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This thesis focuses on the problem of predicting the tweet popularity, or the number of retweets stemming from an 
original tweet. We propose several prediction methodologies using the theory of point processes, where the 
prediction of the future popularity of a tweet is based on observing the retweet time sequence up to a certain 
censoring time, and the prediction performance is evaluated on a large Twitter data set. 
 
We first propose a marked point process model, termed the Marked Self-Exciting Process with Time-Dependent 
Excitation Function, or the MaSEPTiDE for short. The intensity process of the model is interpretable as a cluster 
Poisson process, which implies that the model can be simulated using the cascading algorithm similar to that used 
for the efficient simulation of Hawkes processes, and the prediction can be done properly by exploiting the 
probabilistic properties of the model. The MaSEPTiDE approach shows highly accurate tweet popularity predictions 
compared to state-of-the-art approaches, especially at shorter censoring times. 
 
We further propose an inhomogeneous Poisson process model and an estimation method which utilizes internal and 
external knowledge, based on the times of historical retweets up to the censoring time, and the complete retweet 
sequences in the training data set respectively. The knowledge is combined using a novel empirical Bayes type 
approach, where the prior distribution for the model parameter is constructed based on the external knowledge, and 
the likelihood is calculated based on the internal knowledge. The mode of the posterior distribution is used as the 
estimator of the finite-dimensional parameter, and suitable functionals of the predictive distribution for the number of 
retweets implied by the estimated model are used to predict the tweet popularity. The model, termed the EB Poisson 
model, is found to be both efficient and accurate, with an additional advantage of being able to predict without 
observing any retweets. 
 
The proposed EB approach of inference is applicable on other point process models, such as the MaSEPTiDE 
model, to improve the prediction performance and computational efficiency. We demonstrate this by applying the EB 
approach on the MaSEPTiDE model and reporting further improvements in the prediction accuracy. 
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Abstract

This thesis focuses on the problem of predicting the tweet popularity, or the num-

ber of retweets stemming from an original tweet. We propose several prediction

methodologies using the theory of point processes, where the prediction of the fu-

ture popularity of a tweet is based on observing the retweet time sequence up to

a certain censoring time, and the prediction performance is evaluated on a large

Twitter data set.

We first propose a marked point process model, termed the Marked Self-Exciting

Process with Time-Dependent Excitation Function, or the MaSEPTiDE for short.

The intensity process of the model is interpretable as a cluster Poisson process, which

implies that the model can be simulated using the cascading algorithm similar to that

used for the efficient simulation of Hawkes processes, and the prediction can be done

properly by exploiting the probabilistic properties of the model. The MaSEPTiDE

approach shows highly accurate tweet popularity predictions compared to state-of-

the-art approaches, especially at shorter censoring times.

We further propose an inhomogeneous Poisson process model and an estimation

method which utilizes internal and external knowledge, based on the times of his-

torical retweets up to the censoring time, and the complete retweet sequences in the

training data set respectively. The knowledge is combined using a novel empirical

Bayes type approach, where the prior distribution for the model parameter is con-

structed based on the external knowledge, and the likelihood is calculated based on

the internal knowledge. The mode of the posterior distribution is used as the esti-

mator of the finite-dimensional parameter, and suitable functionals of the predictive

distribution for the number of retweets implied by the estimated model are used to

predict the tweet popularity. The model, termed the EB Poisson model, is found to

be both efficient and accurate, with an additional advantage of being able to predict

without observing any retweets.

The proposed EB approach of inference is applicable on other point process

models, such as the MaSEPTiDE model, to improve the prediction performance

and computational efficiency. We demonstrate this by applying the EB approach

on the MaSEPTiDE model and reporting further improvements in the prediction

accuracy.
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Chapter 1 1

Introduction 2

The rapid technological advancements in the recent years have offered worldwide 3

connectivity to the internet, making information sharing much more accessible and 4

economical. Such developments have facilitated the progressive transition of the in- 5

ternet to its contemporary phase of Web 2.0 (DiNucci, 1999; O’Reilly, 2005) which 6

emphasizes the interactivity between creators of web contents, in contrast to its 7

predecessor Web 1.0 where people were restricted to passive viewing of the contents. 8

