, the integration of LTSA and the SOM in the SOMersault method is not merely 

a two-step combination of performing LTSA and then creating a SOM. A recurrent interchange 

of information between the high and low dimensional spaces occurs during the SOMersault 

process. The map is created in a combination of low dimensional and high dimensional spaces, 

and interpreted in low dimensions based on the high dimensional clustering. Projecting the 

map into high dimensional space for the fine-tuning stage of training allows the map vectors 

to take on high dimensional values. The vectors can therefore be used as a smaller 

representative data set to work with during analysis, rather than the entire high dimensional 

data set. This step also allows the nodes to move off the low dimensional manifold and become 

closer to the data whilst retaining connections to ensure the structure of the low dimensional 

manifold is preserved, providing more accurate and informative clustering. High dimensional 

map vectors enable the visualization of the output map in input space alongside the original 

data, which would otherwise not be possible.  

Like the SOM, the SOMersault is effective at determining clusters in nonlinear data. However, 

the improvement in clustering provided by the SOMersault is the ability to provide a geodesic 

ordering to the clusters. This ordering aligns the clusters with the underlying manifold, so that 

adjacent clusters on the map contain data that are neighbouring along the manifold. As the 

SOMersault clusters are linked along the geodesic surface, each contains data from only the 

local area rather than sectioning through overlapping layers of the nonlinear surface. As 

clustering is the most common use of the SOM, and providing an order to the clusters is a 

quality unique to the SOM (Agarwal & Skupin, 2008), this improvement is fundamental to the 

use of SOMs on nonlinear data. 

The SOMersault also has specific benefits for the discovery of representative patterns in a data 

set. Due to the initial alignment of the SOMersault grid with the geodesic surface, the final 

locations of the nodes are expected to be on or near the geodesic surface of the data, and not 

located between layers of the manifold. The closer (more similar) the prototype vectors are to 

the data they represent, the more characteristic the patterns described by each vector are of 

the actual prevalent patterns of the data. Any nodes that settle in empty space (between layers 

of the manifold, with no data assigned to them) provide patterns which do not actually exist in 

the data set. In our examples, we have seen that nodes of the traditional SOM frequently rest 

in areas of data space with no nearby data points, since the linear initialisation is based on 

principal components which can span directions where no data exists.  

The qualities of the SOMersault that offer benefits over the traditional SOM as discussed here 

are also expected to provide benefits when compared with similar methods combining 

manifold learning techniques with the SOM, such as the ISOSOM, GDBSOM and DSOM. The 

fine-tuning of the prototype vectors in high dimensional input space has advantages over the 

ISOSOM in which the training is finalised in low dimensional space: the vectors can leave the 

low dimensional manifold to move closer to (and become more representative of) the high 

dimensional data, and the final vectors are themselves high dimensional. The restriction of the 
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updating neighbourhood in the fine-tuning stage to a localised area of the geodesic surface 

can be expected to provide more accurate geodesic quantisation than might result from the 

ISOSOM which has no such restriction or the GBDSOM which uses Euclidean updating. Also, 

the SOMersault method does not introduce a number of new parameters which the user must 

specify, as in the DSOM; the traditional SOM framework is used with the familiar parameters 

for neighbourhood selection in both the global ordering and fine-tuning stages of training. 

In the process of exploratory data analysis, it often becomes necessary to add new data to a 

map that has previously been trained with other data, in order to sort the newly acquired data 

into the clusters already determined to exist in the data set. This is known as an out-of-sample 

extension. As with the SOM, this is also possible with the SOMersault. The new data point will 

need to first find a place on the low dimensional projection, and then the BMU in high 

dimensions searched from a subset of nodes in the neighbourhood of the low dimensional 

BMU. To find the low dimensional projection of the new data item, Teng (2005) provides a 

nonparametric out-of-sample extension method that can be applied to all nonlinear dimension 

reduction techniques. This method finds the nearest neighbor of the new data item in high 

dimensional input space, computes the linear mapping to the corresponding low dimensional 

representation, and applies the same linear mapping to the new data to find its low 

dimensional representation. This process will lead to some estimation errors in the new data 

embedding (Van der Maaten, 2009), but this will not matter as the final data assignment will 

be completed with the actual new input data item in high dimensional space. 

As with the SOM, careful consideration must be given to the selection of the number of nodes 

for the SOMersault as this will determine the balance between generalization and accuracy of 

pattern extraction in the results (Liu, 2006). With the SOMersault this choice must be based 

on the optimal coverage of the low dimensional manifold.  

The intrinsic dimensionality of the data set, and therefore the target dimensionality for the low 

dimensional projection to be used in the SOMersault, can be estimated from the decrease in 

residual variance as the dimensionality of the projection is increased (Tenenbaum, 2000), or 

by means of a maximum likelihood intrinsic dimension estimator (as in Levina, 2004). However, 

the existence of self-consistent principal manifolds is not guaranteed for arbitrary distributions 

(Demartines, 1997), and if no low dimensional manifold is actually present in the data set, LTSA 

will not produce a lower dimensional projection and the SOMersault method would not be 

required. 

6.6 CONCLUSION 
The SOMersault method has been specifically designed for the exploratory data analysis of 

natural data sets in which commonly encountered nonlinear patterns require an analysis 

technique able to extract underlying nonlinear relationships from the complexity of the high 

dimensional data measurements. The tendency of natural systems to involve a rhythmic rise 

and fall of individual components make them particularly suitable for use with the SOMersault 

method. Patterns in the data could appear in the form of a lone peak or trough, a continuously 

recurring wave, or a combination of variables that rise and fall with associated amplitudes, 
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frequencies and dynamic lags to create spirals, helixes or hysteresis loops when combined. The 

trained SOMersault map will essentially roll itself along the natural curves or bends of the 

geodesic surface of the data to enable pattern extraction, clustering and visualisation.  

In the SOMersault technique, the SOM framework has been expanded to enable the 

characterization of these highly nonlinear manifolds. For the effective representation of 

nonlinear manifolds with SOMs, the first approximation of the map node locations in data 

space is fundamental to the outcome. This is because the initial shape and topological structure 

of the map grid remain throughout the training. The map can be bent and stretched, but not 

reshaped. It is therefore imperative to ensure the pre-imposed grid represents the main 

degrees of freedom in the data set, even if they are nonlinear. To achieve this, the SOMersault 

method involves an initial projection of the high dimensional data into a low dimensional space 

with LTSA, allowing the initial map to become spread smoothly on the geodesic surface of the 

underlying manifold. This transfers the global ordering aspect of map training into low 

dimensional space, so that bends and folds in the manifold do not become represented on the 

output map as overlapping structures. The map is further trained in high dimensional data 

space with a localized neighbourhood kernel. This limits the influence of each data item to the 

nodes directly around it, thereby avoiding any effect that data points on more distant areas of 

the manifold may have on nodes that are close in Euclidean distance. 

We have shown that the output SOMersault grids generally have benefits in cluster ordering 

and pattern extraction when compared with conventional SOM grids. The clusters produced 

by the SOMersault are well ordered along the unravelled surface of the data set. In contrast, 

the clusters produced by the standard SOM do not follow the same smooth ordering. The 

‘extraction’ of patterns that do not actually exist in the data is evident on the SOM maps which 

contain black nodes or colours that are not present in the input data, whereas in the 

SOMersault patterns emerge that are more representative of the data items as the map does 

not become stretched between distant areas of the manifold. 

These benefits of the SOMersault in clustering and pattern extraction have been demonstrated 

through examples. Visualisations and quality measures have indicated the improvements in 

the clustering, quantization and topological representation of the data. A real world application 

on a global set of river basins with relationships of water scarcity and availability too 

complicated to explicitly define (for our purposes), has produced well-ordered clusters of rivers 

in space and time. 

Future work may include an improved method for mapping the prototype vectors back and 

forth between the low and high dimensional spaces, for instance in calculation of the error 

measures in which the low dimensional locations of the vectors are currently approximated 

using the Voronoi sets of the high dimensional data. The geodesic topographic error defined 

in this paper has been based on the conventionally used TE, in which an error is registered only 

for data in which the first or second BMUs are out of place, but not if both are out of place. 

This could be improved to take into account large groups of map nodes shifted together to 

distant areas of the geodesic surface, as we have seen on the three dark blue sections of the 
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Swiss roll data set with the SOM. Any refinements to the nonlinear dimension reduction 

performed with LTSA will be included automatically. 

6.7 SOFTWARE AND DATA AVAILABILITY 
The SOM Toolbox for MATLAB (Vesanto, 2000) is available for free download from The 

Adaptive Informatics Research Centre of the Helsinki University of Technology at: 

http://www.cis.hut.fi/somtoolbox/. The mani.m manifold learning code for MATLAB (Whitman, 

2005), including LTSA, is available for free download from: http://ocw.mit.edu/courses/earth-

atmospheric-and-planetary-sciences/12-s990-quantifying-uncertainty-fall-2012/tools/mani.m. 

The Swiss roll, toroidal helix and punctured sphere data sets are part of this code. LTSA code 

for MATLAB is also contained in the NL Toolbox (Van der Maaten, 2007) available at: 

https://lvdmaaten.github.io/drtoolbox/. Water scarcity data is available in spreadsheet format 

at: http://waterfootprint.org/en/resources/water-footprint-statistics/#CP4, and water storage 

data is available for download by river basin at: http://geoid.colorado.edu/grace/ 

dataportal.html. 
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7 PAPER 4 – EXTENSIONS TO TEMPORAL CLUSTER ANALYSIS AND 

PARAMETER SELECTION 

 

This chapter is published as:  

 

Patterns and comparisons of human-induced changes in river flood impacts in cities 

Stephanie Clark, Ashish Sharma, Scott A. Sisson. Hydrology and Earth System Sciences. 22, 

1793–1810, 2018. 

 

7.1 ABSTRACT 
This study investigates patterns of current conditions and anticipated future changes in city-

level flood impacts driven by urbanisation and climate change. Global patterns relating urban 

river flood impacts to socioeconomic development and changing hydrologic conditions are 

established, and world cities are matched to these patterns. Comparisons are provided 

between 98 individual cities. We use a novel adaption of the self-organizing map method to 

establish and present patterns in the nonlinearly-related environmental and social variables. 

Output maps of prevalent patterns compare baseline and changing trends of city-specific 

exposures of population and property to river flooding, revealing relationships between the 

cities based on their relative map placements. Cities experiencing high (or low) baseline flood 

impacts on population and/or property that are expected to improve (or worsen), as a result 

of anticipated climate change and development, are identified and compared. This paper 

condenses and conveys large amounts of information through visual communication to 

accelerate the understanding of relationships between local urban conditions and global 

processes, and to potentially motivate knowledge transfer between decision makers facing 

similar circumstances. 

7.2 INTRODUCTION 
Through urban development and climate change, humans are progressively generating (and 

being on the receiving end of) increased hydrologic impacts, with these anthropogenically 

induced changes becoming particularly evident in cities (Revi et al., 2014, Mills 2007, Kreimer 

et al., 2003; Willems et al., 2012). With high densities of urban populations, infrastructure, 

property and industry, cities are both substantial drivers and receivers of environmental 

impacts. River flooding, the environmental event affecting more people than any other natural 

hazard (Doocy et al., 2013; Desai et al., 2015; Sofia et al., 2016), currently poses a threat to 

almost 380 million urban residents (UN-Habitat, 2014). Globally, hydrologic regimes leading to 

urban flooding are varying with climate change (Desai et al., 2015; UNEP, 2016; Willems et al., 

2012), and locally, socioeconomic factors associated with urban development (variations in 

population growth, development, land use and urban density) are uniquely altering each city’s 
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individual response to these changing flood levels and frequencies (Desai et al., 2015). In the 

next few decades, cities will need to anticipate and adapt to this combination of shifting 

quantities of water and city features (Revi et al. 2014; Doocy et al., 2013). In this study, we aim 

to develop an understanding of the prevalent global patterns of human-environmental 

relationships influencing city-level river flooding, and discover how a global set of individual 

cities fits into these patterns. 

Climate change and urbanization are combining to force more frequent flooding and higher 

flood peaks in cities, though the influence of each factor varies spatially and temporally (Desai 

et al., 2015). Historically, cities have formed near rivers and population density is still highest, 

globally, where the closest water feature is a large river. As cities grow, the proximity of 

population and property to these water courses increases (Kummu et al., 2011). It is estimated 

that 70% of the world’s population will live in cities by 2050 (UN-Habitat, 2010), up from 54% 

in 2015 (UN-DESA, 2015). With this rapid urbanization, highly populated areas are experiencing 

an increase in flood vulnerability (Kreimer et al., 2003), as unplanned expansion often leads to 

migration into urban flood plains (Jongman et al., 2012; Revi et al., 2014). Global urban land 

cover is increasing at a rate over double that of urban population growth (Angel et al., 2010a) 

and is projected to increase three-fold by 2030 (Pachauri et al., 2014). More impervious areas 

and encroachment into the surrounding countryside are forcing faster concentrations of 

rainfall in urban rivers during storm events, as well as higher flood peaks (Desai et al., 2015; 

Doocy et al., 2013; Kreimer et al., 2003).  

Hydrology in cities is also affected by increased surface temperatures associated with climate 

change. Already, increases in the frequency and intensity of precipitation (Frich, et al. 2002; 

Desai et al., 2015; UNEP, 2016), changes in spatial and temporal storm patterns (Wasko & 

Sharma, 2015) and changing snow melt conditions (Schiermeier, 2011; Barnett et al., 2005; 

Immerzeel et al., 2010) are leading to variations in the magnitude, frequency and timing of 

urban river floods, with higher peak flows and shorter response times (Shiermeier, 2011; 

Cunderlik, 2009). These changing patterns of precipitation and runoff are complex and not 

uniformly spatially distributed (Meehl et al., 2005; Desai et al., 2015; Wentz et al., 2007; Frich 

et al., 2002). In the future, cities in particular are predicted to become even more vulnerable 

to extreme hydrologic events as a result of climate change (Pachauri et al., 2014; Willems et 

al., 2012; Revi et al., 2014, Sofia et al., 2016). Increases in rainfall intensity at urban hydrology 

scales of up to 60% are anticipated by 2100 (Willems et al., 2012), and the micro-climates of 

cities are expected to interact with climate change in a variety of ways, potentially exacerbating 

flood effects (Revi et al., 2014).  

In this paper, a comparison is made amongst a selection of cities based on their current and 

projected future urban river flood impacts on population and property, resulting from an 

anticipated combination of climate change and development. It should be noted that fluvial 

flooding is the only type of flooding that is considered here, and this study does not include an 

analysis of cities subject to coastal or pluvial flooding. Analysing data with city-specific 

projections of changes in hydrology, population and development levels (based on future 

climate scenarios, projected development pathways, and a best assumption of flood 

protection standards) we produce an analysis and visualisation of the patterns of baseline 



99 
 

conditions and anticipated changes in city-level river flooding impacts to the year 2030. We 

establish the prevalent global spatial and temporal patterns of urban flood impacts, explore 

these impacts as resulting from both developmental and hydrological drivers, and match the 

cities to their most similar pattern. The patterns are established through dimension reduction, 

clustering and visualisation of multivariate data with an adaptation of the self-organizing map 

(SOM) technique. The SOM is an artificial neural network useful for exploring nonlinearly 

related variables, and is popular for investigating potentially difficult-to-define environmental 

responses to human influences (e.g. Shanmuganathan et al., 2006; Vaclavik et al., 2013; Clark 

et al., 2016b) as well as providing comparisons between geographic areas (Kaski & Kohonen, 

1996; Clark et al., 2015; Clark et al., 2016). We begin by presenting analyses of patterns of 

urban flood conditions (as measured by the amount of population affected and urban damages 

costs) for a baseline global snapshot (2010), then investigate projected temporal changes (up 

to 2030), and finally combine this information into a global temporal analysis of the cities. As 

individual cities are matched to their closest patterns at each stage, we discover clusters of 

cities with similar urban flooding characteristics and projected trends.  

A growing body of research is investigating the impact of anthropogenic changes on urban 

flooding at regional and global scales, however we have found no literature comparing specific 

cities in terms of changing city-level flood impacts on populations and property. The 

Intergovernmental Panel on Climate Change’s 5th Assessment Report Chapter 8 ‘Urban Areas’ 

(Revi et al., 2014) discusses the vulnerabilities and resilience of cities to climate change in 

general, noting that the analysis is based on economic losses and would differ if a human 

component is included. Jongman et al. (2012) investigated global trends of coastal and river 

flooding based on changing regional population densities and land use. Increased vulnerability 

to flooding is attributed to population growth or increases in wealth, though the modelling 

does not include changing hydrology due to climate change. Jongman et al. (2015) estimated 

regional trends in human and economic river flooding vulnerabilities by income level, through 

hazard and exposure calculations. Kunkel et al., (1999) investigated the increasing trend of 

economic losses and fatalities in the USA due to increasing vulnerability to floods, however the 

climate change contribution to this increase was not possible to quantify due to a lack of data. 

Winsemius et al. (2016) produced the first projections of global future flood risk that consider 

separate impacts of climate change and socioeconomic development, with results discussed 

by geographic region (river basin) and economic level. The investigation of the connection 

between coastal flooding and climate change (increasing storms combined with sea level rise) 

is more common in the literature than the connection between river flooding and climate 

change (Nicholls et al., 2008; Nature, 2016) due to better data availability. Most existing river 

flood assessments are at a local or regional scale (as in Muis et al., 2015), limiting the possibility 

to compare between multiple cities, as studies at a global scale have traditionally been limited 

by a lack of datasets and methods. Sofia et al (2016) emphasize that analyses of climate change 

and socio-economic development as both drivers and receptors of flood risk is needed. Muis 

et al. (2015) call for an investigation between the combination of land use change and 

hydrologic change on future flood risk. (Jongman et al., 2012) highlight that due to population 

growth and climate change, global methods incorporating both spatial and temporal dynamics 

to investigate inland flooding at the city scale are necessary for global development studies 
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and estimating costs associated with climate change. To date, a global examination of changing 

flood conditions at the city level resulting from urban development and climate change, 

including a direct comparison between specific cities, has not been made. The analysis we 

present here corresponds directly to this gap in the literature.  

General patterns as well as specific relationships can be extracted from the output maps in this 

paper. In the interest of channelling the ‘potential of visual communication to accelerate social 

learning and motivate implementation of changes’ (Sheppard, 2005) the aim of the method 

used here is to discover and demonstrate potentially interesting global patterns and 

relationships that would not otherwise be evident in the data, for example: clusters of cities 

which are currently experiencing high flood impacts that are projected to greatly increase in 

the future, and to what extent this may be due to climate change (or socioeconomic 

development) within each city; which cities not currently experiencing notable effects of 

flooding may expect to in the future; which cities are projected to mitigate potentially adverse 

flood effects from climate change with reductions in flooding due to socioeconomic factors; 

which cities are projected to experience an increased flood vulnerability driven by 

socioeconomic factors alone; and the relationship between the changes in vulnerability of the 

population and urban damages costs for each city. 

The comparison of individual cities in this study (rather than river catchments) allows a 

blending of environmental and social information which reinforces the co-dependence of 

humans and their natural environment, a relationship which is often easily overlooked by 

urban dwellers. Explicitly visualising the role that urbanisation may have on the environmental 

conditions experienced by urban citizens is an essential reminder of this connection. Cities 

potentially facing similar circumstances and challenges are identified in this study, suggesting 

possibilities for a sharing of strategies. As climate change, development, and urban 

administrations transcend river basin boundaries, an investigation of impacts and 

determination of potential mitigation strategies at the city level as well as the basin level 

expands the potential for decision makers to be presented with all the available, relevant data 

for consideration. 

7.3 DATA AND METHOD 

7.3.1 Data 

The data set used in this study combines city-level estimates of annual expected urban river 

flood impacts on population and urban damages costs (2010), projections of future changes in 

flood impacts attributed to climate change and/or development (up to 2030), and 

socioeconomic data for a globally distributed set of cities.  

The selection of cities used here is based on a list provided by the Lincoln Institute of Land 

Policy’s Atlas of Urban Expansion (Angel et al., 2010, website 1), spanning all continents except 

Antarctica, encompassing four economic levels and four population levels. City population data 

(2010) and future population estimates (2030) are from the UN Department of Economic and 

Social Affairs (UN-DESA, 2015), and GDP per country are from the World Bank’s World 

Development Indicators database (website 2).  
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Annual river flood impact estimates are obtained from the global dataset of fluvial flood risk 

published in the World Resources Institute’s Aqueduct Global Flood Analyzer Tool (herein 

referred to as Aqueduct) (Winsemius et al., 2013; Ward et al., 2013; website 3). Released in 

2015, this data set comprises the first unified global set of fluvial flood risk data at the city level. 

As this data is solely related to the influence of fluvial flooding on metropolitan areas, it does 

not include coastal or pluvial flood risks. In this data set, Aqueduct provides separate estimates 

of annual impacts on the number of affected population (people exposed to flood waters) and 

urban property damages costs (in US dollars), which will be referred to in this paper as 

‘population’ and ‘damages’ impacts.   

Global hydrologic and hydraulic models, inundation modelling, and spatial data sets of 

population, land use and infrastructure are used within Aqueduct to quantify flood risk in each 

city. Aqueduct identifies future anticipated changes in urban flood vulnerabilities as driven by 

climate change (altered hydrology), socioeconomic development (population, land use and 

economic changes), or in most cases a combination of both. Either of these drivers may 

increase or decrease the frequency and intensity of flooding, and the resulting flood impacts, 

for a given city. Three separate scenarios of climate change and socioeconomic development 

(optimistic, business-as-usual, and pessimistic) are given in Aqueduct, and in this study we use 

data from the business-as-usual case for our future flood impact scenario. Future hydrologic 

and hydraulic estimates in Aqueduct are based on global circulation model data from the 

ISIMIP project (website 4) and changes in population and economic development are based on 

Shared Socioeconomic Pathways data with a downscaling procedure that differentiates 

between urban and rural growth (website 5; Samir & Lutz, 2014). Recent papers published with 

this data include Winsemius et al. (2016), Jongman et al. (2015) and Muis et al. (2015). 