The shifted attention of the online community to user-generated contents has there- 9

fore promoted the growth of social media which encompasses collaborative projects, 10

blogs, social networking sites, virtual game worlds, and virtual social worlds (Kaplan 11

and Haenlein, 2010). 12

As of year 2018, social media has garnered over 2.5 billion users1 across the globe, 13

accounting for roughly a third of the entire Earth’s population, and overwhelming 14

the influence from that of the mainstream media. Moreover, approximately three 15

quarters of the internet users are actively engaged in social networking sites, foster- 16

ing them to be the fastest growing form of social media. Social networking sites are 17

revolutionary channels of information dissemination democratized by vastly diverse 18

users who indefinitely generate and distribute their own contents, thereby triggering 19

an explosive growth of information. These user-generated contents are presented 20

in the form of textual, visual, or aural information, and serve as the primary con- 21

stituents of the internet traffic. 22

The phenomenal influence exerted by user-generated contents as such has moti- 23

vated researchers to explore them from various perspectives. This chapter aims to 24

give some introductory remarks specific to a social networking site known as Twit- 25

ter. We highlight the background of Twitter by discussing some of its statistical 26

and topological features in Section 1.1. Then, we present several significant studies 27

and useful applications based on Twitter in Section 1.2. Finally, we illustrate the 28

1from https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
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structure of a typical tweet, and describe the Twitter data set used throughout this1

thesis in Section 1.3.2

1.1 Twitter Background3

Microblogs are social networking sites which integrate the features of instant mes-4

saging and blogging, with certain restrictions imposed such as the character limit5

of messages. Twitter2 is a quintessential microblogging platform where users share6

information in the forms of 140-character3 messages called tweets. By the year of7

2018, the platform has accumulated over 300 million users, boasting an average of8

6,000 tweets per second, which equates to over 350,000 tweets per minute or 500,0009

million tweets per day4, making it the most popular microblogging website to date.10

The Twitter network consists mainly of followee-follower relationships which re-11

sult from the acts of following or being followed by other users. Such relation-12

ships require no reciprocation, implying that a user can follow any other users, and13

the user being followed needs not follow back. An early exploratory work of Java14

et al. (2007) concluded that the Twitter network exhibits high degree of correla-15

tion and reciprocity, indicating close mutual acquaintances among the users. They16

highlighted that it is important to understand the intention of Twitter users by17

analyzing the aggregate behaviours across the communities so that useful features18

can be incorporated into the platform interface to potentially attract more users.19

As Twitter becomes increasingly more popular over the subsequent years, the study20

conducted by Kwak et al. (2010) reached a rather different conclusion. They noticed21

that the followee-follower relationships on Twitter have surprisingly low reciprocity,22

and reciprocated users tend to be homophilous.23

More recently, Newman (2017) reported that the attention dynamics online are24

frequently dominated by a diverse array of decentralized non-elite users, based on a25

climate change assessment report publicized on Twitter. Their finding was contra-26

dictory to the research conducted by the Yahoo! company in year 2011, where about27

half of all tweets on the Twitter network were purportedly generated by 20,000 elite28

users comprising of media outlets and celebrities (Wu et al., 2011). This warrants29

that ordinary users are also substantially influential to transfer information on the30

network, and should be accounted for when modelling the information diffusion on31

Twitter. Both the findings of Kwak et al. (2010) and Newman (2017) have evinced32

that the Twitter network tends to evolve over time, primarily due to the increased33

heterogeneity of Twitter users.34

Furthermore, persistent and headline news are known to diffuse through the35

2https://twitter.com
3valid as of the third quarter of 2017, but the character limit gets doubled after that
4from www.internetlivestats.com/twitter-statistics/
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Twitter network massively (Kwak et al., 2010), making it a platform of ambient 1

journalism (Hermida, 2010). The real-time nature of the Twitter platform, with the 2

limitation on its content length, makes conveying information to a vast panoply of 3

audience both concise and effective. Because of its exceptional quality to proliferate 4

information, the platform has been used during major incidents to quickly spread 5

messages to targeted users. As an indicative example, Hughes and Palen (2009) 6

examined how Twitter was used for political conventions and notifications of natural 7

disasters, and concluded that tweets sent during such times tend to reveal features 8

of information dissemination that support information broadcasting and brokerage. 9

Admittedly, Twitter has provided its users social gratification by satisfying their 10

various needs, in particular the feeling of security resulting from the interconnect- 11

edness with other users. It has enabled its users to share their individual thoughts 12

while engaging in communal activities at the same time, making it simultaneously 13

individualistic and communal (Murthy, 2018). From a broader perspective, besides 14

propagating information from within itself, Twitter also serves as an intermediary 15

platform to transmit information externally so as to reach the manifold of internet 16

users in other online communities. 17

1.2 Twitter Studies and Applications 18

Twitter, with its application programming interface to crawl the network and its 19

mechanism to relay information, has offered unprecedented opportunities for com- 20

puter scientists, sociologists, linguists, and physicists to conduct research based on 21

the platform. It has inspired a multitude of compelling studies, such as evaluating 22

the likelihood of retweets based on the interestingness of content (Naveed et al., 23