Expected flood impacts are provided by Aqueduct for nine possible levels of city-wide flood 

protection, from protection against the 2-year average return interval (ARI) flood to the 1000-

year ARI flood. This protection level indicates how well protected the area is against flood 

damage, based on the standard or capacity of flood protection measures such as dikes, levees 

or dams. In this study, we assign an assumed flood protection level to each city based on the 

country’s World Bank income level (as in the World Resource Institute’s Aqueduct Global Flood 

Risk Country Rankings, website 6) due to a lack of information on each city’s actual protection 

level. This method follows recommendations based on the rational that higher standards of 

protection against flooding may be expected in higher income countries (Jongman et al., 2012; 

Nicholls et al., 2008), and findings by Doocy et al. (2013) that flood impacts are significantly 

associated with classification of income level by the World Bank. We assume each city’s flood 

protection level remains the same during the timeline of this study.  

To allow for a comparison between cities of greatly differing sizes and hydrologic conditions, 

the wide-ranging data values were log-transformed. The data set was then standardized by 

transforming these values linearly into the range 0-1 (with the lowest value becoming 0 and 

the highest value becoming 1) for each variable (population affected, urban damages, etc). The 

data is log transformed, following recommendation by Agarwal & Skupin (2008) that highly 

skewed variable distributions may benefit from log transformation before use in the SOM. 

Cities with no flood impacts in both 2010 and 2030 were removed (22 cities), though cities 
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with no flood impacts in 2010 but with flood impacts in 2030 have been kept in the study. The 

final list of cities is presented in Table 10. 

Table 10: City list - alphabetically by region. 

Eastern Asia & the Pacific 

Anqing  China 
Ansan  Rep. of Korea 
Beijing  China 
Changzhi  China 
Chinju  Rep. of Korea 
Fukuoka  Japan 
Guangzhou China 
Leshan  China 
Pusan  Rep. of Korea 
Seoul  Rep. of Korea 
Shanghai  China 
Sydney  Australia 
Tokyo  Japan 
Ulan Bator Mongolia 
Yiyang  China 
Yulin  China 
ZhengzhouChina 
 
Southeast Asia 

Bandung  Indonesia 
Bangkok  Thailand 
Ho Chi Minh City Vietnam 
Kuala Lumpur Malaysia 
Manila  Philippines 
Palembang Indonesia 
Songkhla  Thailand 
 
South Asia 

Dhaka  Bangladesh 
Hyderabad India 
Jalna  India 
Kanpur  India 
Kolkata  India 
Mumbai  India 
Puna  India 
Rajshahi  Bangladesh 
Vijayawada India 
 

Western & Central Asia 

Ahvaz  Iran 
Astrakhan  Russian Fed. 
Baku  Azerbaijan 
Gorgan  Iran 
Istanbul  Turkey 
Kuwait City Kuwait 
Malatya  Turkey 
Moscow  Russian Fed. 
Oktyabrsky Russian Fed. 
Sanaa  Yemen 
Shimkent  Kazakhstan 
Teheran  Iran 
Tel Aviv  Israel 
Yerevan  Armenia 
Zugdidi  Georgia 
 
North Africa  

Alexandria Egypt 
Algiers  Algeria 
Aswan  Egypt 
Cairo  Egypt 
Casablanca Morocco 
Marrakech Morocco 
Port Sudan Sudan 
Tebessa  Algeria 
 
Sub-Saharan Africa  

Accra  Ghana 
Bamako  Mali 
Harare  Zimbabwe 
Ibadan  Nigeria 
Johannesburg South Africa 
Kampala  Uganda 
Kigali  Rwanda 
Ouagadougou Burkina Faso 
 
 
 

Latin America & the Caribbean 

Buenos Aires Argentina 
Caracas  Venezuela 
Guadalajara Mexico 
Ilheus  Brazil 
Jequie  Brazil 
Mexico City Mexico 
Montevideo Uruguay 
Ribeirao Preto Brazil 
Santiago  Chile 
Sao Paulo  Brazil 
Tijuana  Mexico 
Valledupar Colombia 
 
North America 

Chicago  United States 
Cincinnati  United States 
Houston  United States 
Los Angeles United States 
Minneapolis United States 
Modesto  United States 
Philadelphia United States 
Pittsburgh  United States 
Springfield United States 
St. Catharine’s Canada 
Tacoma  United States 
 
Europe 

Budapest  Hungary 
Castellon  Spain 
Le Mans  France 
Leipzig  Germany 
London  UK 
Madrid  Spain 
Paris  France 
Sheffield  UK 
Thessaloniki Greece 
Warsaw  Poland 
Wien  Austria 

 

7.3.2 Method  

We use an extension to the self-organizing map method to determine patterns and similarities 

in the impacts, changes and drivers of urban flooding amongst the cities. The self-organizing 

map (SOM, Kohonen, 2001) is an unsupervised learning algorithm from the family of artificial 

neural networks that discovers patterns in multivariate data sets with nonlinear inter-variable 

relationships.  

The SOM reduces the dimensionality of the data set by creating a (in this case) two-dimensional 

map grid which, through an iterative process, is essentially bent and stretched over the data 

set until it best characterizes the shape of the data cloud. The numerous data items become 

represented by a (usually) much smaller number of map nodes, known as prototypes. The map 
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nodes, or prototypes, move iteratively into position amongst the data whilst maintaining their 

grid formation, establishing a higher density of prototypes in areas of higher data density. Once 

in position, the prototypes represent the most prevalent patterns in the data. Each data item 

is then matched to its closest prototype, creating clusters of similar data items.  

The SOM algorithm consists of a two-step iterative process of comparing the map and the data, 

and then updating the map to better represent the data. The method begins with a calculation 

of distances in data space (in this case we use Euclidean distance) between each data item, 𝑥𝑖 

(where 𝑖 = 1: 𝑁), and each map node, 𝑚𝑗 (where 𝑗 = 1:𝑀). Data and map nodes vectors are 

all of the same dimension, 𝑑. The goal of the comparison stage is to find the nearest map node 

to each data item (commonly referred to as the best matching unit, BMU), which is then given 

the index 𝑐, using the following calculation: 

‖xi −mc‖ = minj{‖xi −mj‖} . 

This partitions the data into subsets of items sharing the same nearest node, mc. Next, the 

locations of the map nodes are adjusted to become closer to their nearby data items. 

Application of a smoothing ‘neighbourhood’ kernel during this stage produces a smoother map 

by updating neighbouring nodes to a similar extent based on the nearby data. That is, the 

location of each map unit, 𝑚𝑗, becomes updated based on a weighted average of the data 

items matching itself as well as its neighbouring nodes, where the weighting is given by the 

neighbourhood kernel. The size of the kernel decreases with each iteration to include fewer 

nodes. We use a Gaussian shaped neighbourhood kernel, where ℎ𝑖𝑗  (the neighbourhood 

kernel element indicating the influence of each data item, 𝑥𝑖, on the updating of node 𝑚𝑗) is 

defined at iteration 𝑡 as: 

hij(t) = exp⁡(
−(𝑚𝑐 −𝑚𝑗)

2

2σ²(t)
) 

where σ is the kernel radius. At each iteration (t), the updated node locations are found as in 

(Kohonen, 2013): 

mj(t + 1) =
∑ hij(t)⁡xi
𝑁
i=1

∑ hij(t)
N
i=1

. 

After map training is complete, the map node vectors each represent a unique combination of 

variables in the data, according the final location of the map nodes in data space. Each of these 

unique combinations of variables represent a characteristic pattern in the data.  The data items 

are once again matched to their closest map node, forming clusters of data that best match 

each pattern. 

In this study, the ‘patterns’ are the key characteristics represented by each map node vector 

(such as specific baseline and/or projected flood conditions, and the drivers of change). The 

‘cluster’ members are the cities that match the pattern represented by their nearest map node 

better than they match the patterns of any other nodes. 
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As the SOM is an unsupervised learning algorithm, there is no subjectivity in the resulting 

cluster memberships. The iterative training process discovers the principal curves of the data 

set (the nonlinear directions of maximum variance) and aligns the map coordinate system with 

these, so that the two axes of the map generally follow the first two principal curves of the 

data. When the map is presented in its two-dimensional form, with data items located at their 

nearest map node, similar data ends up in close proximity on the map and dissimilar data is far 

apart. Through the SOM creation process the prevalent data patterns are identified by the 

nodes, data items become grouped into clusters around these patterns, and the clusters are 

ordered by similarity on the map. For a more detailed summary of the SOM method, refer to 

e.g. Clark et al. (2015).  

In this study, the data set is split into two subsets (‘baseline’ data and ‘projected future 

changes’) for each city, allowing a progressive investigation of spatial and temporal patterns of 

urban flooding. A series of three separate SOMs (also referred to as maps) are created with 

prevalent global patterns and city similarities established separately on each map through 

colouring and labels, as follows: 

• SOM1 explores the spatial properties of the baseline data set, enabling a comparison 

of the state of urban river flood impacts in each city at a snapshot in time (2010).  

• SOM2 explores patterns of projected temporal changes in impacts of urban flooding 

on population and property (to 2030), incorporating the drivers of climate change and 

urban development, and 

• SOM3 portrays the temporal relationships between the cities in a type of longitudinal 

exploratory data analysis, clustering cities that are similar in the baseline situation and 

are also projected to trend similarly in response to each driver in the future.  

SOM1, the baseline map, depicts prevalent global spatial patterns and identifies urban flooding 

conditions in each city based on two variables: 1) the total population affected annually by 

river flooding, and 2) annual urban property damages costs incurred by river flooding. The map 

is created based on these two variables, though by projecting new variables onto the trained 

map it is also used to show: 3) the percentage of each city’s population affected, and 4) the 

percentage of the country’s GDP affected. Usually used with higher-dimensional input data, 

the SOM method is useful here for creating a map with two variables as the nonlinear 

projection establishes the relationships between cities in alignment with the directions of 

maximum variance (ie. the directions of most importance) in the data. It also allows for the 

results to be used as input into SOM3 later. 

SOM2, the future projected changes map, describes the anticipated alterations in urban river 

flooding in each city by 2030. This map is based on four variables of projected changes and 

their associated drivers: 1) the projected change in population affected annually, 2) the 

projected change in annual urban damages costs, 3) the proportion of change in population 

affected that is anticipated to be attributable to climate change, and 4) the proportion of 

change in urban damages costs that is anticipated to be attributable to climate change. The 

remainder of the increase or decrease in impacts is attributed to socioeconomic causes (such 
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as population change, urban density change, increased city footprint, and changes in urban 

land cover).  

SOM3, the temporal map, uses the location of each city along the axes of the two-dimensional 

baseline and future projected changes maps (which essentially delineate the first two principle 

curves in each higher dimensional data subset) as input data. In creating SOM1 and SOM2, the 

baseline and future data subsets have already been reduced to their two most prominent 

dimensions respectively (which have become the axes of these maps), and each of these four 

dimensions is considered equally when placing the cities on the temporal map. This method is 

based on the method used in Clark et al. (2015) to investigate individual data items 

transitioning through a self-organizing-time-map, and has been modified for the comparison 

of patterns on two-dimensional maps of differing sizes and shapes that have been created 

separately based on different variables.  

Distinct patterns that have emerged through the process of training the three maps are 

represented by the nodes of SOM3. These patterns are the most relevant combinations of 

dynamic city flood impacts, socioeconomic, and climate change characteristics in the overall 

data set. SOM3 is clustered, coloured and labelled to indicate the relationships between the 

cities in terms of similar or differing baseline situations and projected changes. Cities with 

relatively close locations on both the baseline and future projected changes maps are 

considered to have parallel temporal paths, and will be found close together on the temporal 

map. Those with converging trends (dissimilar baseline conditions, but similar future projected 

changes) and diverging trends (close baseline conditions, but dissimilar future projected 

changes) are also identifiable on this map.  

In the creation of each map, grid size and shape have been determined using quantization, 

topographic and dimension range representation error measures (QE, TE, and DRR) with 

comparisons between the data set and the map.  

The QE (Kohonen, 2001) measures how well the map nodes represent the data items using the 

sum of squared Euclidean distances between each data item, 𝑥𝑖, and the node closest to it, 

𝑚𝑐 , averaged over all data points: 

𝑄𝐸 =
1

𝑁
∑ ‖mc − xi‖
⁡
𝑖  = 

1

𝑁
∑ √(𝑚𝑐

2 + 𝑥𝑖
2 − 2𝑚𝑐𝑥𝑖)

⁡⁡
𝑖 . 

The TE (Kiviluoto, 1996) indicates how well the topography of the data set is preserved on the 

map, giving higher error values for maps that are unnecessarily bent or twisted. The BMU and 

second BMU for each data point are checked to determine if they are adjacent (𝑢𝑥𝑖 = 1 if the 

first and second BMUs of 𝑥𝑖 are neighbours, 0 otherwise), and TE is calculated as: 

𝑇𝐸 =
1

𝑁
∑𝑢𝑥𝑖

𝑁

𝑖=1

 

The DRR (Clark et al., 2015) measures how well the map represents each variable of the data 

set to ensure even coverage of the dimensions. The maximum intra-cluster spread of data 

items in each dimension, 𝑑, that become represented by a single map node, 𝑥𝑖 (as a proportion 
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of the overall data range in that dimension) is determined. The DRR is calculated as follows, 

where⁡ 𝑥𝑖(𝑑)⁡ are data values in dimension 𝑑, and⁡ 𝑥𝑖𝑗(𝑑)⁡ are the data values in dimension 𝑑 

that are assigned to map unit 𝑗: 

𝐷𝑅𝑅(𝑑) = max
𝑗

max
𝑖𝑗

(𝑥𝑖𝑗(𝑑)) − min
𝑖𝑗

(𝑥𝑖𝑗(𝑑))

max
𝑖
(𝑥𝑖(𝑑)) − min

𝑖
(𝑥𝑖(𝑑))

 

For the baseline map, a 10*7 grid is found to be the optimum shape to represent the data 

based on the error measures. An 8*8 map is fitted to the future projected changes data set. 

After finding these optimum side ratios, the maps are increased in size preserving their side 

ratios (to 20*14 and 18*18) to allow the data items to spread out until most cities are placed 

individually, allowing the relationships between all cities to become evident (as in Skupin & 

Hagelman, 2005). The temporal map is sized at 25*17 nodes. Whilst the input data for the 

baseline and future projected changes maps were standardized into the range 0-1 before 

training, the input data for the temporal map is not standardised in order to preserve the ratios 

between the lengths of the first two principal curves in each of the first two data subsets.  

Prevalent cluster characteristics are determined using a ‘second level’ clustering of the nodes 

of the SOM (as in Vesanto & Alhoniemi, 2000; Skupin & Hagelman, 2005), performed using 

Ward’s clustering method (Ward, 1963) with the number of clusters determined using the 

Davies-Bouldin index (Davies & Bouldin, 1979). The Davies-Bouldin index reports the ratio of 

within cluster scatter (𝑆𝑗⁡for⁡cluster⁡𝑗) to inter-cluster distances, looking at each cluster and its 

most similar one, (𝑀𝑗𝑘), with a lower ratio (𝑆 𝑀⁄ ) indicating a better estimate of the number of 

clusters of interest present in the data. Ward’s minimum variance method is a hierarchical 

clustering algorithm based on minimizing the total within-cluster variance. With this second-

level clustering, each data item of the original data set becomes a member of the same final 

cluster as its closest node (Vesanto & Alhoniemi, 2000). 

The final clustering is visually verified with a SOM ‘U-matrix’ (Ultsch, 2003). The U-matrix 

visualises distances in data space between immediately neighbouring nodes, indicating these 

distances by colour on a grid of the same size as the SOM. By computing how close adjacent 

map nodes are in data space, the U-matrix is able to provide an indication of cluster boundaries 

based on large dissimilarities between neighbouring nodes. A greater change in relative 

distance between the locations of the nodes in data space than in map space is displayed in a 

lighter colour on the grid, and lesser distances in darker shades. The darker regions of the grid 

then indicate the cluster centres, separated by lighter coloured boundary areas. 

By reducing the information from this multivariate data set into the two most prominent 

dimensions and finding relationships between the data items at each of these three stages, 

spatial and temporal information about global patterns of urban flooding is abstracted, and 

similarities and differences between the cities are clearly portrayed. This method extracts two 

levels of information:  

(1) the most characteristic socio-environmental patterns in the data are found, and 

(2) cities are compared to each other with respect to their relative flooding conditions.  
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The simulations are run in MATLAB with use of the SOM Toolbox (website 7) with variables and 

map sizes as described above.   

7.4 RESULTS 
Three SOMs are presented sequentially to reveal three unique sets of patterns in the data, 

where the term ‘patterns’ refers to combinations of variables that characterise a specific set 

of conditions. The cities are clustered into groups with conditions matching these patterns, 

based only on the given data. The maps each have different sizes, shapes and colours as they 

represent different subsets of input data. 

7.4.1 SOM1: Baseline urban flood impacts 

Patterns of urban flood conditions in 2010 are shown on the baseline map, SOM1, in Figure 1. 

The placement of city labels indicates the relationship of each city to each other in terms of 

river flood impacts on population and urban damages costs. The map is created by organizing 

the cities with respect to each other based on both of these factors. Cities close together are 

more similar in the amount of population affected and urban damages costs, and cities located 

far apart are less similar.  

The relative placement of the cities on the map is the main map characteristic providing insight 

into the features of the data, indicating differences in a combination of the variables which can 

be discerned from the colouring of Figure 30(a). Each map node has a four-component vector 

(representing the value of each of the four variables at the location of the node in data space). 

The four images in Figure 30(a) show SOM1’s city labels over grids coloured separately by the 

values of each of the four variables (white is low, purple is high). For each city, the relative 

value of each of the variables can be seen. For example, Cincinnati (top right) incurs high 

material damages costs, and medium population affected, whereas Ulan Bator (mid left) has 

similar population affected to Cincinnati, but much lower material damages costs.   

The nonlinearity of the relationships between the variables is evident, as is the smooth 

transition of the values of each variable along the map. General information about the 

prevalent baseline global patterns and the relative flood conditions in the specific cities can be 

gained from inspection of these map labels and coloured grids.  

Each area of the grid represents a general pattern, or combination of variables in the data, 

some of which are indicated by annotations on Figure 30(b).  In general, higher amounts of 

population affected and urban damages costs resulting from river flooding are represented by 

areas towards the top of the map, and these variables decrease in value down the map. Values 

of affected population are lowest just in from the lower left corner and undulate along the 

bottom of the map, sweeping upwards to a maximum at the upper left corner. Urban damage 

values are lowest in the lower left corner and increase in concentric arcs up to the upper right 

corner. Generally, the left of the map contains patterns involving higher impacts on 

populations than on property, and the right of the map higher impacts on property than on 

populations. 
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a) 

Amount of population affected                                                      Urban damages costs 

 

 
Low impact                                                                                                         High impact 

 
             GDP affected                                                             Percent of city’s population affected 

 
  



109 
 

b) 

 

Figure 30: SOM1 - Baseline (2010) urban flood conditions. Cities are placed relative to each other based on annual 
river flooding impacts on population and urban damages costs. a) The same map is repeated for each of four 

variables, with colouring indicating low (white) and high (purple) values. b) The city labels are coloured by region 
(see Table 1), and characteristic patterns of general areas of the map are annotated. The reader may 
refer to the online version to zoom in on text if required. 

From Figure 30(b), relationships can be discerned between regions, as well as between cities 

in the same region. For instance, cities in North Africa, Sub-Saharan Africa and West & Central 

Asia are predominantly located in the lower portion of the map, corresponding to a prevalent 

pattern of low flood impacts on both population and property. Cities in Southeast and South 

Asia generally correspond to the patterns of high impacts on population and property found in 

the upper left of the map. Cities in Europe stretch from the top to the bottom of the map, 

ranging from high overall flood effects (Paris) to no flood effects at all (Thessaloniki). North 

American cities are matched to patterns that represent more significant impacts on property 

than on population (down the right side of the map), and are split between those with high 

property damages (Philadelphia, LA, etc. – in the top right) and those with low damages (St. 

Catherine’s – in the bottom right).  

Impacts on GDP and the proportion of the cities’ populations affected are shown in the two 

lower maps of Figure 30(a), though these variables were not used to position the cities on the 

map. Cities in which river-related urban flooding is estimated to highly affect the country’s GDP 

are coloured on the lower left map. Kigali, in particular, which incurs medium-high flood 

impacts, sees a large impact on Rwanda’s GDP, perhaps because Kigali is the main city in this 

relatively small country (Kreimer et al., 2003).  GDP is most affected by flooding in: Kigali, 

Bangkok, Yerevan, Dhaka, Bamako and Cairo. Cities in which the flood-affected population 

forms a significant proportion of the city’s population are coloured on the lower right map, 
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predominantly in a horizontal strip across the centre. The highest proportions are in: Jequie 

(15%), Kigali (7%), Chinju (6%), Le Mans (5%) and Tacoma (3%).  

7.4.2 SOM2: Projected changes in urban flood impacts (to 2030) 

SOM2 identifies the projected patterns of evolving river flood conditions in the cities (between 

2010 and 2030), based on city-specific projections of increasing or decreasing flood impacts 

on population and damages costs, and whether these changes are anticipated to be driven 

more by climate change or development (Figure 31). 

In Figure 31(a), regions of the map representing projected increases in flood impacts on either 

populations or damages costs are coloured blue and reductions in flood impacts are coloured 

brown (in the top row), with white indicating no projected change. Projected changes primarily 

driven by socioeconomic development are coloured purple (in the lower row), and green 

indicates that the primary driver is climate change. White represents a mid-point in which both 

climate change and development are predicted impact future flood conditions relatively 

equally. Areas of the map representing patterns of increased flood impacts predominantly due 

to climate change or development can be located on Figure 31(b).  

Investigating SOM2, we see that climate change is projected to be predominantly responsible 

for increases in population vulnerability in all cities besides those in the top left corner (around 

Ho Chi Minh City). Climate change is anticipated to decrease flood damages costs in cities 

located at the bottom of the map (around Madrid), and decrease impacts on populations in 

cities in the mid-left (around Minneapolis) and mid-lower (again around Madrid) portions of 

the map. Socioeconomic development is projected to be the main driver increasing flood 

damages costs in cities on the upper-left triangle of the map (roughly from Mumbai down to 

Tebessa). Only in Ho Chi Minh City is development anticipated to be almost completely 

responsible for all increases in river flood impacts, all other cities in this study are at least 

partially affected by climate change. Development is not projected to play any part in a 

decrease in flood damages costs in any cities in this study (Caracas and Tebessa have no change 

in damages costs on the upper map, though it is attributed to development on the lower map). 

Geographic regions are shown on Figure 31(b) with coloured text backgrounds. Cities in 

Southeast Asia are almost all found at the top of the map indicating high projected increases 

in overall flood impacts. South Asian cities are mostly located in the two areas of the map with 

patterns of very high increases in flood impacts, split between those most affected by 

development (around Mumbai, top middle) and those most affected by climate change 

(around Puna, mid right). Many North African cities are located in the lower left, indicating 

anticipated reductions in flooding due to socioeconomic development. North American cities 

are spread across the middle of the map indicating a wide range of projected changes. 

Climate change and development may lead to opposing changes in a city’s flood impacts on 

population and property. A number of cities are predicted to have affected populations 

decreasing due to climate change, whilst damages costs increase due to socioeconomic factors 

(around Springfield and Port Sudan, in the mid-left). A decrease in flood effects on urban 

damages due to climate change, but an increase in affected population largely due to 
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development is, out of the cities in this study, only projected for Algiers (in the lower left 

portion of the map). 

a) 
Change in population affected by river floods Change in urban damages costs from river floods 

 

 
Decrease projected by 2030                                                           Increase projected by 2030 

 
Proportion of change in affected population 
driven by climate change and development 

Proportion of change in damages costs 
driven by climate change and development 

 

 
More influence by climate change                                 More influenced by development 

b) 
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Figure 31: SOM2 - PROJECTED CHANGES IN RIVER FLOOD IMPACTS WITH ASSOCIATED DRIVERS. River flooding in individual cities 
will be affected separately by climate change and development between 2010 and 2030. Cities that are anticipated to experience 
similar pressures and responses in terms of river flooding impacts are located nearby on the map. a) City labels are placed over 
coloured copies of the map showing the relative values of each variable. b) City labels are coloured by region, and characteristic 
patterns of general areas of the map are annotated.  The reader may refer to the online version to zoom in on text if required. 

In some cities, both drivers may generate changes in the same direction. For instance, in 

Marrakech, Yulin, Yerevan and Gorgan, climate change is projected to be responsible for a 

decrease in damages costs whilst socioeconomic development is anticipated to play a major 

role in the decrease in population affected, suggesting that the reduction of population 

vulnerability due to development is complementing the direction of change instigated by 

climate change. In certain cities near the upper left of the map (Santiago, Zugdidi and Yiyang), 

an overall increase in flood impacts is expected, with increases in affected population almost 

completely attributed to climate change and increases in damages costs almost completely 

attributed to development. 

7.4.3 SOM3: Temporal patterns 

Relationships between the baseline characteristics and projected future changes of urban 

flooding in the individual cities are shown in Figure 30 and Figure 31 respectively, however 

potentially similar temporal patterns between the cities are not evident from these maps. To 

link the information abstracted from the first two maps, we create a temporal map, SOM3, 

shown in Figure 32. SOM3 identifies which cities experience similar baseline flooding, are 

expected to incur comparable future hydrologic pressures from climate change and/or 

development, and are projected to respond in similar ways (or which cities may diverge in the 

future from similar baseline conditions).  
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Following the creation of SOM3 and the positioning of cities with respect to each other, we 

perform a second level clustering to colour the nodes, giving a visual separation to groups of 

more similar data. Clusters are numbered from 1 to 16 for reference. As the cities are placed 

on the temporal SOM based on their locations on the baseline and future projected changes 

SOMs (in which the values of the variables vary smoothly though not monotonically along the 

axes), again the characteristics of the cities will flow smoothly along the map though multiple 

peaks and troughs of each variable are possible. The gradients of the cluster characteristics are 

indicated along the axes in Figure 32(a), which are nonlinear in data space. 

 

a) 
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b) 

 

Figure 32: SOM3 - Temporal patterns. Cities are clustered close together that share similar baseline (2010) flood vulnerabilities as 
well as similar anticipated changes driven by climate change and development on population and urban damages costs by 2030. a) 
Locations of the cities are based on their individual relationships to the principal curves in the baseline and future projected changes 
data subsets - therefore, the axes represent the most important nonlinear gradients of flood vulnerabilities in the data set. Coloured 
bars along the axes indicate the average levels of each variable around the edges of the map. Cities are grouped into coloured 
clusters based on similarities. b) City labels are coloured by region, and characteristic patterns of general areas of the map are 
annotated. The reader may refer to the online version to zoom in on text if required. 

 

Broad overviews of the patterns represented by certain regions of the map are identified on 

Figure 32(b) with arrows. The largest increases in flood effects are generally represented by 

nodes in the lower half of the map, whilst the largest decreases in flood effects are represented 

by nodes in the top left. Climate change is predicted to be the main driver of changes in 

population vulnerability along the top and down the left and right sides of the map, and in 

urban damages on the top and right of the map; therefore, climate change is the leading driver 

of changes in flood impacts on both population and damages costs at the top of the map. 

Development is the main driver of changes in flood impacts on populations in the lower and 

upper left side of the map, and on urban damages in the lower left area of the map; therefore, 

development is the leading driver of changes in flood impacts on both population and damages 

costs in cities on the lower left side of the map.  

On Figure 32(b) the city labels are coloured by geographic region. We see the cities of each 

geographical region are more spread out on SOM3 than on SOM1 where each region was 

generally contained in one or two broad areas of the map. For example, on SOM3 Cairo and 

Aswan are noticeably separated from other North African cities which are located close 
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together. Although the cities of this region have differing baseline flood levels (as shown on 

SOM1), most are projected to incur some reduction in future flood impacts (as shown on 

SOM2), with the exception of Cairo and Aswan. These cities both have forecasts of increased 

flood impacts - for Aswan increased impacts on the population due to climate change and 

impacts on property due to development, and for Cairo future impacts are projected to 

increase due to a relatively even mixture of both drivers. For another example, cities in the 

USA (all of which have similar starting conditions) are in two well-separated clusters on SOM3 

- those around Houston and those around Los Angeles. The cities clustered around Houston 

are characterised by low impacts on population but high damages costs projected to elevate 

due to development, implying the possibility for local redemption due to better planning or 

mitigation strategies. The cities clustered around Los Angeles, however, are characterised by 

high overall impacts projected to get higher predominantly due to climate change. Further, in 

Sub-Saharan Africa we see Kigali and Bamako (which have similar medium-high baseline 

flooding conditions) are both expected to see increased impacts, but the cities are separated 

by SOM3 as these flood increases are attributed to development in Kigali and climate change 

in Bamako. 

To further analyse the characteristics of each cluster and the patterns found on SOM3, the 

properties of each city in the 16 clusters are shown in a radial plot in Figure 33. Baseline values 

of population affected (blue, units = number of people) and damages (orange, units = $US) are 

shown on a symmetrical logarithmic scale ranging from -8 (ie. signifying a value of -

100,000,000) to 11 (100,000,000,000) with the region between -1 and 1 on the plot set as 

linear to avoid logarithmic discontinuities in the vicinity of zero. Zero is indicated by a dashed 

circumference, and each progressive ring is an exponentially higher (or lower) value. Changes 

in population affected and damages costs are shown on the same scale, in grey and yellow 

respectively. Values inside the dashed (zero) circle represent decreases in flood impacts, and 

values outside represent increases, with the size of the increase or decrease indicated by the 

distance from the dashed circle. The influence of climate change is shown (light green for 

population and dark green for damages) on a linear scale from the same zero circumference, 

in units of ‘percentage of projected change attributable to climate change’ (each progressive 

ring is 10%). Green lines closer to the outer ring than the centre therefore indicate that the 

flood impacts on the city are anticipated to be more influenced by climate change than by 

development. If the green lines are both in the middle of the segment, this indicates a relatively 

equal influence of both drivers on both population and property. Diverging green lines indicate 

that either population or damages costs are more influenced by climate change, and the other 

by development. 

From Figure 33, we can see the differences between neighbouring clusters, such as 10 and 16 

located in the top right of the map. Both clusters are characterized by low baseline impacts of 

flooding on the population, with small increases in population impacts projected primarily due 

to climate change. However, cities in cluster 16 incur no flood damages costs at all in the 

baseline or future cases, yet in cluster 10 damages costs are projected to increase due to 

climate change and development. Therefore, development has little or no impact on cities in 

cluster 16 but does play a role in the increase in damages in cluster 10. In the top left of SOM3, 
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we can now also discern the difference between clusters 9 and 15. In both clusters, 

development is projected to have no impact on the reduction of flood damages costs in most 

cities. Development does however play a strong role in the reduction of flood impacts on 

populations in cluster 15 (except for Moscow and Casablanca) but none on populations in 

cluster 9. 

 

Figure 33: Radial plot of clusters of Figure 32 – The city members of the 16 clusters of Figure 32 are shown with their 
individual variable values. The scale is logarithmic for baseline and changes in population and damages, and linear 
for the percent of change attributed to climate change, with the dashed circle representing zero. 

The relationship between the two drivers, climate change and development, can discerned 

from Figure 32 and Figure 33. Climate change is projected to impact populations more than 

urban damages costs in clusters stretched across the centre of the map (clusters 8, 11, 5, 6, 12, 

14, 1, 10, 1, 2, and 4 - in cities in these clusters, the proportion of change in the population 

affected attributed to climate change is higher than the proportion of change in damages costs 

attributed to climate change). In cluster 15, the population is projected to be more influenced 

by development than damages costs will be (a higher proportion of the change in damages 

costs is attributed to climate change than for population). In the remaining clusters, climate 

change (and development) are projected to affect the population and damages costs relatively 
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similarly (clusters 7, 13, 9, 16 and 3). Some examples of diverging impacts on population and 

damages costs stand out on the radial plot in Figure 33. For instance, in Port Sudan, Sheffield 

and Bandung, significant reductions in affected population are projected to be 100% due to 

climate change, however large projected increases (~300 to 400%) in damages are due mostly 

to development. In Leshan, development is projected to slightly lower the amount of affected 

population and also to increase damages costs more than three-fold. 

7.5 DISCUSSION 
In this study, the ‘patterns’ and ‘clusters’ in the data have been identified. The patterns, 

depicting key combinations of variables that are characteristic of the data set, have been 

extracted at three separate levels on SOM1, SOM2 and SOM3. For example, each pattern of 

SOM3 is a separate combination of levels of baseline and projected future flood conditions as 

well as projected influences of climate change and development. The clusters consist of groups 

of cities whose conditions are anticipated to be similar to these patterns, based on the given 

data. A discussion of a selection of these patterns and clusters is provided here. 

Some cities already experiencing large flood effects are anticipated to incur great flood 

increases influenced predominantly by socioeconomic factors (migration, changing land use 

and unplanned development in flood zones). In the lower left region of SOM3, we see examples 

of cities in which climate change is playing a large role, and yet it is overshadowed by the 

magnitude of regional economic growth (UNEP, 2016; website 8). Many of these cities are in 

Asia, where the climate is experiencing warming trends, increasing temperature and 

precipitation extremes, and rapid glacial melting resulting from climate change (Pachauri et al., 

(2014) chapter 24: ‘Asia’). However, socioeconomic growth in this area is projected to have 

even more of an impact on urban floods than climate change is. Flood risk and human and 

material losses are already heavily concentrated in India, Bangladesh and China (Pachauri et 

al., (2014), chapter 24: ‘Asia’), and Jongman (2012) estimates the largest current and future 

economic exposure to river floods to be in Asia. As an example, we take a closer look at Dhaka 

which, with a GDP per capita of $1212 in 2015, already has one of the highest levels of 

population affected annually by flooding (over 130,000) and this number is projected to 

increase almost five-fold to over 630,000 by 2030. The greatest change predicted for Dhaka, 

though, is an almost 22-fold increase in annual damage costs (from $8 million to $175 million). 

Dhaka is subjected to regular flooding from surrounding rivers, with peak flows in the 

Brahmaputra and Ganges Rivers coinciding to exacerbate flood impacts. In the past, most low-

lying areas of western Dhaka were infilled for residential and commercial use, causing a 

reduction in areas for flood water storage. Furthermore, uncontrolled and unplanned urban 

expansion is spreading rapidly across the floodplains in the east of the city placing more people 

in flood hazard zones (Kreimer et al., 2003). These hasty developmental changes are having 

more of an impact on the urban hydrology of Dhaka than the climate change is. Other examples 

of cities in similar situations include Kolkata (with the highest baseline affected population in 

this study), Mumbai (with a seven-fold increase in both population affected and damages due 

40% and 60%, respectively, to development), Bangkok (with large increases 50-75% of which 

are attributed to development) and Ho Chi Minh City (with a 50% increase in affected 



118 
 

population and an over five-fold increase in damages costs, almost entirely attributed to 

development).  

Globally, migration trends are seeing more people moving into informal settlements in urban 

flood zones – the population exposed to river flooding increased by 2.6% more than total global 

population growth between 1970 and 2010 (Jongman et al., 2012). Most global population 

growth in the near future is projected to occur in cities of lower income countries, organically 

and through migration (Kreimer et al., 2003), with urban populations in these countries 

growing at a rate five times faster than in higher income countries (UN-DESA, 2015) and 

predicted to double in the next 30 years (Angel et al., 2010). The same regions experiencing 

such high urban population growth are also projected to triple their urban footprint in the 

same timeframe (Angel et al., 2010). These developmental changes are leading to, and will 

continue to produce, substantial effects on urban hydrology if not countered.  

Developmental changes in some cities, however, appear to be effectively reducing impacts 

from river flooding. Marrakech, in cluster 15, is an example of this. The affected population 

level is projected to decrease mostly due to socioeconomic factors (website 3; Ward et al., 

2013; Winsemius et al., 2013). Morocco is taking responsibility to make efforts countering 

global climate change, and through an ‘Integrated Disaster Risk Management and Resilience 

Program for Morocco’ (World Bank, April 2016-Dec 2021), is making its population more 

resilient to climate change, less vulnerable to natural hazards and ensuring a rapid transition 

to a low-carbon economy. Through Morocco’s National Strategy for Sustainable Development, 

a commitment has been made to reduce national greenhouse gas emissions by 32% by 2030, 

through an increase in renewable energy sources to 50% by 2025, a reduction in energy 

consumption by 15% by 2030, as well as various agricultural, water, waste, forest, industry and 

housing initiatives (website 9). These housing initiatives in Marrakech include a slum clearance 

and relocation project, which has become part of urban policy (Ibrahim, 2016), reducing the 

amount of people inhabiting flood hazard zones. Alert systems in the valleys of the Atlas region 

above Marrakech have been improved, and the proportion of the population living in slums 

has decreased from over 8% in 2004 to less than 4% in 2010 (UN-Habitat website). The 

urbanization rate in Morocco is also projected to slow down towards 2030 (UN-Habitat 

website). This risk-prevention approach combining early warning systems, relocation of 

inhabitants out of the flood zone, and less urban expansion is expected to combine to reduce 

the impact of floods on the population of Marrakesh.  

The analysis in this paper is based solely on the data provided in Aqueduct, regardless of the 

extent to which on-the-ground flood management measures are incorporated into the 

socioeconomic models which produced this data. A discussion characterizing individual cities 

is included here as a point of interest to relate the data to current national conditions, 

providing possible reasons why these cities may fit into the map where they do. 

Current high flood impact conditions projected to get much greater primarily due to climate 

change are anticipated for cities in the lower right of SOM3, with high magnitude changes 

expected for impacts on both population and property. One of these cities, Sao Paulo, for 

instance, is expected to experience an almost seven-fold increase in both the number of 
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population affected (to over 140,000 annually) and urban damages costs (to over 

$500,000,000 annually) by 2030. 15% of the change in population and 35% of the change in 

damages is attributed to development, but the majority of the change is projected to be caused 

by climate change. Sao Paulo is the largest city in Brazil, and the city footprint is projected to 

increase over 38% by 2030, by which time 22% of the urban area may be located in flood zones 

(Young, 2013). The IPCC (Pachauri et al., (2014) chapter 14 ‘Latin America’) predicts the 

increase in temperature in central and south Brazil to be the largest projected increase in Latin 

America, which will be combined with a +10 to +15% increase in autumn precipitation, greatly 

affecting the hydrologic cycle in the region. The substantial change in development is therefore 

expected to be eclipsed by the even greater projected change in climate in Sao Paulo. 

The anticipated reduction in flood damage costs caused by climate change (evident in Cluster 

15) may be a result of changing snow melt conditions upstream of these cities. It has been 

shown that some global regions will experience a decreasing trend in the magnitude and 

frequency of snow melt floods as the climate warms, as well as a shift in the timing of these 

floods (Schiermeier, 2011; Barnett et al., 2005; Immerzeel et al., 2010). Although changing 

climate in some areas is projected to lessen regional flooding, development within urban flood 

zones may be severe enough to offset any reductions in flood impacts. This can be seen most 

prominently in a strip on the left of SOM3 stretching from Port Sudan down to Santiago. 

Many high-income cities with already high current flood vulnerabilities have projections for 

large elevations in damage costs, but not increased levels of affected population. This can be 

seen in cities on SOM3 centred around London, Tokyo, LA and Vienna (cluster 3), and Sydney 

and Castellon (cluster 13). Through high levels of planning, preparedness and infrastructure, 

prosperous regions generally have systems in place to minimize flood impacts on the 

population, even though they may incur large economic losses (Desai et al., 2015; Kreimer et 

al., 2003). Almost half of the projected increases in these clusters are attributed to 

development, suggesting that these cities may have the capacity for lessening potentially 

elevated flood damage costs by concentrating on planning and mitigation policies.  

Though this study does not consider coastal flooding, it may be noted that due to their 

locations near river mouths, many of the cities in the lower left of the map that are projected 

to experience high increases in impacts from river flooding are also at risk of increased coastal 

flooding from intensified storms and sea level rise due to climate change. Mumbai, Guangzhou, 

Shanghai, Ho Chi Minh City, Kolkata, Bangkok, and Dhaka are 7 of the top 14 cities (out of 136) 

ranked by current population exposure to coastal flooding. These same cities also comprise 

the top 7 cities (in this order: Kolkata, Dhaka, Mumbai, Guangzhou, Ho Chi Minh City, Shanghai, 

Bangkok) ranked by future (2070) estimated population exposed to coastal flooding (UNEP, 

2016; Nicholls et al., 2008). 

Almost all projected changes in flooding in this data set are of a relatively similar order of 

magnitude to the original effects, as can be observed on Figure 33. That is, most cities that are 

only marginally affected by flooding in 2010 are projected to experience only small increases 

by 2030, whereas cities with larger flood effects can expect greater changes. A significant 

correlation exists between the magnitudes of the cities’ baseline flooding effects and the 
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changes projected by 2030 (log-transformed absolute values for both variables) – an 88% 

correlation exists in the number of population affected and a 94% correlation for property 

damage costs. This supports the findings of Milly et al. (2002) who observed that the frequency 

of large flood events in large basins had increased substantially in the 20th century, but smaller 

floods had not.   

7.6 CONCLUSION 
Global patterns of urban flood responses to global and local changes in hydrology driven by 

climate change and development have been identified and visually communicated. Cities have 

been matched to these global patterns, and relationships between the individual cities have 

been discerned with respect to baseline flooding conditions and expected future changes. 

Information has been extracted from a large, recently released, global data set of city-level 

flood impacts relating hydrology and urban development, and combined with city-specific 

demographic information. The analysis and visual interpretation in this study has revealed 

interesting city-level patterns that are otherwise unobservable in the complex data set, and 

provides a comparison and distinction between individual cities that is not apparent in 

regional- or economic-level projections. 

We have performed dimension reduction and clustering with a series of self-organizing maps 

to identify changing global patterns of city-level flood risks. The maps provide an indication of 

the predominant characteristics which determine the differences in urban river flood impacts 

between cities, and the cities occupy positions on the maps signifying their relative conditions. 

The method used here incorporates adaptions to the self-organizing map technique for map 

shape selection and temporal pattern extraction, allowing two levels of information to emerge: 

the characteristic patterns of dynamic global urban flood vulnerabilities, and a comparison 

between the cities with respect to flood characteristics and trends.  

A shortcoming of the method used here is the assignment of flood protection level based on 

an assumption of proportionality with national income level. As standardised, current 

information on the real flood protection levels of all the cities in the data set is not readily 

available, this assumption has been necessary and has been made in line with current practice. 

This limitation has been recently acknowledged in the literature, with Winsemius et al. (2016) 

noting that ‘currently installed flood protection is an important missing link in the assessment 

of global flood risk’. Future studies may aim to include specific flood protection levels for each 

city. 

Whilst the timeline of this study is short, it is restricted by the data that is available. Studies at 

a global scale have been traditionally limited due to lack of cohesive data sets, and therefore 

the data set provided by Aqueduct is valuable for the fact that it spans a global set of cities and 

provides a rare opportunity for comparison. As the data is only provided for 2010 and 2030, 

there was no prospect for a longer analysis. Whilst this analysis may not provide a long-term 

outlook, at the very least an important insight into the current and near-future conditions can 

be gained. 



121 
 

Cities have major implications for climate change mitigation and adaptation (Revi et al., 2014). 

Unplanned development and urban migration are increasing vulnerabilities to natural hazards 

(UNEP, 2016) and land cover change and greenhouse gas emissions are intensifying urban 

hydrology. Understanding the relationship between flood impacts and social vulnerability is a 

necessary step for prioritizing flood mitigation and prevention strategies (Doocy et al., 2013). 

Whether the main driver of increased urban flood impacts is development or climate change, 

cities will benefit from development restrictions and planning standards for urban expansion, 

sustainable land development, management of population distribution and migration, and 

early warning systems and preparedness (Revi et al., 2014; UN-DESA, 2014; Doocy et al., 2013).  