2011), predicting if a tweet will be retweeted based on social and tweet features 24

(Petrovic et al., 2011), estimating the rise and fall of influence propagation (Mat- 25

subara et al., 2012), forecasting the trend of future retweets (Gupta et al., 2012; 26

Zhang et al., 2013), and modelling the random series of events based on tweet hash- 27

tags (Alves et al., 2016). The dynamics of retweets stemming from a root tweet have 28

also been modelled, for instance by Kumar et al. (2010) and Nishi et al. (2016), which 29

then motivate the work of Aragón et al. (2017) reviewing various statistical models 30

for threaded online discussions originating from different social media platforms. 31

Some studies are more application-based, and depend mainly on textual analysis or 32

tweet popularity prediction, highlighted as follows. 33

1.2.1 Sentiment Analysis 34

Twitter studies frequently revolve around analyzing the sentiments of its contents, 35

which refers to the process of computationally identifying and categorizing textual 36

3



opinions, usually with the aim to understand the writer’s attitudes or perceptions1

towards some items. This is especially useful for consumers who want to assess the2

sentiment of a specific product prior to making a purchase, or companies who want3

to monitor the public sentiments of their brands.4

The most commonly used feature in sentiment analysis is the n-grams. Briefly,5

an n-gram consists of a sequence of items from a collected sample of text or speech6

corpus. The intuition behind n-gram is to capture the linguistic structure from7

the statistical point of view, and predict the letter or word following a given one.8

Going by the conventional number prefixes, unigram, bigram, trigram and so on9

respectively denote n = 1, 2, 3, . . . subsequent characters, the optimal length by10

which depends largely on its application; see Hasan et al. (2007) for an in-depth11

discussion of the n-gram.12

By using several machine learning algorithms such as the maximum entropy13

classifier, support vector machine, and naive Bayes, Go et al. (2009) achieved high14

accuracy in classifying the sentiments of tweets. Specifically, they performed distant15

supervised learning from the aforementioned n-gram features and classified messages16

as being positive or negative with respect to a query term. Following this, Pak and17

Paroubek (2010) added a neutral class of sentiment to the algorithm, based on the18

multinomial version of similar naive Bayes classifier, and features resembling that of19

Go et al. (2009). More recently, Vosoughi et al. (2016) proposed an enhancement over20

purely linguistic classifiers, through employing a Bayesian approach which combines21

the n-gram linguistic features with spatial, temporal, and author-related contextual22

information.23

Sentiment analysis on Twitter is useful in numerous real-life applications. Tu-24

masjan et al. (2010) considered Twitter a platform used for political deliberation and25

analyzed tweet sentiments by machine learning to forecast the results of elections.26

Sakaki et al. (2010) devised a classifier based on the semantic features of tweets to27

detect earthquakes in Japan, with a probabilistic spatio-temporal model to find the28

epicenters of the earthquakes, and an efficient system to notify potential victims29

upon the detection of an event. Analyzing tweets for keywords or sentiments has30

various applications in finance as well, for example to predict stock market indicators31

by measuring the collective mood on the platform. Zhang et al. (2011) postulated32

that the emotional tantrum on Twitter is correlated to how the stock market will33

be doing the next day. By using mood words such as hope, fear, and worry as the34

emotional tags of tweets, they counted the number of tweets containing such words35

and used them to predict the behaviours of stocks the next day. With the same36

objective in mind, Bollen et al. (2011) measured the mood with extra dimensions,37

and by identifying dimensions that are Granger causative to the prices, such as calm38

and happy, they reported an improvement in the prediction accuracy of stock prices39
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compared to that of Zhang et al. (2011). 1

1.2.2 Popularity Prediction 2

For introductory purposes we shall briefly discuss some of the important works on 3

tweet popularity prediction here, and present more details in Chapter 3. We have 4

mentioned in Section 1.1 that the message posted on Twitter is referred to as a 5

tweet. As a tweet is posted, it may be shared by the followers of the tweeting 6

account through an action known as retweeting, which explicitly refers to the tweet 7

via its unique identification number, and results in a retweet. This retweeting process 8

can iterate indefinitely, forming a cascade of retweets. When studying information 9

diffusion on Twitter, it is often of interest to predict the tweet popularity, which 10

is naturally measured by the total number of retweets stemming from the original 11

tweet. 12

One noticeable work of tweet popularity prediction is the Bayesian approach 13

model of Zaman et al. (2014), which requires the complete network information to 14

be operable. Models based on the theory of point processes (Zhao et al., 2015; 15