This study adds to the understanding of natural hazards in a global context, which is an 

important aspect of regional disaster risk management due to the dependency of local 

situations on global processes (Desai et al., 2015). The complex nonlinear socio-environmental 

relationships make it difficult to foresee local responses to global changes (Desai et al., 2015), 

and therefore this study focuses on risk communication (the process between risk perception 

and adaptation planning (Cardona et al., 2012)) to provide a visual analysis of the global 

patterns of evolving flood impacts, socioeconomic development and climate change, and the 

local city-level consequences of these changes.  

Future work may include the addition of greenhouse gas emissions data, geographic location, 

city sizes and densities to this study, to discern the relationships of these factors with urban 

flood changes. Greenhouse gas emissions are the largest contributor to global warming, 

leading to alterations in the intensity of the hydrologic cycle (Pachauri et al., 2014, Barnett et 

al., 2005; Wentz et al., 2007; Schiermeier, 2011), and cities are the major contributors of 

greenhouse gases, with a large proportion of global emissions produced by a small global land 

area (Mills, 2007; Angel et al., 2010; Revi et al., 2014). The addition of these elements could 

highlight the essential role cities could play in climate change mitigation and the reduction of 

urban flood impacts.  
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8 PAPER 5 - LITERATURE REVIEW AND PRACTICAL APPLICATION GUIDE 

Literature involving the details of the SOM method and uses of SOMs with spatiotemporal and 

nonlinear data sets, particularly those emerging from water-related and environmental 

systems, is discussed here. The literature review presented in this chapter has been prepared 

in the format of a publishable paper and has been submitted to an academic journal for review. 

This has been done to fill a gap in the existing literature, which has yet to include an explanatory 

document sufficient for new SOMs users to easily understand and create a SOM.  

This literature review has been submitted as:  

 

Practical guidelines for the application of self-organizing maps in environmental science 

and engineering  

Clark S, Sisson SA, Sharma A.    

 

8.1 ABSTRACT 
Environmental measurements, often obtained over vast spatial areas at high temporal 

resolutions, produce great volumes of information from which meaningful messages may be 

extracted through appropriate summarisation. The self-organizing map (SOM) is an artificial 

neural network popular for extracting patterns and finding clusters in large multi-variate data 

sets. It is well-suited to noisy, high-dimensional measurements with nonlinear intervariable 

relationships as are often encountered in environmental measurements taken remotely or in 

the field.  Though the SOM is a broadly applicable method, we have found that information 

regarding SOMs theory and implementation is currently widely scattered throughout 

theoretical and application literature, making the creation of a SOM for a first-time user a 

challenging and arduous task. Researchers are currently required to sift through widespread 

technically detailed advances that are documented in algorithmically-focused statistical papers 

to piece together a method that ensures a decent representation of their data with a SOM. 

Instead of doing this, we have noted that researchers are tending to revert to heuristic or 

software default parameter sets, or ‘borrowing’ parameters from SOM models that have been 

used in other applications but are not particularly relevant to the specific data set at hand.  This 

paper draws the available information together into a cohesive guide, providing researchers 

with a tool to create a SOM and explore their data using techniques relevant to their particular 

data set. The effect that parameter selection and training choices have on the level of extracted 

information is discussed, practical guidance is provided for altering MATLAB code to 

appropriately modify parameter sets, and comparisons are made with closely-related methods. 

Recent examples from the literature are cited in each portion of this manuscript. 
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8.2 INTRODUCTION 
Research in environmental sciences often involves the analysis of large, high-dimensional data 

sets resulting from the collection of short time-step, multi-variable measurements. Data sets 

amassed through automatic sensors or remote (satellite-based) measurements are frequently 

‘patchy’ as collection is regularly interrupted by technological and meteorological issues. For 

meaningful messages to be extracted from these large volumes of information, the data must 

be reduced and summarised into a manageable number of characteristic patterns and 

intervariable relationships.  

Dimension reduction and clustering are therefore key components of the exploratory data 

analysis stage of modern environmental research. The self-organizing map (SOM, Kohonen, 

1990) algorithm is frequently chosen for these tasks due to its inherent resilience to noisy and 

missing data (Vesanto, 1999), and applicability to high-frequency, multi-dimensional data. The 

SOM extracts the most prevalent patterns in a data set and clusters the data items around 

these patterns, organizing the results into an intuitively understandable low-dimensional 

visualisation. SOMs applications involve the representation of a large number of high-

dimensional observations with a usually much lower (and therefore more manageable) 

number of low-dimensional vectors which form centroids for clusters of the original data. This 

facilitates analysis of the properties of the data set through analysis of the ordered low-

dimensional cluster structure and cluster members. 

Over the past decade, approximately 1000 papers published each year in various fields of 

environmental science have used SOMs for data analysis (website 1). The literature provides 

little accessible and cohesive guidance, however, to lead non-statistical researchers through 

the process of SOM implementation and interpretation. We have found no paper unifying the 

information needed to knowledgably create a SOM relevant to a specific data set and interpret 

the results. Review articles generally focus on examples of the application of SOMs in certain 

fields (as in Kalteh et al., 2008; Liu & Weisberg, 2011; Agarwal & Skupin, 2008), reviews on 

SOMs general theory (as in Kohonen, 2013; Yin, 2008; Astudillo & Oommen, 2014; and Cottrell 

et al., 2016), or reviews of particular aspects of SOMs theory (as in Barreto, 2007 and Fyfe, 

2008). Our goal lies in sifting through and drawing this information together, combining 

practical aspects of general theory with guidance on how to effectively apply a SOM to data. 

Examples are cited, but our aim is not to provide a comprehensive list of all SOMs applications, 

rather to help the reader to intelligently create their own with reference to what others have 

done. 

Each application of the SOM method requires the choice and evaluation of appropriate 

parameters. SOM parameters cannot be optimised by maximum likelihood estimation, though, 

as the SOM training algorithm does not attempt to optimise any particular objective function 

(Erwin et al., 1992). Instead, parameter selection requires ample time and experience, making 

this a great disadvantage of SOM implementation for the non-expert (Gopakumar et al., 2007). 

The final results of the SOM are influenced by the choice of parameters and arbitrary 

parameter selection has the potential to lead to maps that fail to reveal portions of the data 

structure and intervariable relationships (Principe et al., 1998; Flexer, 1999; Vesanto, 2000; 
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Kohonen, 2001 & 2013; Liu et al., 2006; Cereghino & Park, 2009; Liu & Weisberg, 2011; Wang 

et al., 2013; Astudillo & Oommen, 2014). Deliberate parameter choices must therefore be 

based on an understanding of available options and the benefits of each choice.  

Most recently published SOMs applications have been relying on default parameter choices 

that are built into software or user-specified values based only on the preference for the 

degree of generalisation of the final map visualisation (selecting the output that the user finds 

most manageable regardless of any structure present in the data set). Another frequently used 

method is to simply adopt the parameters used in a previous, though potentially unrelated, 

publication. Abrahart et al. (2012) emphasize that though default options of parameter 

selection for neural networks may often produce reasonable results, ‘a more comprehensive 

assessment is needed to ensure proper guidance and support for modellers’.  

SOMs literature tends to come in two streams: 1) statistical analyses of the SOM algorithm 

published in statistics or neural networks journals, not easily accessible to researchers from 

other fields; and 2) applications using SOMs as a black-box tool with little or no informed input 

from the user. Liu & Weisberg (2011) claim that the ‘SOMs algorithm is like a black-box for 

most application researchers, which may prevent some potential new users from pursuing 

further SOM applications’. Yin (2008a) states ‘the SOM may have more potential than implied 

by current practice, which often limits the SOM to empirically chosen parameters’. Kalteh et 

al. (2008) note a ‘lack of comprehensive literature review for SOMs, data handling procedures 

and applicability’ and that ‘SOM applications are generally dependent on ad-hoc approaches 

characterised by guesswork’. 

This paper is provided as a guide to aid researchers in understanding current best practices for 

the informed application of SOMs within a context of SOMs background theory. The reader 

will be guided through the production and interpretation of a suitable SOM for the exploratory 

analysis of their specific multivariate, nonlinear data set. Relevant applications, parameter 

choices, code implementation and interpretation of output maps are discussed. Key references 

are provided in each section to lead the reader to further resources.  

The structure of this paper is as follows: Section 8.3 provides background information on the 

SOM mechanisms for pattern identification and clustering, and common contemporary uses 

of the SOM in environmental research; Section 8.4 is a step-by-step guide for the creation of a 

SOM from a raw data set; Section 4 offers basic examples for the modification of freely 

available MATLAB  code; Section 8.5 imparts guidance for extracting information through the 

visual interpretation of a SOM; and Section 8.6 provides concluding remarks. 

8.3 BACKGROUND 

8.3.1 SOM description 

Developed in Finland in 1981 by Teuvo Kohonen, the self-organizing map has steadily gained 

popularity since its introduction, with explanatory papers (Kohonen, 1982; Kohonen, 1990; 

Kohonen 1998; and Kohonen 2013) receiving over 38,800 citations combined. The book ‘Self-
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Organizing Maps’ (Kohonen, 1995; Kohonen, 2001) has been cited over 3400 times (website 

2).  

The SOM is an artificial neural network that organises data by recognising patterns in the input. 

Complex data sets are transformed into more readily interpretable forms by visualising clusters 

in the data structure whilst maintaining the overall topological structure of the data set. 

Through dimension reduction and nonlinear projection, the most prevalent intervariable 

combinations in the data set are identified as the characteristic patterns of the data. Each input 

item is uniquely related to one of the patterns, clustering the data into groups sharing 

important similarities based on the key pattern features. A low-dimensional visualisation (or 

map) is produced depicting the nonlinear relationships in the high-dimensional data. The 

prevalent patterns and data clusters are defined on the map.  

Pattern identification, clustering and data visualisation, together, reveal information that may 

be otherwise unobservable in large data sets. Other techniques exist for each of these 

processes separately, but the combination leads to the SOMs’ unique analysis capabilities. For 

example, clustering methods that are not combined with dimension reduction are not easy to 

visualise and therefore can be less readily interpreted and conveyed. 

The general SOM method entails arranging a map grid (consisting of a regular rectangular grid 

of connected nodes) in an initial approximate location over a data set. Through an iterative 

training process, the map nodes move amongst the data items (self-organise) whilst 

maintaining their grid structure, until their locations provide the best possible coverage of the 

data set without the map becoming unnecessarily twisted. The grid is stretched and bent until 

the position and orientation best represent the data structure. Figure 34 shows a synthetic 

data set (black) consisting of three gaussian clusters, with an initial SOM grid (green) placed in 

a preliminary location, and the trained SOM grid (blue) better following the structure of the 

data. For details of map training, see the Algorithm section on the next page and Appendix 1. 

 

Figure 34: Data points (black, synthetic data set) with an initialised SOM (green) oriented in directions of maximum 
variance, and the SOM after training (blue) in which nodes have been relocated to better represent the data set. 
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Algorithm for map training 

Network structure: A set of N input data items are listed in vectors, 𝑥𝑖 , where 𝑖 = 1:𝑁. The 

output map grid consists of 𝑀  map units, or nodes, with a vector, 𝑚𝑗  (where 𝑗 = 1:𝑀 ), 

associated with each map unit. All input and output vectors are of the same dimension, 𝑑. Each 

input vector is connected to each map node in parallel through a set of adjustable scalar 

weights. These weights are the component values of the map vectors, 𝑚𝑗.  

Training process: Map training consists of an iterative process of 1) finding the map node that 

best matches the current input data item, and then 2) updating this best matching map node 

(and its neighbours) to become closer to the input, as follows (Kohonen, 1993): 

1. Matching: Each input item, 𝑥𝑖, is compared to all map units, 𝑚𝑗, by some distance 

measure (usually Euclidean) to find the closest map node (or best matching unit, BMU), 

which is given the index 𝑐: 

‖xi −mc‖ = minj{‖xi −mj‖} . 

This process partitions the input data into subsets known as Voronoi sets, 𝑣𝑐, consisting 

of data items sharing the same nearest map node, 𝑚𝑐, at each iteration.  

2. Updating: At each iteration, the locations of the map nodes are adjusted closer to the 

data items in their Voronoi sets. Each data item effectively draws on its BMU, as well 

as nodes within a specified neighbourhood of the BMU. Inclusion of the neighbours in 

the updating process is accomplished through the application of a ‘neighbourhood’ 

kernel, maintaining the smoothness of the map. Each map unit, 𝑚𝑗, is updated with a 

weighted average of the data items matching the map nodes in its local 

neighbourhood, where the weighting is given by the neighbourhood kernel, or 

function, 𝐻 = [ℎ]𝑖𝑗. At each iteration (t), the updated node locations are calculated as 

in (Kohonen, 2013): 

mj(t + 1) =
∑ hij(t)⁡xi
𝑁
i=1

∑ hij(t)
N
i=1

 

The elements of the neighbourhood function centred around the BMU (𝑚𝑐) of data 

item 𝑥𝑖 (eg. ℎ𝑖𝑗) indicate the influence of each data item (𝑥𝑖) on the updating of node 

𝑚𝑗. At iteration 𝑡, a Gaussian neighbourhood kernel is: 

hij(t) = exp⁡(
−(𝑚𝑐 −𝑚𝑗)

2

2σ²(t)
) 

where the radius, σ , of the neighbourhood kernel decreases with each training 

iteration to include fewer neighbouring nodes. As the neighbourhood kernel is based 

only on the map size and is the same regardless of the data to be represented, it can 

be calculated before training begins. During training, all data belonging to a Voronoi 

set is weighted by the same value of the neighbourhood function. 
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The SOM has two main organisational goals: pattern identification and topology preservation. 

These are realised through the separation and iteration of two interacting subtasks during the 

training process - matching and updating. During the matching stage, the closest map node (or 

best matching unit, BMU) is identified for each item of data. Then the map nodes are drawn 

closer to their nearby data items during the updating stage, with neighbouring nodes on the 

map grid moving towards the same data items. As the map nodes settle closer to the data 

items in data space, the result is more nodes situated in higher-density areas of the data.  

The specific location in data space that each map node occupies at the conclusion of training 

(given by the local values of each variable) are recorded in the high-dimensional vectors of the 

map nodes. This unique combination of variables represents a particular characteristic pattern 

of the data set. 

Following training, the individual data items are matched to their closest map nodes on the 

trained map. This produces clusters of data sharing a common nearest node, and therefore 

sharing common key characteristics as identified by the variable values of that node. Similar 

data items become matched (or mapped) to the same or nearby map nodes, and more 

different data mapped to more distant nodes.  

The patterns and clusters extracted from the data during training are visualised on a low-

dimensional output map, organised according to their similarity. The degree of similarity 

between each cluster is proportional to the topological distance between them, with closer 

areas of the map representing similar patterns in the data domain. Areas of data space with 

higher densities of data are represented on larger areas of the SOM.  

When presented in two-dimensional space, the map is a nonlinear projection of a reduction of 

the data set, as the high number of high-dimensional data items become represented in a 

lower dimension by a usually lower number of map nodes. The output map can therefore be 

more manageably explored than the original data set, giving insight into the overall structure 

and prevalent patterns existing in the data.  

Figure 35 depicts the representation of a data set with a SOM, both in data space and map 

space. The trained map is not twisted and data items that are near each other in data space 

are represented by the same or nearby nodes. 

 

Figure 35: An example representation of a data set with a SOM: a) the data (comprised of daily minimum and 
maximum streamflow values per year (2000-2016) for river stations in Environment Canada’s HYDAT database 
(website 3)) is shown with the initial map grid (green) draped in the main directions of variance and the trained SOM 
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in blue; b) the final trained SOM (black) is shown in data space, and the data items have been coloured so that similar 
items are similar colours (by spreading a two-dimensional colourmap over the principal component projection of the 
data); c) the SOM grid is depicted in map space with each node coloured by the mean colour of the data items 
matched to it (white nodes have do not have any matching data items); and d) the SOM output map is ready for 
labelling with the data items.  

The SOM provides various benefits over other methods for the exploration of environmental 

data. The number of clusters present in the data does not need to be specified before hand. 

The SOM has an intrinsic ability to handle patchy (noisy and missing) data. The resulting 

clusters are ordered on the output visualisation indicating similarities and dissimilarities, 

allowing for further analysis if desired. Creation of a SOM does not require an explicit 

understanding of the complex and potentially undefinable processes and relationships within 

the system that produced the data; the analysis is conducted based only on the data presented 

to it. The SOM can therefore be used to explore complex multi-disciplinary or human-

environmental data sets in which the intervariable relationships are difficult to explicitly 

quantify. In these cases, the creation of an elaborate mathematical system model would be 

complex and time consuming. Another distinct benefit of the SOM is the ability to incorporate 

new data after the map is created, providing a tool for online, real-time data analysis which is 

useful for the real-time processing of sensor data.   

The nonlinear regression performed by the SOM is considered ‘nonparametric’ as it is based 

on fitting a number of ordered, discrete map vectors to describe the distribution of input 

samples. The SOM is deemed an ‘unsupervised’ process as it searches for unknown structure 

in unlabelled data. Unsupervised learning is closely related to density estimation in that it 

constructs an estimate of an unobservable probability density function (pdf) based on the data 

that is presented. If the input samples have a well-defined pdf, the SOM map nodes will 

eventually come to approximate it in an ordered way, producing a nonlinear projection of the 

high dimensional input pdf onto a low dimensional display (Kohonen, 1990 & 1995). Yin 

(2008a) points out, though, that a connection between the map nodes and the pdf of the input 

data has not been derived in general, but only for a one-dimensional case (by Erwin et al., 

1992).  

The SOMs algorithm exists in a theoretical region of knowledge between principal component 

analysis (PCA) and the k-means clustering method, with PCA providing the most rigid analysis 

of the three, and k-means the most flexible. PCA (a type of factor analysis) transforms a data 

set into a small number of linear, uncorrelated variables or principal components (PCs) which 

become axes of the projection space. The set of data points are rotated around their mean to 

align with the new set of axes, which point in the directions of maximum data variance. The 

first principal component is defined by the eigenvector of the data set with the highest 

eigenvalue, and the axis in this direction accounts for as much of the variance in the data as 

possible. PCA separates clusters of data items well, but is not ideal for representing nonlinear 

data as the PCs are always linear. The SOM algorithm uses PCA during the initialisation stage, 

aligning the initial axes of the map grid along the principal component plane. SOMs are 

considered a constrained form of the k-means clustering algorithm, with the nodes constrained 

to a two-dimensional manifold (Hastie et al., 2009). The SOM method becomes equivalent to 

the k-means algorithm at the end of training (when the SOM neighbourhood kernel is so small 
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it only contains a single node). The K-means algorithm is proficient at clustering, though it does 

not retain information on cluster ordering, and encounters issues in visualisation when the 

dimensions of input data are high. The SOM is beneficial over the k-means algorithm if the 

retention of topological information is important, and for real-time analysis of online data 

(Laerhoven, 2001). Sturn et al. (2002) compare results of SOMs, k-means and PCA, determining 

that for all the outcome of clustering depends on the method of normalisation, the similarity 

measure and parameter values used. Cornford et al. (2009) found that PCA does not perform 

well with missing data. Hastie et al. (2009) provide an example comparing SOMs with k-means. 

Yin (2008b) elaborates on the relationship between SOMs and PCA, and Liu & Weisberg, 2011 

found SOMs to be advantageous over PCA for pattern extraction tasks. 

Figure 36 depicts a comparison of k-means, SOM and PCA results on a single data set (source: 

Bache & Lichman, 2013). It can be observed that all the techniques separate the two main 

clusters in the data, k-means and SOMs both place a user-specified number of cluster centres 

amongst the data, and the SOM results are similar to k-means except that the grid structure 

retains an ordering to the clusters. The techniques each perform well when compared with 

certain aspects of the SOM, however if clustering, nonlinear projection, and an ordering of 

cluster information is important, the SOM provides these attributes within a unified technique. 

 

Figure 36: Comparison of k-means, SOMs and PCA representations of the same data set (data are black, 
nodes/cluster centroids are blue). All three methods separate the clusters, k-means and the SOM reduce the number 
of data points to cluster centres, but only the SOM retains topographic information through the linking of the cluster 
centres.  

8.3.2 SOM use in environmental sciences 

SOMs applications entail the summarizing of large amounts of data into representative 

intervariable relationships or patterns, determining ordered clusters of similar high-

dimensional data items, and producing a low-dimensional visualisation of the results. With 

environmental data sets, the pattern extraction, clustering and visualisation capabilities of the 

SOM are typically applied to spatiotemporal analysis, time series analysis, infilling missing data, 

and prediction. 

Patterns are extracted as representative system states, with each node of the trained map 

representing a specific pattern. These patterns are used as the basis to cluster common system 
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states and determine the nonlinear relationships between variables. Clustering consists of 

identifying the number of clusters in the data and uniquely assigning each input item to one of 

the clusters. The clusters are based around the most common patterns in the data as identified 

by the nodes vectors, which form the cluster centroids. 

Applications using SOMs to determine sets of typical system state patterns have included 

investigations of: sea surface temperature (Liu et al., 2006), meteorological patterns (Reusch 

et al., 2007), regional frequency analysis (Lin & Chen, 2006), wind patterns (DuVivier et al., 

2016), wave climate states (Barbariol et al., 2016), spatial patterns of groundwater properties 

(Nguyen et al., 2015 and Choi et al., 2014), and soil quality (Rivera et al., 2015). Frequency and 

transition matrices can be created by determining the percentage of data matching each 

pattern, as in Hewitson & Crane (2002), Reusch et al. (2007), Falcieri et al. (2014), Nguyen et 

al. (2015) and Swales et al. (2016). Newton et al., (2014) further the use of SOMs for state 

frequency analysis by including the persistence of states and synaptic type frequency 

anomalies for each variable at each node.  

Nonlinear relationships have been investigated using a SOM, between: streamflow regimes 

and fish communities (Tsai et al., 2016), atmospheric circulation and surface climate (Newton 

et al. 2014; da Anunciacao, 2014), reservoir water quality in relation to watershed land cover 

types (Park et al., 2014), modern and medieval climate circulation patterns (Edwards et al., 

2017), regional precipitation and large scale atmospheric dynamics (Liu et al, 2016), 

atmospheric circulation and arctic sea ice extent (Lynch et al., 2016), rainfall and runoff (Hsu 

et al., 2002), and water vapour transport and mass loss in the Greenland Ice Sheet (Mattingly 

et al., 2016). Shanmuganathan (2006) uses SOMs to investigate patterns of complex human-

environmental interactions, by plotting a trajectory of regional river water quality response as 

human influence increases, assuming downstream stations incur more anthropogenic 

influence, inferring water quality response to humans even though no human data is used. 

Matic (2017) discovers patterns of salinity and temperature in oscillating Adriatic Sea regimes. 

Rodriguez-Alarcan & Lozano (2017) use the SOM as a decision support system for reservoir 

regulation. Vaclavik et al. (2013) identify generic global patterns of land pressures and 

environmental threats by clustering data sets based on intensity of use, environmental 

conditions and socioeconomic indicators. Vereecken et al. (2016) investigate patterns of water, 

mass and energy in soil-vegetation/atmosphere interactions.  

Abundant environmental applications use the SOM for clustering data into similar subsets, 

such as: climate regions (Morioka et al., 2010), catchments (Ley et al., 2011), segments of 

coastline for ecological classification (Ramos et al., 2016) and niveograph patterns (Wang et 

al., 2013), as well as measurement stations, satellite imagery data, seasonal patterns, sea level 

pressure, and precipitation.    

Spatiotemporal analysis 

SOMs have most often been used in recent environmental research to investigate patterns and 

clusters in the spatial or temporal aspect of the data separately. Either spatial patterns 

occurring at different times or temporal patterns occurring in different locations have been 

investigated and compared on a single map. For example, Takala et al. (2008) use the SOM to 
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estimate the beginning of seasonal snow-melt, creating both a timeseries for subsequent days 

and a spatial estimation for a single day.  

A popular method of spatiotemporal data analysis with SOMs involves the creation of a series 

of maps placed next to each other, each representing clusters of data at different timesteps 

(as in Skupin & Hagelman, 2005; Ellis et al., 2014; Ye et al. 2015; Lukacs et al., 2015), requiring 

the reader to visually extract and analyse the temporally changing spatial patterns. 

Another method is to create a single map with all the available data, as in Mihanovic et al. 

(2015); Sharif et al. (2015); Li et al. (2015); Kim et al. (2016); Hong et al. (2016); and Jutagate 

et al. (2016). Changes over time can then be visualised by plotting batches of consecutive data 

(ie decades) onto the trained map (as in Wang & Feng, 2011; Wang, 2015), or joining 

consecutive BMUs into trajectory lines, as in Skupin & Hagelman (2005) either for the entire 

data set or as separate trajectories for specific data segments. Olkowska et al., (2014) assess 

patterns of seasonal anthropogenic pollution in a specific catchment, using a single map of all 

measurements at all spatial locations and analysing the seasonal effect through seasonal 

accounts of cluster memberships. 

However, these popular methods may not adequately capture and express the structure of the 

data. If a separate SOM is produced for each time period, these maps may not be directly 

comparable to each other due to differences in the distributions and correlations in the data 

at each time step. If a single SOM is created from all data, with separate time periods mapped 

to it, the overall map may not accurately describe the finer structure of the data at each time 

step. 

Attempts have been made to apply the SOM to more innovative visualisations of 

spatiotemporal data. Some of these involve using the traditional SOM in novel ways (as in 

Wang et al., 2013), and some involve extending the SOM algorithm itself (as in Sarlin, 2012). 

Wang creates a single SOM of twenty years of snow accumulation and melt patterns with high 

temporal and spatial resolution, and then clusters the nodes and plots trajectories for specific 

spatial locations to reveal cyclical and long-term trends. Wang simultaneously determined 

spatial differences in time series (snow accumulation/ melt patterns between mountain 

ranges) as well as changes in patterns over time at specific locations (using trajectories). Sarlin 

developed the self-organizing time map (SOTM) to visualise the evolution of the cluster 

structure across space and time. The SOTM is made up of a 1D SOM at each timestep, arranged 

in order of ascending time. Multivariate temporal and cross-sectional aspects are visualised at 

the same time. Changing, emerging and lost clusters in the data structure become apparent. 

Clark et al. (2014) introduce a post-processing technique to track the transition of individual 

data items through a changing global cluster structure. Newton et al., (2014) plot a series of 

time periods (months) onto a SOM, determining frequency histograms for each node.  
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Time series analysis 

Time series analysis, or trend visualisation, using SOMs entails the identification of temporal 

patterns and clustering of data items where each data item is an individual time series. This 

produces groups of data items that trend in similar ways (as in Mothe et al., 2006; Clark et al., 

2014). SOMs are practical in time-series analysis for outlining the boundaries of existing 

conditions, clustering based on global characteristics extracted from the time series, and 

identifying future directions. For long time series, most clustering techniques are impractical 

due to missing or too much data, however these are not restrictions for the SOM (Wang et al., 

2006).  

Many variants on the basic SOM exist for time series analysis, generally incorporating some 

form of short-term memory. Detailed information is given in Barreto (2007). These variants 

rarely appear in the application literature possibly due to the complexity of implementation. 

The simplest method of incorporating time series data is to convert the sequential items into 

static form using data windows, and then apply the traditional SOM (Kohonen, 2001). An 

innovative method is used by Wang et al., (2006) in which Euclidean distance is not used for 

clustering, rather clusters are based on features of the time series such as trend, seasonality, 

periodicity, chaos, and self-similarity. 

Infilling missing data 

The SOM algorithm is quite insensitive to missing values in the data, and even well suited to 

infilling missing multivariate data. Data items with missing values for certain variables are 

matched to their nearest node based only on the values that are present. The data vector then 

adopts the node vector’s value for the missing variable (Wehrens & Buydens, 2007).  

Mwale et al. (2012) found this method to provide reliable estimates and reduce uncertainties 

associated with insufficient data. It has been applied to infilling runoff data in inadequately 

gauged basins based on rainfall measurements (Adeloye & Rustum, 2012; Mwale et al., 2012; 

Nkiaka et al., 2016), physiochemical parameters in water samples (Folguera et al., 2015) and 

estimating water quality in unmonitored streams based on relationships between 

spatiotemporal watershed attributes and water quality in monitored streams (Gamble & 

Babbar-Sebens, 2012). Toth (2013) has clustered the time series of flow at gauged sites, 

creating groups without using any geographical, morphological or climatological information 

as input. By associating pluviometric and morphometric attributes, ungauged stations were 

then added to the clusters based on climate and landscape characteristics facilitating the 

transfer of information from gauged to ungauged stations. Rustum & Adeloye (2007) found 

SOMs perform better than most widely used neural networks in water resources for infilling 

missing data. 

Prediction 

Patterns in future data may be estimated using the knowledge of inherent states determined 

to exist in the current data (states that occur with certain frequencies, and the transitions 

between states). Harnessing information from the established nonlinear relationships allows 

for the prediction of a future variable based on its association with easily predicted variables. 
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An extension of the ‘infilling missing data’ technique, this is done through the assumption that 

for the same conditions (combinations of variable values) the same patterns will occur. Simon 

et al. (2005) suggest the SOM enables the prediction of an entire vector of future components 

with the same precision for each component.  

Steynor et al. (2009) link climate states to observed runoff, and then predict future flows based 

on future global climate model predictions. By plotting future data onto a map trained with 

current data the change in cluster membership indicates changing state frequencies predicted 

for the future. Streamflow prediction is performed by Gopakumar et al. (2007), Chang et al. 

(2007); Huang et al. (2011) and Tiwari et al. (2013). Toth (2009) discerns future runoff events 

using the SOM. Sarlin & Marghescu (2011) create a SOM-based early warning system, using 

the SOM for prediction by identifying precursor conditions of an event. Takala et al., (2008) 

predict the onset of snowmelt through the identification of homogenous regions for 

transferring information from gauged to ungauged sites. Chang et al. (2016) incorporate the 

SOM into a monthly basin-wide prediction of groundwater levels to be used in sustainable 

basin management. 

The relationships determined by the SOM may also be used to predict what could be expected 

from new data given the presence of a certain system state. For example, Dejean et al., (2011) 

create a map based only on climatic variables over a number of years, and then apply the 

number of wasp nests per year as an associated variable to determine the correspondence 

between the number of wasp nests and climate states.   

8.3.3 Review papers 

Many review papers are available in the literature, summarising SOMs theory or applications 

in specific fields.  

SOMs technical reviews: Kohonen (2013) provides a concise summary of the SOMs technique 

and biological background of the SOMs ‘brain map’ analogy. Yin (2008a) provides a review that 

includes the biological background, SOMs early development as well as convergence and cost 

function theories. Astudillo & Oommen (2014) reiterate background theory and provide a 

significant section describing SOM variants. A comparison of SOMs with other topographic 

mapping algorithms is given by Fyfe (2008). Barreto (2007) and Hammer et al. (2005) review 

SOMs use for time series analysis. Cottrell et al., 2016, discuss recent theoretical advances in 

the mathematical theory of SOMs. 

Reviews of SOMs use in specific environmental fields: Lek & Guegan (1999), Kalteh et al. (2007), 

Liu & Weisberg (2011) and Agarwal & Skupin (2008) provide SOMs reviews which list and 

discuss a number of ecological, water resource, meteorological/oceanographic and GIS 

applications respectively. Cerghino & Park (2009) discuss map size selection, error measures, 

and innovative ways for uncovering relationships between biological and environmental water 

resources variables. Abrahart et al. (2012) discuss neural networks (including SOMs) in rainfall-

runoff and streamflow modelling. The authors advocate moving away from unstructured 

incremental technical improvements or the repeated application of the same techniques to 
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different data, with the call for ‘novel applications that can only be tackled with artificial neural 

networks’.  

8.3.4 Variations 

Dynamically-sized SOMs have been proposed in the literature to avoid the need for 

determining map size in advance. The Growing SOM (GSOM, Alahakoon et al., 2000) uses a 

‘spread factor’ to measure and control the growth of the map. New nodes are grown from 

boundary nodes in all free directions simultaneously. Nodes with no hits are removed. The 

Growing hierarchical SOM Toolbox (GHSOM, 2002, Chan & Pampalk) uses a small initial map 

to represent the entire data set then refines levels of granularity only where needed. Growth 

occurs by inserting a row or column of new nodes between existing nodes. The Growing 

Bayesian SOM for data clustering (GBSOM, Guo et al., 2012) adds new neurons through a 

process of identifying the neuron with the lowest log-likelihood. The GWR (Marsland et al., 

2002) is a self-organizing network that ‘grows when required’, with new nodes added 

whenever the current state of the network does not sufficiently match the input. Growing cell 

structures (GCS, Fritzke, 1994) insert cells between the cell with the most hits and its most 

distant neighbor, in a process related to fractal growth.  

In Bayesian SOMs (BSOMs) each node is a Gaussian distribution, with the mean vector, 

covariance matrix and prior probability being the weights. The winning node is selected by 

having the maximum posterior probability. The mean, covariance, and prior probability 

weights are updated within the neighbourhood identified by the posterior probability. The map 

can converge to overlapping mixture distributions. Luttrell (1994) provided a Bayesian 

derivation of the properties of the SOM, using folded Markov chains. Yin & Allinson (1997) 

replace the distance measure and neighbourhood function with estimated postierior 

probabilities of the nodes. Guo et al. (2011) investigate the impact of learning rates, initial 

values, covariance matrices, input order and number of iterations, determining that the BSOM 

is sensitive to learning rates, covariance matrices and input order.  

The set of Pareto-optimal solutions for multi-objective optimization decisions are visualized in 

a number of ways in the literature using SOMs. Each member of the set is potentially the best 

solution depending on the relative priorities of the objectives. Chen et al. (2013) introduces a 

visual-interactive approach using SOMs to visualize a set of multi-objective optimal points, in 

which each objective is represented by a corner of the map. Pareto front optimization has been 

used with SOMs to optimise design with a number of competing objective functions (Obayashi 

& Sasaki, 2003). A SOM is made of the values of four objective functions, to visualize the trade-

off between the design objectives and indicate which variables have similar influences on 

design tradeoffs. The map edges represent the Pareto solution if only two objective functions 

are used. Okamoto et al. (2014) visualize almost 28,000 Pareto-optimal solutions using a SOM, 

with the solution mapped to as many SOMs as the number of objective functions in which the 

same coordinate on each map represents the same solution. Kurasova et al. (2013) cluster 

Pareto-optimal solutions into groups and evaluate only the representatives of each cluster 

given by the map node vector. A spherical SOM is used for Pareto solution visualisation by 

Yoshimi et al. (2012) in which each Pareto solution is an input and the dimensions are the 

objective function values for each solution.  
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8.4 CREATION OF A SELF-ORGANIZING MAP 
This section is a comprehensive guide for the creation of a self-organizing map for the 

representation of a data set. The following steps are followed to create a SOM: 

1. Construct a matrix of the input data samples 

2. Pre-process the data matrix (standardise/normalise/transform) 

3. Determine the size and shape of the map grid to best represent the data structure 

4. Initialise the map over the data (drape it over in the principal directions) 

5. Train the SOM (bend and stretch the map to better match the data) 

6. Place data items on the map by matching to their closest map node 

8.4.1 Step 1: Consolidate input data 

8.4.1.1 Input matrix construction 

The input data must be in a specific form to be read by a SOM: matrix formation with rows 

consisting of the data items (each separate observation or measurement makes up a row) and 

columns consisting of variables (dimensions), as in Table 11. 

Table 11: Input data matrix 

 variable 1 variable 2 variable 3 variable 4 … variable d 

data item 1       

data item 2       

…       

…       

data item N       

This format ensures that each of the N items of input data is in vector format, 𝑥𝑖 where 𝑖 =

1:𝑁. All vectors are of the same dimension, d. Each dimension is an observation variable such 

as precipitation, temperature, pH, population level, or observations of a certain variable at 

multiple spatial locations or times. In artificial neural network terms, the values in the input 

matrix become numerical weights for the variables with respect to each input sample.  

There is no rule for the amount of training data needed for SOM creation. However, due to the 

stochastic nature of environmental data it cannot be assumed that a model made from one 

set of training data will represent all underlying relationships in the system, and results will 

improve as the quantity of training data increases (Kingston et al., 2005). 

8.4.1.2 Missing data 

The SOM is able to function with a large proportion of missing data, for instance if some 

measurements are missing information for certain variables. In this case, data is matched to 

the map nodes based only on the variables for which data is available; when calculating the 

distances between the input item and the map nodes, the missing data is excluded from the 

distance calculations and the data is mapped to the nodes that are closest in Euclidean distance 

based only on the variables that have values present in that data vector. As the distance 

calculations for a data item to all nodes will omit the same variable of data, the results are 

comparable (Vesanto, 2000).  
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8.4.1.3 Categorical data 

The SOM is designed to represent data in which the magnitude of the values has meaning. 

Categorical data can be incorporated by mapping it to ordinal data. This is done by labelling 

each sample with a number, ensuring that the numeric labels are in a logical order and not 

arbitrarily assigned. For example, categories labelled 2 and 3 must be more similar than 

categories 2 and 10 for the resulting self-organization to have a meaningful interpretation. 

8.4.2 Step 2: Preprocessing  

Environmental variables naturally consist of different measurement scales and types of data. 

Normalising the columns of the input data matrix before map training ensures that variables 

with greater magnitudes or variances do not overshadow variables that may be less diverse, of 

smaller magnitude, or measured in different units. This roughly equalises the contribution of 

each variable to the results (Kohonen, 2001). Overlooking the preprocessing step risks causing 

the main axis of the map to be principally aligned with the variable of largest magnitude, 

thereby producing a map that is mainly representative of this variable (as discussed in Clark et 

al., 2016).  

Common preprocessing methods are transformations of the input matrix that equate either 

the variances or minima and maxima of each dimension: 

1. Normalising the columns, by scaling the variances to 1 around a mean of 0, or 

2. A linear transformation equalising the minima and maxima of each variable.  

Another method, though far less common, is to scale the variance of all variables separately to 

reflect their perceived relative importance (Kaski & Kohonen, 1996). Highly skewed variable 

distributions may benefit from logarithmic transformations (Agarwal & Skupin, 2008). 

8.4.3 Step 3: Parameter selection 

A number of parameters require specification prior to the creation of a SOM. Parameter 

choices include: map size (the number of nodes), map shape (the configuration of nodes), the 

initial and final radii of the smoothing kernel and the smoothing kernel shape.  

Common techniques for selection of these parameters range from the application of heuristics, 

the minimization of various error measures, or trial and error to produce the most agreeable 

visualization for the user. These decisions are discussed in this section. Default software 

parameter values are described, as well as more tailored options, and the benefits are outlined 

for choosing values beyond the software defaults.  

8.4.3.1 Objective function 

Before beginning to investigate how parameters are chosen, first it is important to realise why 

parameter selection for the SOM is particularly challenging. In the parameter selection phase 

of model building, objective functions are commonly optimised to aid the choice as they are 

able to provide a quantifiable assessment of the optimality of a set of parameters. However, it 

has been proven that the SOM training process has no objective function that is optimized 

exactly (Erwin et al., 1992; Pampalk, 2001; Yin, 2008a). The SOM training method cannot be 

quantified in a single mathematical expression, instead it follows the gradient descent of a 
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separate set of energy functions for each node (Erwin et al., 1992). For this reason, parameters 

must be chosen by other methods such as quality measures applied to maps created with 

different parameter sets, as will be described below. For more information on the lack of a 

SOMs objective function, see Yin (2008b) and Appendix 2.  

8.4.3.2 Map structure 

8.4.3.3 Grid configuration 

The grid of map nodes is generally connected in either a hexagonal or rectangular lattice, as 

shown in Figure 37, with nodes located at each vertex. This configuration determines the 

number of nearest (equally close in map space) neighbours for each node.  

 

Figure 37: Hexagonal and rectangular 6x6 map grid lattices. Connections to nearest nodes are shown. Nodes on 
hexagonal grids have up to 6 nearest neighbours and nodes on rectangular grids have up to 4 nearest neighbours.  

The nodes of a rectangular lattice have up to four nearest neighbours. In a hexagonal lattice, 

each map node has up to six nearest neighbours. This difference influences the results of the 

SOM training process in which the locations of the nearest neighbours are updated by the 

same amount at each iteration. A larger number of nearest neighbours leads to greater 

topological preservation of the input data structure and a more uniform final map, and for this 

reason hexagonal lattices are often considered more effective (Kalteh et al., 2008). Rectangular 

lattices are popular, however, due to the easy presentation of the final output map on a simple 

rectangular shape. 

8.4.3.4 Map size (number of nodes) 

The number of map vectors used to represent the input data (and therefore the size of the 

output SOM) is an important choice to be made by the user. The size of the output map will 

affect the final visualisation of the SOM, including the level of information extracted, as each 

node of the output map represents a characteristic pattern from the input data (Vesanto, 

2000; Liu et al., 2006). Important differences between data items may be missed if the map 

size is too small, and yet distinctions between map vectors may be insignificant if the map size 

is too large (Cereghino & Park, 2009). This is analogous to common model issues of 

oversmoothing and overfitting. 

The number of nodes also influences the applicability of the SOM for either clustering or 

visualisation, with a smaller number of nodes producing larger clusters, and a larger map size 

leading to a more spread-out visualisation of the topological structure of the data (Flexer, 

1999). Liu et al. (2006) evaluated the sensitivity of SOMs to parameter selection and 

determined that larger maps lead to more accurate results by virtue of less pattern smoothing; 
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the extracted patterns are more similar to the actual patterns in the data. The resolution of 

the map determines which clusters become visible (Kohonen, 2013). A larger map size may 

produce a finer distinction between structures in the data and more accurate local estimation 

(Principe et al., 1998; Kohonen, 2013; Wang et al., 2013), yet larger maps may contain nodes 

with no data matching them, indicating that the patterns represented by these node vectors 

do not actually exist in the data set (Clark et al, 2017). Smaller maps compress the data into a 

smaller (possibly more manageable) number of patterns for analysis. Therefore, a trade-off 

exists between the accuracy (of representation of the data vectors) and generalization of the 

extracted information, when deciding on the number of map nodes to use.  

In Figure 38, maps of differing sizes are shown over the same data set, with data items 

matching the same node coloured the same colour. This shows the range of data represented 

by a single node of the smaller maps compared to the larger ones. Clark et al. (2016) further 

discuss the implications of large ranges of data represented by individual nodes. 

 

Figure 38: Maps of differing sizes (4, 24, and 88 nodes) representing the same data set. Data items represented by 
the same node are coloured the same. 

Kohonen (2013) states that though the choice of map size is the most common question asked 

with regards to SOMs, it is not possible to determine it beforehand. The choice is often made 

with the use of quality measures or selecting the map that the user finds most interpretable - 

these methods require estimating parameters through training the map multiple times and 

comparing the results (Astudillo & Oommen, 2014; Cereghino & Park, 2009).  

SOM software generally specifies a default value for the number of map nodes based only on 

the number of input samples available (see ‘heuristics’ below), however this method does not 

consider the possible cluster structure in the specific data set nor any user requirements for 

visualisation or analysis. In many cases, the number of nodes is set by estimating the cluster 

structure of the data set (see Section 0) and equating the number of nodes to the number of 

expected clusters. 

Quality measures 

Map size is often determined based on quality assessments on a series of output maps, 

quantifying the accuracy of the maps in describing the input data (Cereghino & Park, 2009). 

This method entails minimising some combination of error measures over the set of maps 
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based on the primary objective, or set of objectives, of the user. The necessity for more than 

one quality measure arises from the two competing goals of the SOM algorithm: the 

approximation of the input data by the map vectors, and the preservation of the input 

topography by the interconnected grid of map vectors (dimension reduction and visualisation). 

A number of quality measures can be used. The most common are the: 

• quantization error (QE, Kohonen, 1995) -  a measure of the ability of the SOM to 

represent the input data. QE quantifies map resolution, measuring how closely the 

map vectors match the data vectors; and  

• topographic error (TE, Kiviluoto, 1996) -  a measure of the preservation of the 

topology of the input data structure on the output map.  