Kobayashi and Lambiotte, 2016), which do not require such information, were also 16

shown to have good prediction performances. The model proposed by Mishra et al. 17

(2016), on the other hand, combines point process models with feature-based ap- 18

proaches to predict the tweet popularity. Other models like the growth-adoption 19

model of Lymperopoulos (2016), the spatio-temporal heterogeneous Bass model of 20

Yan et al. (2016), and the concept drift model of Li et al. (2016), were all proposed 21

for tweet popularity predictions. 22

Prediction models employed on other social media platforms are also relevant 23

as the proposed methodologies may be applicable to tweet popularity prediction. 24

Notably, Agarwal et al. (2009) proposed a dynamic linear regression model to predict 25

the click-through rate for Today Module on Yahoo! Front Page. Activities on 26

other platforms like Youtube were also modelled, for instance using linear regression 27

models (Szabo and Huberman, 2010; Pinto et al., 2013) and classification models 28

(Gürsun et al., 2011; Ahmed et al., 2013; Figueiredo, 2013). Other closely related 29

works include the reinforced Poisson model applied on Sina Weibo (Gao et al., 2015) 30

and the model by Wu et al. (2016) that incorporates temporality and seasonality, 31

applied on Flickr image data set. 32

Popularity predictions of online contents in general have been used extensively 33

in web distribution systems. Specifically, popular web items can be prefetched into 34

mobile users’ cache from colocated peers to offload mobile data (Han et al., 2012). 35

This implies that if the popularity of a web item has been efficaciously predicted, 36

future content requests can simply rely on the colocated mobile users, thereby re- 37
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ducing the network traffic and battery consumption of mobile phones. The load of1

data traffic can also be reduced by predicting users who will potentially trigger the2

request of a web content (Galuba et al., 2010), or by proactively pushing the content3

to users prior to the request (Malandrino et al., 2012). The eviction of items from4

the cache can also be optimized by accurately predicting the future demand of a5

specific content, which in turn minimizes the wastage of bandwidth (Famaey et al.,6

2011).7

Twitter-oriented popularity prediction, on the other hand, has numerous other8

useful applications (Yu and Kak, 2012). Besides helping the platform itself to rank9

contents more effectively, it is also useful in estimating movie revenues (Asur and10

Huberman, 2010), approximating the citation counts of research articles (Eysen-11

bach, 2011), assisting marketing firms to maximize their revenues through optimal12

placements of advertisements (Yang and Leskovec, 2011), and serving as a proxy to13

political candidates in election campaigns (Van Aelst et al., 2017).14

As a remark, we note that tweet popularity has also been measured differently by15

the number of users opportune to see the tweet in their news feeds, synonymously re-16

ferred to as the number of shows or the audience size (Kupavskii et al., 2013). While17

it is desirable for most contents tweeted to receive as many retweets as possible, a18

new brand launching an advertising campaign might find it more sensible to receive19

as many shows of tweets with its name as possible to increase the brand awareness.20

Predicting the popularity based on this context can then assist the advertising firm21

to estimate the initial costs involved to achieve the desired popularity level.22

Besides the applications based on tweet sentiment analysis and popularity pre-23

diction, there are other useful applications sourcing from Twitter. The work from24

Hughes and Palen (2009) for instance, mentioned how emergency management could25

use Twitter and similar microblogging platforms to deliver warnings during unfore-26

seen circumstances like response and recovery situations. On the other hand, Bakshy27

et al. (2011) quantified the influences of Twitter users based on their attributes to28

assist marketers and planners in spreading information more effectively through the29

identified influencers on the network. Finally, the prevalence of geolocation feature30

makes it possible to study the global mobility patterns of users who have registered31

for the service (Hawelka et al., 2014), which provides invaluable insights on tourist32

activities, migration flows, and contagion of diseases.33

1.3 The Tweet Structure and Data34

Before we proceed to presenting the Twitter data set used throughout the rest of this35

thesis, it would be beneficial to first preview the structure of a tweet. Figure 1.3.136

6



shows the structure of a typical tweet5, followed by the description for each of its 1

component. For the ease of interpretation, the tweet poster shall be referred to as a 2

tweeter, individual accounts retweeting the tweet as retweeters, and the remaining 3

accounts as viewers.