A combination of quantization error and topographic error is often used. Due to the trade-off 

between vector quantisation and topology preservation, as the QE decreases, TE will generally 

increase (though not always), so the user must determine the desired balance between them. 

Care must be taken with the selection as Fyfe (2008) states ‘sometimes the two conflicting 

criteria produce a visualisation which does not accurately reflect all the features of the data’. 

Figure 39 shows the use of plots of QE and TE vs number of map nodes (assuming side ratios 

as described below under the ‘map shape’ heading) to aid the choice of map size, requiring a 

compromise to be made between the competing processes. 

 

Figure 39: QE and TE plots (shown here for the data set from Figure 35) can be used to aid map size selection. 
Generally, QE decreases and TE increases with increasing number of map nodes, requiring a compromise to be made.  

Quantization error: The SOM algorithm chooses the BMU for each input by minimizing squared 

Euclidean distances between the input items and map nodes. The QE is the difference between 

each data point, 𝑥𝑖, and its closest map unit, 𝑚𝑐 , averaged over all data points:  

𝑄𝐸 =
1

𝑁
∑ ‖mc − xi‖
⁡
𝑖  = 

1

𝑁
∑ √(𝑚𝑐

2 + 𝑥𝑖
2 − 2𝑚𝑐𝑥𝑖)

⁡⁡
𝑖  

The optimal map for representing a data set, in terms of vector quantization, yields the smallest 

quantization error. QE is useful for comparing the SOM to other clustering or vector 

quantization methods, though it cannot be used to compare maps of different sizes (unequal 

numbers of map nodes) as QE will decrease as map size increases, nor for comparing maps 

with different neighbourhood shapes since it favours maps with specific neighbourhood radii 

(Kaski & Lagus, 1996).  
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Topographic error: The proportion of nodes for which the first and second best matching map 

units are not nearest neighbours on the map grid is summed over all inputs. For each data 

point, the BMU and second BMU are checked to see if they are adjacent: 

𝑇𝐸 =
1

𝑁
∑𝑢𝑥𝑖

𝑁

𝑖=1

 

where 𝑢𝑥𝑖 = 1  if the first and second BMUs of 𝑥i  are neighbours, 0 otherwise. One 

topographic error value represents the entire map. A value of zero indicates perfect topology 

preservation. Note that the topographic error does not consider diagonal neighbours of the 

rectangular lattice, and so a hexagonal lattice gives a lower TE due to having more neighbours 

for each unit (Pena et al., 2008). 

The distortion measure (DM, Kohonen, 1995) is often encountered in the literature in 

discussions on parameter selection, though is seldom actually used as an error measure. It is 

included here for information purposes. 

Distortion measure: A measure of the pull that the data items are exerting on the map, the DM 

can be thought of as either: the amount that each map unit is pulled towards its influencing 

data points summed over all the map units, or the amount each data point pulls on each of the 

map nodes, combined. Distortion measure incorporates the neighbourhood function into the 

calculation of distances between each map unit and each of the data points: 

DM =∑∑hij‖xi −mj‖
2

M

j=1

N

i=1

 

where ℎ𝑖𝑗  is the value of the neighbourhood kernel centred on the BMU of 𝑥𝑖 at the location 

of 𝑚𝑗. The distortion measure differs from the quantization error in that each squared distance 

is weighted by the value of the neighbourhood function. QE and DM are equivalent when the 

neighbourhood size includes only a single node. Distortion is larger for larger neighbourhood 

sizes. As the neighbourhood function and the distances from each data item to its BMU 

decrease with each training iteration, the distortion measure decreases as training progresses. 

Eventually the plot of distortion flattens out - the map is still distorted but no longer updating. 

DM is useful for comparing maps of equal size, but not for comparing between differing map 

sizes. 

Heuristics 

Heuristics, or rules of thumb, are commonly used to choose map size as they provide easy and 

quick results. The most commonly used heuristic for determining the number of map nodes, 

𝑀, recommends that it should be approximately 5√𝑁 where 𝑁 is the number of samples in 

the input data set (Vesanto, 2000). Though this method relates map size only to the amount 

of input data and not to the actual data values or structure, it is the default method used in 

the MATLAB SOM Toolbox code. Other heuristic recommendations include: ‘the number of 

neurons [nodes] should usually be as big as possible’ (website 4) ‘one should try for about 50 



145 
 

hits per node on average’ (Kohonen, 2013); or if an unlimited number of inputs is available, 

‘one may try to use as big an array as one is able to compute’ (Kohonen, 2013). It is noted that 

each of these methods contrast (sometimes greatly) with each other, however their use 

remains popular in the literature. 

Cluster structure  

Map size can also be specified based on the number of clusters that are determined to exist in 

the input data, attempting to provide one node to represent each estimated cluster. An 

alternative would be to create a series of different sized maps, choosing the one that produces 

the lowest cluster validation measure. The existence and number of clusters can be 

determined through cluster theory, as discussed in Section 0. 

In practice, the most popular, currently used method for map size selection in environmental 

application papers is the production of a series of maps of different sizes, followed by a 

graphical or visual comparison of the output maps. There is no overall preferred method of 

evaluation shared by all SOMs users, though the choice appears to be most commonly based 

on the degree of generalisation and number of clusters desired in the output. Next in 

popularity is the use of a combination of quality measures, then default software heuristics, 

followed by a variety of individual ad-hoc methods. Many papers do not give any information 

about the rationale of map size selection. Inclusion of this information would allow the reader 

to understand if there is a reasonable basis to believe the number of nodes accurately 

represents the cluster structure of the data set or if other map sizes may reveal a different 

cluster structure. 

8.4.3.5 Map shape (ratio of grid side lengths) 

The best representation of the data will be obtained when the shape of the grid roughly 

corresponds to the shape of the data structure. For example, a two-dimensional square-

shaped data set would not be best represented by a rectangular grid (with one direction much 

longer than the other), as illustrated in Figure 40. 

 

Figure 40: Choosing map shape to correspond with the data structure: a two-dimensional square set of regularly 
spaced data (grey dots) are represented with two 16-node SOMs (4x4 (purple) and 8x2 (green)). It is apparent that 
the purple SOM will provide a better representation of the data as the shape corresponds better to the shape of the 
data manifold. 
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Establishing the ratio of map side lengths based on the main intervariable relationships in the 

input data is the method recommended by Kohonen (2001), and is the most commonly used 

procedure. This is done by initialising the axes in alignment with the most important linear 

correlations, given by the first and second principal components (further discussed in Section 

8.4.4). Through training, the axes will be bent and stretched, eventually coming to follow the 

most important nonlinear correlations in the data. The primary axis will represent the most 

significant relationship between data dimensions (the nonlinear line of best fit), and the 

secondary axis the next most important relationship.  

This method of assigning the side length ratio is performed with the following steps (Vesanto, 

2000):  

1. Determine the eigenvectors and eigenvalues in the data from the autocorrelation 

matrix, 

2. Set the ratio between the two sides of the grid equivalent to the ratio between the 

two largest eigenvalues, and 

3. Scale the side lengths so that their product (𝐿1𝑥𝐿2 ) is as close as possible to the 

number of map units determined above. 

8.4.3.6 Training parameters 

8.4.3.7 Neighbourhood function 

The neighbourhood function,⁡𝐻 = [ℎ]𝑖𝑗, is a smoothing kernel applied to the map grid during 

training, as described in Section 8.3.1. The kernel controls the smoothness and generalisation 

of the mapping by defining its rigidity. A matrix item, ℎ𝑖𝑗 , is the value at 𝑚𝑗  of the 

neighbourhood kernel centred on the BMU of 𝑥𝑖. For example, the value of 𝐻2,5  in Table 12 

gives the influence on node 5 of data for which the BMU is node 2.  

Table 12: Sample neighbourhood matrix, H (for a 3x3 map grid with a Gaussian shaped kernel of radius 1). The 
neighbourhood matrix does not depend on the data and can be calculated beforehand. 

H  

0.33    0.16    0.04    0.16    0.08    0.02    0.04    0.02    0.01 
0.20    0.26    0.20    0.10    0.12    0.10    0.02    0.04    0.02 
0.04    0.16    0.33    0.02    0.08    0.16    0.01    0.02    0.04 
0.20    0.10    0.02    0.26    0.12    0.04    0.20    0.10    0.02 
0.12    0.16    0.12    0.16    0.20    0.16    0.12    0.16    0.12 
0.02    0.10    0.20    0.04    0.12    0.26    0.02    0.10    0.20 
0.04    0.02    0.01    0.16    0.08    0.02    0.33    0.16    0.04 
0.02    0.04    0.02    0.10    0.12    0.10    0.20    0.26    0.20 
0.01    0.02    0.04    0.02    0.08    0.16    0.04    0.16    0.33 

Each column of 𝐻 represents the influence on map node 𝑚𝑗 of the data items matching all 

map units 𝑚𝑖 (each in a separate row). The influence that the data in the Voronoi set of 𝑚𝑖 

exerts on other nodes is given in the rows. Each row consists of values for a surface with a peak 

at 𝑚𝑖 = 𝑚𝑗. This indicates that data with BMUs closest to node 𝑚𝑗 will have the most influence 

on the updating of 𝑚𝑗. The neighbourhood kernel is generally normalised so that each column 

sums to 1, equalising the sum of the influence exerted by all data items on each map node.  
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At each training iteration, the location of each map node, 𝑚𝑗, is updated based on all the data 

items that are matched to nodes within the specified neighbourhood radius centred at this 

node. The neighbourhood size, and therefore the extent of influence of the data items on the 

map units, decreases linearly over the training iterations, though the shape of the 

neighbourhood remains constant throughout training. This decrease in kernel size leads to an 

increased smoothing of the map. The size and shape of the neighbourhood kernel must be 

determined by the user. 

Neighbourhood size: A large neighbourhood kernel results in a stiff map by overstressing 

topological ordering, and a small kernel results in freer movement of the nodes toward the 

data (Vesanto et al., 2003). The increased topologocial ordering of maps created with larger 

neighbourhoods comes at the expense of data quantisation (how close the nodes are to the 

data they represent), which improves as neighbourhood size decreases. For this reason, a 

compromise is made - a large neighbourhood kernel is used at the beginning of training to 

induce a global ordering of the map nodes, and the kernel diminishes in size with each training 

iteration. The node locations are eventually finetuned within a small neighbourhood at the end 

of training. The starting and finishing neighbourhood sizes can be specified by the user. 

The neighbourhood radius is measured in map space, not data space. Figure 41 shows the 

group of nodes contained within a neighbourhood of radius 0, 1 and 2 around a node of a 

hexagonal and rectangular grid. On a hexagonal grid, a neighbourhood kernel of radius 2 will 

incorporate data from 19 nodes, whereas on a rectangular grid the same size kernel would 

incorporate data from 13 nodes. 

 

Figure 41: Neighbourhood sizes on hexagonal and rectangular grids (after Vesanto et al., 1999). Data have been 
coloured by ‘similarity colouring’ (see Section 8.5.3.1). The same size neighbourhood (>0) will encompass more map 
nodes on a hexagonal grid than on a rectangular grid. 

The choice of initial neighbourhood size has an impact on the results. If it is too small, the map 

may not achieve an appropriate global (overall) ordering (Kohonen, 1990; Hastie et al., 2007). 

Kohonen (2001) recommends setting a starting neighbourhood approximately half the largest 

side length of the map to prevent the risk of ending in a local minimum.  

The final neighbourhood radius usually only includes a single node (Kohonen, 1993). The map 

loses its spatial interaction at this point, and the SOM becomes equivalent to k-means 

clustering (Hastie et al., 2007). If global ordering has been successful, this will still produce the 

desired results as the grid connections are maintained. Kohonen (2005) explains that equating 

the SOM to the k-means algorithm at the end of training (through diminishing the 
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neighbourhood to include only a single node) guarantees the most accurate approximation of 

the probability density function of the input and should also eliminate any issues the 

neighbourhood function may encounter at the borders of the map.  

Neighbourhood shape: Four shapes are commonly used for the nieghbourhood function: 

uniform, Gaussian, cut (truncated) Gaussian, and Epanechnikov (parabolic). These shapes are 

used in the MATLAB SOM Toolbox, with Gaussian as the default (Vesanto et al., 2000b).  

Table 13 describes the four shapes (where 𝜎𝑡 is the neighbourhood radius at iteration t, 𝑑𝑐𝑖 =

||𝑟𝑐 − 𝑟𝑖|| is the distance between map units 𝑚𝑐 ⁡and  𝑚𝑖 on the map grid, and 1(𝑥) is a step 

function (taking a value of 0 if 𝑥 < 0 or 1 if⁡𝑥 ≥ 0) updating only the nodes for which the 

function is nonzero.  

Table 13 Neighbourhood function shapes  

Shape Function Description 

Uniform 
(bubble) 

 

ℎ𝑖𝑗(𝑡) = 1(𝜎𝑡 − 𝑑𝑖𝑗) 

The value of  ℎ𝑖𝑗(𝑡)  is 1 if the distance 

between the units is less than or equal to the 
neighbourhood radius at iteration t, 
otherwise it is 0. All map units within the 
radius are updated the same amount. 

Gaussian 

 

ℎ𝑖𝑗(𝑡) = 𝑒

−𝑑𝑖𝑗
2

2𝜎𝑡
2⁄
 

The Gaussian kernel updates all map nodes 
(not just inside the radius) by an amount 
descending from the kernel centre to the edge 
of the map.  

Cut Gaussian 

 

ℎ𝑖𝑗(𝑡) = 𝑒

−𝑑𝑖𝑗
2

2𝜎𝑡
2⁄
1(𝜎𝑡 − 𝑑𝑖𝑗) 

The ‘cut Gaussian’ kernel is same shape as 
Gaussian, but does not update nodes outside 
the radius boundary. 

Epanechnikov 

 
 

ℎ𝑖𝑗(𝑡) = 𝑚𝑎𝑥{0, 1 − (𝜎𝑡 − 𝑑𝑖𝑗)
2} 

This kernel only produces values greater than 
zero when the function is between -1 and 1. 
Therefore only nodes that are within a radius 
of 1 from the kernel centre are updated.  

The Gaussian kernel is the only one that incorporates the entire input data set to update each 

of the map nodes (and conversely uses each data item in the updating of all of the nodes); the 

other three kernels only update within the specified radius. The Gaussian neighbourhood 

therefore produces the smoothest SOM patterns (Liu et al., 2006), whilst the others have 

various degrees of smoothing (Epanechnikov the least) for a fixed 𝜎𝑡 common to all kernels. 

Table 14 gives sample values of neighbourhood kernels for each shape centred around the 

middle nodes of a 3*3 and 7*7 SOM. Higher values indicate which nodes would be updated 

(influenced by the data) by a greater amount. 
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Table 14: The effect of neighbourhood shape and size on map updating. The degree of updating of each map node 
is specified for a neighbourhood kernel centred on the centre node of a 3x3 and 7x7 SOM. Values have been 
normalised for comparison. 

Shape 
3x3 map (rectangular grid)  7x7 map (rectangular grid) 

𝜎𝑡 = 0 𝜎𝑡 = 1 𝜎𝑡 = 2 𝜎𝑡 = 2 kernel shape 

Uniform 

(bubble) 

 

0     0     0 

0     1     0 

0     0     0 

   0.0   0.2   0.0 

   0.2   0.2   0.2 

   0.0   0.2   0.0 

0.11    0.11    0.11 

0.11    0.11    0.11 

0.11    0.11    0.11 

        0         0         0         0          0         0         0 

        0         0         0    0.08         0         0         0 

         0         0    0.08    0.08    0.08         0         0 

         0   0.08    0.08    0.08    0.08    0.08         0 

         0         0    0.08    0.08    0.08         0         0 

         0         0         0    0.08         0           0         0 

         0         0         0          0         0          0         0 
 

Gaussian 

 

0     0     0 

0     1     0 

0     0     0 

0.08    0.12    0.08 

0.12    0.20    0.12 

0.08    0.12    0.08 

0.10    0.12    0.10 

0.12    0.13    0.12 

0.10    0.12    0.10 

    0.005    0.009    0.013    0.015    0.013    0.009    0.005 

    0.009    0.017    0.025    0.028    0.025    0.017    0.009 

    0.013    0.025    0.036    0.041    0.036    0.025    0.013 

    0.015    0.028    0.041    0.047    0.041    0.028    0.015 

    0.013    0.025    0.036    0.041    0.036    0.025    0.013 

    0.009    0.017    0.025    0.028    0.025    0.017    0.009 

    0.005    0.009    0.013    0.015    0.013    0.009    0.005 
 

Cut 

Gaussian 

 

0     0     0 

0     1     0 

0     0     0 

0    0.18         0 

0.18    0.29    0.18 

0    0.18         0 

0.10    0.12    0.10    

0.12    0.13    0.12 

0.10    0.12    0.10 

         0         0         0         0         0         0         0 

         0         0         0    0.06         0         0         0 

         0         0    0.08    0.09    0.08         0        0 

         0    0.06    0.09    0.10    0.09    0.06       0 

         0         0    0.08    0.09    0.08        0         0 

        0         0         0    0.06         0         0         0 

        0         0         0         0          0         0         0 

 

 

Parabolic 

(Epanech-

nikov) 

 

0     0     0 

0     1     0 

0     0     0 

    0     0     0 

    0     1     0 

    0     0     0 

0.08    0.13    0.08 

0.13    0.17    0.13 

0.08    0.13    0.08 

        0         0         0         0         0         0          0 

        0         0         0         0         0         0          0 

         0         0     0.08    0.13    0.08       0         0 

         0         0     0.13    0.17    0.13       0         0 

         0         0     0.08    0.13    0.08       0         0 

        0         0          0         0         0         0         0 

        0         0          0         0         0         0         0 

 

 

Erwin et al. (1992) found that the SOM’s convergence rate is heavily dependent on the shape 

of the neighbourhood function, and the training algorithm is more effective when a convex 

neighbourhood function is used rather than a concave one. Ota et al. (2011) describe the use 

of an asymmetric neighbourhood function to remove topological defects which frequently 

emerge during training and inhibit the global ordering of the map.  

Training length 

The final statistical accuracy of map (how well the data is represented) depends on the number 

of iterations, since learning is a stochastic process (Kohonen, 1990). However, with modern 

computational resources this should no longer be an issue and software defaults should be 

adequate. There is no upper limit to the number of iterations that can be used. In principal, 

the global ordering stage with a large neighbourhood radius can be relatively short compared 

with the finetuning stage with the smaller neighbourhood radius.  
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Mask 

A ‘mask’ may be applied during the map training process to weight the influence of each 

variable in the distance calculations for determining BMUs. The mask is a vector with the same 

number of dimensions as the input data. Mask values indicate the relative importance of each 

variable (usually with 0’s and 1’s). It can be used to ‘hide’ certain variables, or make others 

more influential in map training if the user would like to accentuate the significance of certain 

variables over others. Note that the mask is only used for finding BMUs, and is not used in the 

initialisation stage.  

Associated variables  

Introducing a new set of variables onto a trained SOM that has been created with a different 

set of variables may enable researchers to discover interesting intervariable relationships 

(Cereghino & Park, 2009). These new variables are known as ‘associated variables’ as they are 

linked to the map after training. The trained map can be clustered or labelled based on values 

of the associated variable to visualise the relationships. See Deboeck (1998) for more 

information on associating variables.  

8.4.4 Step 4: Initialise the map 

The map is generally initialized with a regular linear array set in the directions of highest 

variance of the input data vectors, as determined with principal component analysis. The initial 

values of the map weight vectors are set at uniform intervals along the first and second 

principal components of the input data set, which come to form the axes. If the axes lengths 

are proportional to the two largest eigenvectors of the data, this should produce an 

approximately uniformly-spaced lattice. This linear form of initialisation is usually used as it 

ensures the map is already aligned with the most significant linear intervariable relationships 

before map training begins. Figure 42 illustrates the alignment of the axes with the principal 

components. 

As SOM training is an iterative process of multi-dimensional nonlinear optimisation, it has the 

potential to lead to multiple optimal solutions (Kingston et al., 2005), meaning that for the 

same input data the possible output maps include rotations or inversions of each other. The 

orientation of the final map is dependent on the initial values assigned to the nodes, with 

different sets of initial node locations leading to rotations, mirror images, or symmetric 

inversions of the final map (Kohonen, 1990). Yin (2008) highlights the need for good 

initialisation as it ‘can help guide to a faster or even better convergence’. 
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Figure 42: Linear initialisation of the data (coloured dots) from Figure 35. a) The initialised map grid (black dots) 
follows the principal components of the data set (main directions of variance as shown with magenta dashed lines). 
b) The trained map grid is shown on the principal component projection (axes of this plot are the first and second 
PC). Though the map has been fitted to the data, the main directions of the grid remain generally aligned with the 
principal components. 

8.4.5 Step 5: Run the training algorithm 

Running the training algorithm through the iterations of the two-step matching and updating 

process re-organises the linearly initialised grid of map nodes into a nonlinear arrangement 

amongst the data items, while maintaining the grid connections. Hastie et al., 2009, describe 

the initialised map nodes as ‘buttons’ sewn onto the principal component plane in a regular 

pattern; the training process of the SOM then bends and twists the plane so the buttons best 

approximate the data. The map is smoothed by the updating process in which the new node 

locations are computed based on the previous locations and the locations of the data items. 

Through the maintained grid connections, the map nodes organise themselves based on their 

similarity to each other.  

The trained map will now better approximate the data set than the initialized map, with more 

map units positioned in areas of higher density input space. The vectors describing the location 

of each map node (of the same dimensions as the input data vectors) have come to represent 

the most prevalent patterns of unique variable combinations in the data.   

At this stage, the algorithm can be run for a number of parameter sets (map size and shape, 

neighbourhood kernel size and shape), and the results compared through the use of quality 

measures (Section 8.4.3) to choose the map that best preserves the topology, quantisation, or 

clustering of the input data, or any combination of user objectives. 

8.4.6 Step 6: Place data items on the map  

After the map has been created, each data item finds a place on the map by matching it to its 

closest (most similar) map node. Because the nodes are organized based on their similarity, 

similar input data will become mapped to the same, or nearby, map nodes. The matching is 

based on a high-dimensional similarity measure, usually Euclidean distance. As in the matching 

stage of map training, each data item will have a unique best matching map node, but each 
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map node may be matched to more than one data item, or none at all. Placement of the data 

items on the map leads to the identification of clusters and discovery of relationships between 

data items. Section 8.5 describes how to interpret the map once this stage is reached. 

8.5 INTERPRETATION OF A SELF-ORGANIZING MAP 
The aim in analysing a SOM is to identify the key characteristics comprising the predominant 

patterns in the data set (pattern extraction) and discover which data items are similar to each 

other with respect to these characteristics (clustering). Characteristics of the predominant 

patterns are revealed by the high-dimensional vectors associated with each map node. As the 

map becomes organised in data space during training, the location of each map node is defined 

by the combination of dimension values that make up its vector. As the data items are matched 

to their nearest map nodes after training, clusters are formed of data items sharing similar 

characteristics. These characteristics are identified by the pattern of the common node. Map 

nodes may also be grouped together to form larger clusters of data in their Voronoi sets.  

Interpretation of a SOM generally includes a compilation of information through the visual 

investigation of the labelled map in one- or two-dimensional output space and the component 

plane for each variable. The visual investigation will reveal the prevalent patterns indicated by 

the individual node vectors, and the clusters of the data nearest to each node. Investigation of 

the output map should also disclose a good approximation of the input data distribution, 

including the overall shape and cluster structure in the data, characteristics of the clusters, and 

the relationships between variables. The results will allow for trend visualisation and infilling 

of missing data. 

8.5.1 Visualisation 

8.5.1.1 Output map 

The output map is usually displayed as a regularly-spaced grid in one- or two-dimensional map 

space, labelled with the data items or the main characteristics of the data items that pertain 

to each node. The output map may also be displayed in data space if the dimension of data 

space is low. In map space, the distribution of the projected data items across the map is 

evident, whereas in data space, the distribution of the map nodes amongst the data items is 

evident. The differences between nodes are often shown by coloured markers or a surface plot.  

An output map of the example data from Figure 35 is shown in Figure 43 in both data space 

and map space. In data space (a), the interconnected map grid is shown in black over the 

coloured data points, revealing the placement of the nodes amongst the data. In map space, 

the nodes are coloured by similarity with empty nodes remaining white (b), and data item 

labels are placed onto the relevant areas of the map (c). 

Labels 

Labelling the nodes on the output map (as in Figure 43c) gives an indication of the 

characteristics of data items represented by each region of the map. Labelling can involve 

listing each data item over the node it is assigned to, or choosing a representative label for 
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each node based on the group of data it represents. In the latter case, nodes may be grouped 

into larger clusters before labelling based on predominant cluster attributes. 

 

Figure 43: The output map is shown in data space (black grid, in (a)) and map space (b and c). Nodes are coloured in 
(b) to indicate similarity to each other, and each data point in (a) is the colour of the node it matches (in (b)). Labels 
(on c) indicate the placement of each data item on the map. Clusters and gaps in the data structure are discernible 
on this figure. 

To label the nodes or clusters with representative labels in consideration of the cluster centroid 

(map node) variable weights, plots of cluster vs. dimension and dimension vs. cluster are useful 

to indicate which dimensions are most accounted for in each cluster. Figure 44 demonstrates 

how these plots can be used, with a 24-dimensional, 8-cluster example. In the plot on the left 

(a), each line represents a separate cluster with the y-axis indicating the values (weights) of 

each dimension at each cluster centroid. It is possible to pick out, for example, that dimension 

19 has low weights in all clusters, whereas dimension 4 is prominent in 3 separate clusters. On 

the right (b), each line represents a dimension, with the y-axis indicating the dimensions’ value 

at the cluster centroid for the 8 clusters of this example. It is possible to pick out, for example, 

which dimension has by far the largest weight in cluster 6. Wang & Feng (2011) use this method 

to choose the top three weighted dimensions for labelling each cluster. 

 

Figure 44: Plots to aid in labelling clusters on the map. a) The clusters are represented by coloured lines (8 clusters 
in this example), and 8 values are shown for each dimension (one for each cluster). This indicates which dimensions 
are prominent in certain clusters. b) Each dimension is represented by a coloured line, showing the weight of each 
dimension at each cluster centroid. The highest peaks in each cluster indicate the dimensions of greatest influence, 
which could be used for cluster labelling. 
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Another option is to label a map with associated data (new data that has not been used in the 

training) as discussed in Section 8.4.3. This shows where the new data would plot on a map 

trained with other data, defining the relationships between the data sets. 

Axes 

Through the self-organisation process, the axes of the output map establish a meaningful 

nonlinear coordinate system for the various features of the input data (Kohonen, 2001). The 

axes begin the training stage as the first and second linear principal components of the data 

set, and then gain nonlinearity as iterations progress. While Vesanto (1999) states that the 

‘axes of the map grid rarely have any clear interpretation’, it is possible to form a general 

perception of their meaning through investigation of the component values of the map vectors 

along the edges of the map. This can be done by careful analysis of the component planes.  

8.5.1.2 Component planes 

Relationships between the individual variables can be explored with the use of component 

planes. Colouring is used to indicate dimension weights (values) at each node, with a separate 

component plane displaying values of each dimension of the SOM. The axes and grid nodes 

correspond exactly to those of the SOM output map.  

Inspection of component planes indicates the spread of values in each dimension (Vesanto, 

1999). The presence of interesting relationships between variables can be visually determined 

from the component planes, allowing these relationships to be further investigated with 

scatterplots of the subset of variables of interest. Plotting component planes of associated 

variables (those not used in map training) shows the relationship of new variables to those 

used to create the map.  

In Figure 45, component planes produced from the SOM in Figure 43 indicate that data items 

located on the lower right of the map have high maximum discharges and medium minimum 

discharges, whereas those located in the lower left have more moderate maximums and 

relatively high minimums. 

 

Figure 45: Component planes show the relative values of each variable at each node (high values are red, low are 
blue). Node locations correspond exactly to those on the SOM in Figure 43. As the values of each variable are revealed 
on the different regions of the component planes (and therefore on the corresponding regions of the map), the 
nonlinear intervariable relationships become evident.  
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The component planes provide a meaningful interpretation of the axes. The axes of the SOM 

follow the main nonlinear directions of variance in the data set, and by identifying regions of 

the component planes with high and low values of each variable, the general gradient of 

individual variables along the axes should become evident. These gradients will be continuous 

along the axes, though not necessarily monotonic in direction.  

8.5.2 Pattern extraction 

The prevalent patterns in the data set are exhibited by the vectors of each map node. The 

unique combination of variables making up each vector is a characteristic pattern. These 

combinations can be analysed via the component planes.  

An analysis of frequencies of occurrence of each pattern is obtained by looking at the 

percentage of input data assigned to each map node. Each matching of a data item to a node 

is known as a ‘hit’. Transitions between patterns can be observed by matching the data items 

to the map in a sequential order and following the trajectories of the hit locations.  

8.5.3 Cluster identification 

Clustering is the most frequent reason for implementing a SOM (Agarwal & Skupin, 2008), and 

a number of methods exist for finding clusters in the data through the use of a SOM.  

Basic, or first-level, clustering involves treating each SOM node as a cluster centroid. As each 

input data item is uniquely related to one of the nodes, clusters are created of data that share 

similarities based on the features of the extracted patterns. Each node of the output map 

comes to represent a cluster. To use this method effectively, it is best to determine the 

approximate number of clusters that exist in the input data (using a cluster validity measure, 

see Section 0) before setting the number of nodes. The number of nodes should be set equal 

to or greater than this to ensure that each cluster is mapped to a separate node.  

Second-level clustering is used to find groups of nodes that themselves make up a cluster. This 

is useful when creating a map with a large number of nodes compared to the number of 

clusters in the data (which may be done to gain a good separation between data items on the 

map). It is known as second level clustering since the data has already been clustered with the 

SOM (first-level clustering). Second-level clustering is useful for producing summaries or 

descriptions of SOM results. 

Second-level clustering groups the SOM nodes, either with another SOM or with a different 

technique as discussed below. The high-dimensional node vectors are clustered in data space, 

and the cluster memberships are projected onto the low-dimensional map for visualisation, 

with the subsets of nodes grouped together by colour or outlines. All the data matched to any 

of the member nodes are now members of each cluster (Vesanto & Alhoniemi, 2000). As might 

be expected, the weights of the most influential variables will change rapidly at the borders of 

the clusters (Kaski et al., 1998). Toth (2009) finds second-level clustering of a larger SOM to be 

more suitable for preserving the distinctive features of the classes when compared with using 

a smaller initial map size.  
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Some common methods of second level clustering include visually assessing the distance in 

data space between nodes with the U-matrix, similarity colouring, or the number of ‘hits’ in 

each region; another SOM; partitive clustering such as k-means (as in Skupin, 2004; Wang et 

al., 2013); and hierarchical agglomerative clustering (as in Wang & Feng, 2011; and Guo et al., 

2006). The remainder of this section will describe these techniques. 

Cluster validity measures 

If attempting to have each node of the map represent a cluster of the data, it is necessary to 

estimate the number of clusters present in the data set before the SOMs analysis begins. There 

are various methods available for this, which can also be used to determine k in k-means 

clustering.  

The Davies-Bouldin index (Davies & Bouldin, 1979) is a popular measure for determining the 

number of clusters present in a data set (as in Gamble & Babbar-Sebens, 2012; Garcia & 

Gonzalez, 2004) and used in kmeans_clusters.m of the MATLAB SOM Toolbox (Vesanto et al., 

2000). It measures the ratio of within-cluster to between-cluster distances. A small ratio 

indicates compact, well-separated clusters. 

The Dunn index (Dunn, 1973) and Silhouette coefficient (Rousseeuw, 1987) are also used to 

determine the number of clusters (as in Sarlin & Yao, 2013). Both are also concerned with the 

ratio of inter-cluster to intra-cluster distances. Silhouette clustering determines how 

appropriately the data has been clustered by ranking data points as: well clustered (1); would 

be better in neighbouring cluster (-1); or on the border of two natural clusters (0), and taking 

the average over the entire dataset. Clusters with narrower silhouettes than the rest will 

appear if there are too many or too few clusters. 

If the data items are in k compact, separated clusters, a function based on within- or between-

cluster distances could be expected to decrease rapidly as the number of nodes increases, until 

the number of nodes equals k (Flexer, 1999). The ‘kink’ in the curve of cluster dissimilarity as a 

function of the number of clusters, where the curve begins to decrease less rapidly, may 

indicate the number of clusters in the data (Hastie et al., 2009). 

8.5.3.1 Visualising the space between clusters 

Unified distance matrix (U-matrix) 

The U-matrix (Ultsch, 2003) visualises distances between regions of the data space 

represented by each node. By computing high-dimensional similarities between neighbouring 

nodes (how close they are in data space), the U-matrix determines cluster boundaries based 

on large dissimilarities (Ultsch, 2003). This is also known as the ‘degree of distortion’, that is 

the change in relative distance between the high-dimensional locations of the nodes in data 

space and the low-dimensional map representation (Agarwal & Skupin, 2008). The distances 

are indicated on the U-matrix map by colour, with differing colours indicating the boundaries 

between clusters. It can be seen on the U-matrix in Figure 46(a) that distinct clusters (blue) 

exist, separated by lighter coloured boundary areas.  
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Similarity colouring 

Similarity colouring involves spreading a two-dimensional colourmap over the principal 

component projection of the nodes, thereby colouring similar nodes similar colours. Further 

apart (more different) nodes become coloured with colours that are perceived as more distinct 

(Kaski et al., 2000). The similarity colouring and ‘empty’ map nodes in Figure 46(b) reveal the 

same cluster structure as the U-matrix. On this plot, the clusters evident in the lower portion 

of the map are outlined.  

Hits 

Plotting the number of data items matched to each node, known as the ‘hits’, on the output 

map may allow cluster structure in the data to become visible. High intensities of data might 

become evident on clearly separated regions of the map. Nodes with zero (or relatively low) 

hits delineate the cluster borders (Zhang & Li, 1993; Vesanto & Alhoniemi, 2000).  

Using a surface plot to record the hits will produce raised regions of the map where the clusters 

exist (as in Gopakumar et al., 2005). Linearly scaling the size of the output map nodes in 

proportion to the number of hits each receives provides another method of visually indicating 

cluster structure. Figure 46(c) shows the use of hits to confirm the cluster structure. 

 

Figure 46: U-matrix, similarity colouring, and hits. The cluster structure evident on all three plots is delineated on 
plot b. a) Colouring is based on the distance between neighbouring nodes in data space. Dark blue indicates smaller 
distances and red indicates greater distances, therefore the yellow, orange and red regions indicate boundaries 
between clusters. b) Similarity colouring visually indicates similarities between nodes, with empty (white) nodes 
forming boundaries between clusters. c) The density structure of the data is shown by sizing map nodes based on 
the number of data items matched to them.  

K-means clustering 

K-means clustering is a popular method for second-level clustering as the topological 

preservation of the data has already been captured in the first SOM (as in Garcia & Gonzalez, 

2004). K-means clustering produces good results if the clusters are compact, hyper-spherical 

and well-separated (Garcia & Gonzalez, 2004). Determining the optimal ‘k’ value, or number 

of clusters to extract, can be done with the methods in Section 0. 
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SOM for second level clustering 

A SOM can be used for second-level clustering (as in Clark et al., 2014). In this method, the 

node vectors of the first SOM become the input vectors for the second SOM. An example is 

shown in Figure 47 in which a 5x2 SOM is used to cluster the output of an 18x18 SOM, reducing 

the number of clusters from 324 to 10. Results produced are similar to k-means clustering with 

the added benefits of maintaining an order to the clusters and allowing presentation in the 

familiar SOM output. 

 

Figure 47: Second-level clustering: an 18x18 SOM is clustered into 10 clusters via a 5x2 SOM, grouping similar nodes 
together. Each colour represents membership in one of the 10 second-level clusters. a) the map nodes are shown in 
a two-dimensional principal component projection of the high-dimensional space; b) the nodes are displayed in map 
space. 

Hierarchical clustering 

Hierarchical clustering (eg. Ward, 1963) can be used to determine many levels of progressively 

larger clusters on the map. An advantage of hierarchical clustering over k-means is that many 

nested levels of clusters can be shown simultaneously on one output map (as in Wang & Feng, 

2011). In Skupin (2004), five levels of clustering are shown on a single map.  

Hierarchical clustering can also be performed based on an associated variable (as in Sarlin & 

Marghescu, 2011). Another form of agglomerative hierarchical clustering is ‘neuron label 

clustering’ used by Skupin et al. (2013) in which neighbouring clusters are merged if they share 

the top-ranked label term (most influential dimension). This can be repeated for the second-

ranked label terms (etc.) to get many separate cluster layers.  

8.5.4 Trend visualisation, infilling missing data, prediction, incorporating new data 

An indication of temporal changes (trends) in data sets can be gained through SOMS 

visualisations using any of the following methods: a SOM is trained with all the available input 

data and changes over time in the data mapping to each node (or second-level cluster) reveal 

temporal trends in the data structure (as in Wang & Feng, 2011); all the data matching one 

map node could be used as input for a local prediction model (Vesanto, 1997); trajectories, or 

lines, connecting the BMUs of consecutive data points in a time series may be used to indicate 

trends (as described in Principe et al., 1998; see Schreck et al., 2009, for more cluster analysis 

of trajectory data.); consecutive sections of the input data (ie. years or decades) can be plotted 
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on to the map to visualise changes (as in Wang, 2015); or, temporal patterns may be extracted 

based on trends of the cluster centroids when a separate map is created with data from each 

time step (as in Sarlin, 2012).  

To use SOMs for infilling missing data, the best matching map node can be found based on the 

available variables of the data item, and then the value of the missing variable adopted from 

the node vector (as in Mwale et al., 2012). 

 A similar method of value adoption based on established intervariable relationships is used for 

prediction. The best matching map node can be found based on a set of easily predicted 

variables, and then the value of the unknown variable adopted from the node vector (as in 

Steynor et al., 2009). 

The incorporation of new data onto the trained and clustered map reveals how it relates to 

the other data items based on the established relationships and clusters. New data can be 

added to the input data set during Step 6 (placing the data on the map). It will be placed into 

the established clusters and can be compared to the other cluster members (as in Dejean et 

al., 2011). 

8.6 CONCLUSION 
This paper leads researchers through the creation and interpretation of a SOM relevant to a 

specific data set, providing a practical guide to understanding meaningful parameter choices 

and interpreting SOM results for the extraction of interesting information from large sets of 

data. Information and guidance on the SOM method has been consolidated in this cohesive 

document to aid readers interested in using SOMs for data-driven exploratory analysis of 

multivariate, nonlinear data sets.  

Though SOMs are widely used and increasing in popularity for environmental applications, 

uncertainty remains in the SOMs method due to the two inherent competing goals 

(approximating the data with the map nodes and preserving the topology of the data set) which 

negate the possibility of specifying a single objective function that the map aims to optimise. 

This gives rise to complications in parameter specification, as different choices will improve 

some aspects of the results and possibly inhibit others. Parameter choices impact the 

formation of the output SOMs, with different maps resulting from the use of distinct parameter 

sets.  

It is therefore important for the analyst to appreciate and understand the parameter options 

available. A sole reliance on software default parameters may result in maps that are not the 

most suitable size and shape to represent a particular data set, or the level of smoothing and 

generalisation provided on the output map may not suit the specific purposes of the analysis. 

Interpretations of the data based on such maps may reveal less information about the data set 

than there is potential to uncover, for example with respect to the distributions of individual 

variables and the intervariable relationships. Analysts must therefore make an informed choice 

between the options based on the relative benefits of each choice, until an automated method 

is incorporated into SOMs for this multi-objective parameter selection. 



160 
 

8.7 APPENDIX 1 – MATHEMATICAL FORMULATION OF THE SOM 
The mathematical formulation of the SOM training mechanism is detailed here. The calculation 

of the BMU (finding the nearest map node for each data point), the application of the 

neighbourhood function (smoothing kernel), the process of updating the location of each node 

at each iteration and the traditionally used quantisation error and distortion measure are 

discussed. The matrix calculations used in the MATLAB SOM Toolbox (Vesanto et al., 2000) for 

computing the BMU, quantisation error and distortion measure, and implementing the 

neighbourhood function and updating rule are outlined, including the use of the ‘mask’ for 

weighting the influence of each variable. This investigation provides the basis for examining 

possibilities for mathematical modifications to the SOM, and to explore how such 

modifications might be implemented in MATLAB code. 

BMU search and quantization error: The search for BMUs and the calculation of the 

quantization error require the recurring computation of Euclidean distance between each data 

point and each map unit at each iteration. To do so, the first dimension of all data points is 

compared with the first dimension of each map unit, then the second dimension and so on. 

The mask is incorporated to weight each dimension, usually by a 1 or 0.  

The Euclidean distance calculation between high-dimensional data vectors (𝑥𝑖 ) and map 

vectors (𝑚𝑗 ): 𝑠𝑞𝑢𝑎𝑟𝑒𝑑⁡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡ = (𝑚𝑗 − 𝑥𝑖)
2 ⁡= (𝑚𝑗)

2 + (𝑥𝑖)
2 − 2(𝑚𝑗) ∗ (𝑥𝑖) is implemented below 

in matrix terms where Map is a matrix of M d-dimensional map vectors⁡(𝑚1, … ,𝑚𝑀), D is a 

matrix of N d-dimensional data points⁡(𝑑1, … , 𝑑𝑁), and mask is a one-dimensional vector of 

length d:  

Dist = Map.2∗ mask ∗ ones(1, N) + ones(M, 1) ∗ mask′ ∗ D′.2 - 2Map ∗ diag(mask) ∗ D′ 
size: [M,N] = [M,d] *[d,1]* [1,N]   + [M,1]*[1,d]*[d,N] - 2 [M,d]* [d,d]*[d,N] 

 

 [

𝐷𝑖𝑠𝑡𝑚1,𝑥1 ⋯ 𝐷𝑖𝑠𝑡𝑚1,𝑥𝑁

⋮ ⋱ ⋮
𝐷𝑖𝑠𝑡𝑚𝑀,𝑥1 ⋯ 𝐷𝑖𝑠𝑡𝑚𝑀,𝑥𝑁

] = [
𝑚1,1

2 ⋯ 𝑚1,𝑑
2

⋮ ⋱ ⋮
𝑚𝑀,1

2 ⋯ 𝑚𝑀,𝑑
2
] ∗ [

𝑚𝑎𝑠𝑘1
⋮

𝑚𝑎𝑠𝑘𝑑

] ∗ [11 … 1𝑁]       

+[
11
⋮
1𝑀

] ∗ [𝑚𝑎𝑠𝑘1 … 𝑚𝑎𝑠𝑘𝑑] ∗ ⁡ |
𝑑1,1

2 ⋯ 𝑑𝑁,1
2

𝑑1,𝑑
2 ⋯ 𝑑𝑁,𝑑

2| − 2 ∗ [

𝑚1,1 … 𝑚1,𝑑

⋮ ⋱ ⋮
𝑚𝑀,1 ⋯ 𝑚𝑀,𝑑

]

∗ [
𝑚𝑎𝑠𝑘1 0 0

0 ⋱ 0
0 0 𝑚𝑎𝑠𝑘𝑑

] ∗ [
𝑑1,1 ⋯ 𝑑𝑁,1
𝑑1,𝑑 ⋯ 𝑑𝑁,𝑑

] 

The calculated distance between each map node and each data point is stored in matrix Dist 

(of size M*N), with a column for each data point and a row for each map node. Each ‘distance’ 

is essentially the sum of squared distances calculated separately in each dimension, with 

mask=0 dimensions ignored.  

The BMU search seeks the minimum value in each column of the Dist matrix. This is the 

minimum distance to any map node from that data point, and becomes recorded as the 
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squared quantization error for the data point. The square roots of the minimum distances in 

each column are averaged to give the mean quantisation error for the map. 

𝑄𝐸 =
1

𝑁
∑√min(𝐷𝑖𝑠𝑡(: , 𝑖))

⁡

𝑖

 

Distortion measure and updating rule: The distortion measure is described as a ‘statistical 

measure of within-group variation augmented to take account of the neighbourhood function 

which is an essential distinguishing characteristic of the SOM’ (Curry & Morgan, 2004). Vesanto 

(2003) decomposes the distortion measure into aspects of quantization, neighbourhood bias 

(comparing the mean of the data points to the mean of the map units, linking quantisation and 

topology together) and topological quality for each map unit. 

The SOM Toolbox calculates the total distortion per map unit by finding the distance between 

each data point and each map unit with the neighbourhood kernel and mask applied (Vesanto 

et al., 2000). (This differs slightly to the calculations of BMU with the addition of matrix H as 

the neighbourhood kernel.)  

In matrix terms, for each data point, 𝑥𝑖, row 𝑖 of the transposed Dist matrix is multiplied by the 

column of the neighbourhood matrix, H, corresponding to the BMU of 𝑥𝑖 . The amount of 

distortion influenced by each data point is therefore determined as:  

distortion⁡per⁡data⁡point = H(: , 𝑏𝑚𝑢𝑥𝑖)′ ∗ Dist     

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

= [ℎ1,𝑏𝑚𝑢𝑥𝑖
… ℎ𝑀,𝑏𝑚𝑢𝑥𝑖] ∗ [

𝐷𝑖𝑠𝑡𝑚1,𝑥1 ⋯ 𝐷𝑖𝑠𝑡𝑚1,𝑥𝑁

⋮ ⋱ ⋮
𝐷𝑖𝑠𝑡𝑚𝑀,𝑥1 ⋯ 𝐷𝑖𝑠𝑡𝑚𝑀,𝑥𝑁

] 

The distortion can be reported as either the distortion of each map unit due to all the input 

samples, or the average distortion over all map units. The amount of distortion experienced by 

each map unit, 𝑑𝑚𝑢, is given by the sum of distortion per data point over all data points 

mapping to each unit. The average distortion for the map is given by:  

average⁡distortion =
∑ 𝑑𝑚𝑢𝑚

𝑀
 

The updating of each map vector at each time step, t, proceeds as: 

𝑚𝑖(𝑡 + 1) =
∑ ℎ𝑖𝑗(𝑡)𝑠𝑗(𝑡)
𝑚
𝑗=1

∑ 𝑛𝑣𝑗ℎ𝑖𝑗(𝑡)
𝑚
𝑗=1

 

where 𝑛𝑣𝑗 is the number of items mapping to node j (in Voronoi set, 𝑣𝑗) and 𝑠𝑗(𝑡) = ∑ 𝑥𝑖
𝑛𝑣𝑗
𝑖=1

 is 

the sum of vectors in 𝑣𝑗. For example, the updating of map vector 5 proceeds as: 

𝑚5(𝑡 + 1) =
ℎ5,1(𝑡)𝑠1(𝑡) + ℎ5,2(𝑡)𝑠2(𝑡) + ⋯+ ℎ5,𝑀(𝑡)𝑠𝑀(𝑡)

𝑛𝑣1ℎ5,1(𝑡) + 𝑛𝑣2ℎ5,2(𝑡) + ⋯+ 𝑛𝑣𝑀ℎ5,𝑀(𝑡)
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8.8 APPENDIX 2 - OBJECTIVE FUNCTION SEARCH 
The relationship between SOMs, objective functions and probabilistic methods were 

investigated in detail to generate ideas for the potential improvement of SOMs 

implementation through the optimization of an objective function. This section of the 

literature review is split into two subsections: attempts to define the objective function that is 

minimized by the SOM, and alteration of the SOM itself to fit it into a probabilistic framework. 

Following is a summary of the literature on these topics and some basic experimental 

modelling of the techniques. 

8.8.1 Defining an objective function for SOMs 

Objective functions in general 

The search for an objective function was motivated by the notion that map parameters may 

be selected through a quantifiable assessment of what is gained or lost through different map 

setups. An objective function provides a real number output from the solution of a function 

using a given set of parameters. In terms of regression or classification with supervised or 

unsupervised learning, an objective function aids parameter selection through being 

minimized over a set of training data, leading to the choice of the parameter set producing the 

smallest result.  

The objective function, in general, quantifies the difference between the estimated values 

from the model, 𝑥𝑖(𝑐𝑎𝑙𝑐) and the true values, 𝑥𝑖(𝑜𝑏𝑠), where 𝑤𝑖⁡is the weight of observation 

i, and N is the number of observations: 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑄𝑖 =⁡∑ 𝑤𝑖[𝑥𝑖(𝑜𝑏𝑠) −
𝑁
𝑖=1

𝑥𝑖(𝑐𝑎𝑙𝑐)]
2 . A continuously differentiable objective function can be minimized using the 

gradient descent method, where at each iteration the value moves in the direction of the 

negative gradient of the objective function, multiplied by the value of some learning parameter, 

∝, as follows, where 𝑄𝑖(𝑎) is the objective function, and a is the parameter to be optimised: 

𝑏 = 𝑎−∝ ∑ ∇𝑄𝑖(𝑎)
𝑁
𝑖=1 . 

Why the SOM doesn’t minimize a single objective function 

The issue of objective functions has been the source of much discussion in SOMs literature. 

The theory of objective functions as described above would appear to correspond easily to the 

SOM approach, as Varsta (2001) indicates the target of the SOM is to minimize the sum of 

weighted errors between the input and the map vectors. However, it has been proven that the 

SOM does not follow a gradient descent of any single objective function (Erwin, 1992). This is 

due to the opposing aims of quantization (data reduction) and the topology-preserving 

projection (visualisation) of the SOM. Instead, a set of energy functions must be used (one for 

each node) and independently minimized using stochastic gradient descent, which becomes 

complicated for multi-dimensional data. Erwin (1992) states that ‘it is easy to propose a cost 

function which should be minimized by the ordered map, but much more difficult to find an 

energy function on which a gradient descent can be guaranteed to lead from any disordered 

map to a map minimizing the cost function.’ Kohonen (1990) indicated that no solution for the 

optimal placement of map nodes is possible, and placement must be determined by iterative 

approximation techniques. He later states (Kohonen, 2001) that there is not any theoretical 
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reason for which the basic SOM should ensue from any objective function. Yin (2008) lists six 

attempts at a proof of convergence and ordering for multidimensional SOM systems and yet a 

full proof remains unattained. Yin (2008) provides a full review of the issues surrounding the 

objective function of the SOM with a good description of the recent literature. 

Distortion measure as objective function 

There is discussion in the literature about whether the distortion measure can serve as an 

objective function for the SOM. The SOM has been described as the ‘set of nodes that globally 

minimizes the average expected distortion measure’ (Kohonen, 2001), and the distortion 

measure has been referred to as the ‘energy function’ of the SOM (website 9). Rynkiewicz 

(2006) states the distortion measure is often used as a criterion for assessing the quality of the 

SOM as it overcomes the absence of a cost function, though no papers actually doing so have 

been found to support this statement.  

The original (sequential, Kohonen, 1990) updating rule for SOMs is a Robbins-Munro stochastic 

approximation (a method of approximate optimization) of the distortion measure (Kohonen, 

2001). The Robbins-Munro method approximates the gradient of the average expected 

distortion measure by the gradient of the distortion measure with the input samples. This leads 

to the basic SOM training algorithm, though ‘the convergence limit of the Robbins-Munro 

stochastic approximation does not necessarily represent the exact minimum of the average 

expected distortion measure’ (Kohonen, 2001). In the batch algorithm (Kohonen, 2013), the 

approximate gradient is evaluated for the entire input set and the weights are updated to the 

global optimum giving the current partitioning of the data. (Varsta, 2001).  

If an infinite set of input samples (X) were available, the average expected distortion measure 

would be (Kohonen, 2001): 

average⁡expected⁡distortion⁡measure = ∫∑hij‖xi −mj‖
2
𝑝(𝑋)𝑑𝑥

𝑀

𝑗=1

 

where p(X) is the probability density function of x. The average expected distortion measure 

returns a scalar value and can be considered an objective function for a continuous distribution 

(Kohonen, 2001).  

When the probability density function isn’t known, though, an approximation must be made 

with available samples of x. In this case, the distortion measure of the SOM is not continuously 

differentiable, and therefore it cannot be minimized exactly with the gradient descent method. 

The function is not differentiable at the borders of the Voronoi regions (areas containing 

groups of data items mapping to a single map unit), due to the fact that the input space at the 

boundaries has exactly the same distance to two separate map units (Yin, 2008). Kohonen 

(2001) states that the distortion measure ‘is not continuously differentiable, and c (the index 

of the BMU) changes abruptly when crossing a border in input space’. 

Distortion measure vs updating rule  

There is a difference between the distortion measure and the updating rule of the SOM. The 

updating rule of the SOM has been arrived at by ignoring the discontinuities at the boundaries 

of the Voronoi regions (Varsta, 2001). The distortion measure considers distances between the 
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nodes and the data points, whereas the updating rule only uses the centroids of the sets of 

data points and isn’t concerned with current node locations beyond using them to find sets of 

data points to determine the next node locations.  

The derivation of an updating rule that would minimize the average expected distortion 

measure runs into difficulty as the Voronoi tessellation is only piecewise continuous, and 

therefore the function is only piecewise differentiable with respect to the weights (Varsta, 

2001).  

The distortion measure is proportional to neighbourhood size. As the neighbourhood size 

decreases with each training iteration, the distortion measure also decreases. Kohonen (2001) 

gives a detailed description of the map that would result from optimizing the distortion 

measure with a constant neighbourhood function, though the exact optimization of the 

average expected distortion measure is still an unsolved issue. This optimization attempt 

assumes the neighbourhood function to be constant, even though an important property of 

the SOM is that it decreases in size as training progresses (Kohonen, 2001). Therefore, the SOM 

only minimizes the distortion measure if the neighbourhood kernel is constant (Vesanto, 2000), 

and this is a stipulation which does not hold in the fundamental SOM method. The learning 

rule that would follow directly from the distortion measure would therefore be different to the 

actual SOM training rule, and so the SOM is only an approximate minimization of the distortion 

measure (website 9).  

8.8.2 Altering the SOM structure and probabilistic alternatives 

Having established that the traditional SOM output map cannot be arrived at through the 

optimization of any objective function, researchers have attempted to alter the SOM method 

itself to encourage it to follow an objective function.  

These attempts have contributed a number of alternatives to the SOM. Three new algorithms 

for topographic mappings are offered by Graepel et al. (1998) including STVQ and 2 

generalizations. Each is based on the minimization of a cost function: STVQ (soft topographic 

vector quantization) also uses a stable neighbourhood radius making it possible to use a fixed 

neighbourhood function to encode desired neighbourhood relations between nodes; STMK 

(kernel based soft topographic mapping) is a generalization of STVQ that introduces new 

distance measures in input space based on kernel functions, which equates to performing 

STVQ in high dimensional feature space, revealing structure in data that is not revealed by 

STVQ in Euclidean space. STMP (soft topographic mapping for proximity data) is also a 

generalization of STVQ, for data given in terms of pairwise proximities. Heskes (1999) slightly 

changes the definition of the winning unit, to enable SOMs to perform stochastic gradient 

descent on an energy function. Kostiainen & Lampinen (2002) derive a probability density 

model for which the converged state of the traditional SOM training algorithm gives the 

maximum likelihood estimate, based on isotropic Gaussian components.  

For the most part, these methods which alter the fundamental structure of the SOM algorithm 

to force it to follow an objective function are not being found outside theoretical literature. 

They are not being adopted for research applications, and researchers appear to be reluctant 
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to vary from the widely used traditional SOMs method and are continuing to base their 

applications on the original heuristic version (Olier & Vellido, 2006). One notable exception, 

the generative topographic mapping (GTM, Bishop et al., 1997a), with over 1400 cites is by far 

the most popular probabilistic alternative to the SOM. The GTM consists of a constrained 

mixture model of Gaussians, allowing model parameters to be determined by the maximum 

likelihood method. A brief study of the GTM, and comparison with the SOM, is provided here. 

Whilst the SOM represents a data set by a discrete set of reference vectors, the GTM uses a 

continuous manifold. The SOM assigns each data point to a single reference vector, and the 

GTM distributes responsibility over a number of components. The smoothness of the SOM is 

determined by the choice of neighbourhood function, and the smoothness of the GTM is 

controlled directly by the basis function parameters.  

The GTM is a nonlinear, probabilistic visualisation and clustering model which is considered a 

probabilistic reformulation of the SOM. GTM was created to overcome the absence of a SOM 

objective function and the lack of a theoretical basis for parameter choices.  

The GTM belongs to the same family of ‘unsupervised methods’ as the SOM, for which 

visualisation is a key aspect. High dimensional data is mapped to two-dimensional space, 

preserving topology and clusters in the original data. The GTM directly computes the 

topological relationships between grid nodes to define a system similar to the SOM (Kohonen, 

2013). Contrary to the SOM method, the GTM constructs a mapping from latent (low-

dimensional) space into data space (rather than data space to low-dimensional space as with 

the SOM) and this mapping is then inverted into latent space for visualisation (Bishop et al., 

1997a).  While the SOM involves hard assignments of data to nodes, vectors in the GTM involve 

soft assignments weighted by posterior probabilities. This is analogous to the distinction 

between the k-means clustering algorithm and using the expectation-maximisation (EM) 

algorithm to fit a Gaussian mixture model (Bishop et al., 1997a). 
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9 CONCLUSION 

This thesis extends current SOMs theory through a closely-tied set of advancements focused 

on improving the extraction and interpretation of useful information from nonlinear and 

spatiotemporal data sets. Data encountered in water-related sciences often result from high-

dimensional, frequent measurements of systems with nonlinear and spatiotemporal aspects. 

The developments presented here have been aimed at improving the summarisation, sorting 

and visualisation of this data, to increase insight into the interrelationships of system 

components.  

The new methods are suited to environmental data with missing values and data structures 

that change over time. They have been demonstrated on current water-related issues with 

complex hydrological-human relationships, revealing the enhanced pattern extraction and 

clustering capabilities. Though this project is motivated by and based on hydrologic and water 

resource applications, the approaches and extensions to the SOM introduced here could be 

applied to the exploratory analysis of a wide variety of data sets from any field.  

A summary of the new methods introduced in Papers 1-4 is provided here: 

o In Paper 1, data items have been clustered in terms of their similarities based on the 

nonlinear relationship between the variables. Temporal dynamics over the timeline of 

the study were investigated, revealing a global trend of the data set and groups of data 

items with similar temporal movements through the map. A single visual output is 

produced to convey data items with similar and diverging trends. The large 

spatiotemporal data set has been reduced into a specified number of representative 

vectors which are ordered based on similarity, leading to the possibility of further 

quantitative analysis of the trends in the datasets without having to manipulate vast 

amounts of individual observations or explicitly define the nonlinear relationships. 

o In Paper 2, the ‘dimension range representation’ measure is introduced to quantify 

how well a map represents each dimension of a data set, indicating if any dimensions 

of input data become under-represented in the creation of the map. It has been shown 

that though a data item may more closely match its allocated map vector in certain 

dimensions, the map vector will be interpreted as being representative of the data in 

all dimensions. This new measure, used in conjunction with existing quality measures, 

can aid the choice of number and configuration of map nodes. 

o In Paper 3, a method is introduced to improve the extraction of underlying nonlinear 

relationships from complex high-dimensional measurements. The SOM framework is 

expanded to enable the characterisation of highly nonlinear manifolds, transferring 

the global ordering process into low-dimensional space by focusing the first 

approximation of map node locations along the geodesic surface, and applying a 

restricted neighbourhood kernel when refining the map node locations to limit the 

influence of each data item to nodes directly around it. 

o In Paper 4, dimension reduction and clustering are performed on maps in a series, 

created with different configurations and variables. Each map indicates the 
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predominant characteristics of the data at that time step. Temporal patterns are 

extracted by identifying the relationship of each data item to these predominant 

characteristics of each map.  

Through the series of papers, the gaps in the general knowledge base of self-organizing maps 

identified in Section 2.2 have been progressively addressed, as follows: 

1. Spatiotemporal clustering. The issue of presenting spatiotemporal analyses within 

a single visualisation, rather than a series of maps requiring subjective user 

interpretation, was a focus of Paper 1. The result was a method that is able to 

trace the individual data items as they move through the evolving global cluster 

structure of the data over the time period of the study. This effectively reduces 

the spatiotemporal results to a single visualisation representing the changing 

cluster structure of the data as well as the changing relationships between data 

items. This method, however, is still lacking the freedom to represent each 

timestep of data with maps of different configurations, even though the data 

structure may differ at each timestep. 

Spatiotemporal clustering is revisited in Paper 4, which expands temporal SOMs 

methodology to allow the two-dimensional structure of the SOM to shift in time, 

representing a possible shifting temporal structure of the data distribution. Whilst 

the study leading to Paper 1 focused on individual trends of data items through 

an evolving global cluster structure, the study leading to Paper 4 was concerned 

with individual trends of data items related to the changing structure of the data 

set. Two-dimensional maps were used in this study, as a three-dimensional 

representation of the overall data set (the two-dimensional maps vs time) was 

not feasible due to visualisation issues. However, this is an issue that would 

benefit from further attention in future as three dimensions would allow 

increased insight into the system patterns.  

2. Parameter selection. The issue of deliberately choosing an appropriate map 

structure to best represent a particular data set was addressed in Paper 2. This is 

accomplished by monitoring the dimension-specific intra-cluster range of data 

assigned to each map node, ensuring the choice of map configuration that allows 

all dimensions to be represented relatively equally in the resulting clustering and 

visualization. This concept of providing an unbiased coverage of each data 

dimension is combined into the spatiotemporal analysis of Paper 4. In future work, 

an automated system of selecting optimal map configuration with less user input 

could be attempted to make the method more reproducible. 

3. Nonlinear manifold representation. The summarising of patterns and clusters 

within data containing nonlinear manifolds was addressed in Paper 3, with the 

introduction of the SOMersault algorithm. This new algorithm effectively unrolls 

the initial map in alignment with any low-dimensional nonlinear manifold within 

high-dimensional data measurements, performs map finetuning in high-

dimensional space ensuring accurate pattern extraction, and restricts clustering 

to regions along the geodesic surface to ensure cluster members share similarities 
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in consideration of the nonlinear manifold. Future work may include an improved 

method for mapping the prototype vectors back and forth between the low and 

high dimensional spaces. 

4. Objective function minimisation. A detailed investigation into the search for an 

objective function is included in Section 8.8. This study was conducted with the 

ambition to apply an objective function to parameter selection, however, it was 

found that the SOM does not result from the optimisation of any objective 

function. The stochastic optimization of the distortion measure only 

approximately represents the convergence of the SOM and cannot be used to 

determine map structure as it decreases with decreasing map size. The literature 

provides some attempts to create probabilistic alternatives to the SOM, such as 

the generative topographic mapping, though researchers in general are 

continuing to use the traditional SOM rather than adopting the new methods. 

This is perhaps due to the statistical complexity of these alternatives compared 

to the intuitive nature of the traditional SOM method. This line of investigation 

was therefore not pursued further as little impact on practical applications 

seemed probable. This decision was reinforced by the fact that this line of 

research has lost momentum in the literature since 2001, with all references since 

that date merely stating the lack of an objective function for SOMs.  

5. Crossover of theory into applied research. The accessibility of SOMs theory (both 

traditional and innovative) to non-statistical users was addressed in Paper 5 with 

the production of a practical implementation guide. Background theory, current 

best practice, basic and innovative examples, and a step-by-step guide are 

included to ensure researchers, engineers and scientists interested in using SOMs 

to explore their high-dimensional, nonlinear data sets have a resource to do so. 

Though this paper does not transfer all historical SOMs technical innovations into 

the applied realm, it will raise consciousness that capabilities of the SOM for 

representing specific data sets exist beyond those realised with default 

applications. In addition, the new techniques presented in Papers 1-4 are 

demonstrated on real-world applications providing examples that can be 

followed. 

Though this thesis is primarily aimed at expanding the general knowledge base of SOMs theory, 

the applications contained within it have also contributed to increased knowledge of global 

and regional water resource relationships through providing: 

• An understanding of the role of 172 countries in the global exchange of virtual water 

and the transformation of individual countries’ dependencies on foreign water 

resources within the context of the shifting virtual water market. 

• Analysis of the relative conditions of 142 countries with respect to Millennium 

Development Goal 7c, aimed at reducing the proportion of people without sustainable 

access to safe water and basic sanitation. Clusters of countries sharing similar states 

of urban and rural water and sanitation development were identified. 
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• The integration of satellite-based water storage measurements with basin-level water 

scarcity calculations, identifying the disparity between the quantity of all forms of 

water present in a basin and anthropogenically-induced shortages in availability. 

• The depiction of projected trends and comparisons between changing river flood 

impacts on population and property induced by anticipated urbanization and climate 

change in 98 cities. 

Addressing the need for increased integration of SOMs theoretical knowledge into applied 

research, science and engineering is an important component of this thesis. SOM users in the 

environmental field appear to require some encouragement to transfer theoretical 

innovations into applied research. The applications presented in these papers may be used as 

examples for implementation of these new methods within applied fields of research and 

engineering, and it is hoped that Paper 5, in particular, will provide enough information to lead 

the interested researcher through a deliberate application of SOM techniques.  

Opportunities for future work have been considered during the preparation of the thesis. 

Papers 1-4, taken together, lead towards a variety of possible next steps for the expansion of 

spatiotemporal, nonlinear SOMs. The methods could be expanded into three output 

dimensions, ideally including a shifting structure of the SOM that accounts for temporal 

changes in the data structure based on ensuring appropriate coverage of each time step of the 

data by the corresponding portion of the SOM. This would require specialised visualizations to 

allow intuitive interpretation of the temporal flow. A projection of visible cluster trends into 

the next time step could also be contemplated. Furthermore, any possible methods for 

reducing the requirement for subjective user input in the setup and interpretation phases of 

the SOM process will benefit the method by leading to a more reproducible product.  
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