There is a greater gift than the trust of  

others, and that is to trust in one’s self. 

2. Display Name 

4. Username 

1. Avatar 

8. Time and Date 7. Content 

9. Number of Retweets/Likes 10. Retweeters 

3. Verification 6. Options 

5. Relationship 

Figure 1.3.1: The structure of a tweet. Each component of the tweet has been
labelled for convenience. The tweet was posted by a user called Janet Sophia on
15th September 2018, 10:11 PM. The tweet was retweeted 128 times and liked 49
times.

4

1. Avatar: the tweeter’s profile photo that is usually representative of the tweeter. 5

2. Display name: typically contains the full/real name of the tweeter. 6

3. Verification: proves that Twitter has verified the account of public interest. 7

4. Username: the unique Twitter handle, used to identify/mention the tweeter. 8

5. Relationship: shows if the tweeter is being followed by the tweet viewer. 9

6. Options: contains several options for the viewer including to embed, report, 10

or copy the link of the tweet. 11

7. Content: the main body of the tweet with a maximum of 140/2806 characters, 12

which may contain mentions (@), hashtags (#), or URLs (often shortened) 13

aside from generic texts. 14

8. Time and date: the posting time and date of the tweet, adjusted according to 15

the viewer’s time zone. 16

9. Number of retweets/likes: the number of retweets/likes that the tweet has 17

attracted up to the viewing time. 18

10. Retweeters: a list showing viewers who have retweeted the tweet. 19

5the tweet has been synthetically generated for demonstrative purposes
6the character limit has been doubled since late 2017
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By clicking on either the avatar or the display name, the tweeter’s profile page1

will show up, revealing more information such as the number of users following, or2

is followed by, the tweeter. The unique Twitter handle, or the username, on the3

other hand, is useful for numerous Twitter analytics7 to provide fine-grained details4

such as the join time and date or the activity levels of any given user. While the5

tweet content is useful for works manipulating its semantic features as discussed in6

Section 1.2.1, sophisticated machine learning algorithms or classifiers are frequently7

required. In contrast, the time and date, the number of retweets or likes, and the8

list of retweeters require minimal preprocessing and are generally more informative9

to predict the future activities of tweets.10

With the tweet structure clarified, we present herein the Twitter data set which11

had motivated our modelling and prediction methodologies in Chapter 4-6. The12

data8 was intially collected by Zhao et al. (2015) and contains a total of 166,06913

reasonably popular tweets published in 2011 from October 6 (06:00 UTC) to Novem-14

ber 6 (06:00 UTC), each with at least 49 retweets within seven days of publishing.15

For each tweet, the data includes its unique tweet identification number, its tweet16

and retweet times within seven days of its publication, and the numbers of followers17

of its tweeter and its retweeters. Note that the data lacks the complete Twitter net-18

work information, that is, for a retweet, the data only has its publishing time and19

the number of followers of the retweeting account, without information on whether20

the original tweet or any previous retweet is being retweeted. Thus, methodologies21

which assume the complete Twitter network information, such as that of Zaman22

et al. (2014), does not apply here. Following Zhao et al. (2015), the 71,815 tweets23

published in the first seven days of the study period shall be referred to as the train-24

ing data, and the remaining 94,254 tweets published in the next eight days shall25

be referred to as the test data. See Figure 1.3.2 for five randomly selected retweet26

cascades/retweet time sequences from the training data set, and Table 1.3.1 for the27

corresponding information.28

We have plotted the numbers of followers in Figure 1.3.2 on the log scale as29

these numbers are considerably large for the majority of the tweeters or retweeters30

in the data set. It can be observed from Figure 1.3.2 that the retweets tend to31

occur in clusters or bursts. This suggests that self-exciting processes are potentially32

suitable for such data. For that, we have formulated a marked self-exciting point33

process model to capture the retweeting dynamics and predict the future popularity34

of tweets, discussed in Chapter 4.35

Next, Table 1.3.1 shows the publishing time and date for each tweet in Fig-36

ure 1.3.2, together with the tweet and retweet times in unit seconds, and the num-37

7for example https://foller.me/
8from http://snap.stanford.edu/seismic/
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Figure 1.3.2: Times of retweets and the corresponding numbers of followers of the
retweeting accounts on the log scale, for five randomly selected retweet cascades
from the training data set. For all the retweet cascades, the retweets tend to occur
in clusters, especially near the publication times of the original tweets.

bers of followers of the corresponding tweeter and retweeters. Note that all the 1

cascades start with the original tweets at time zero relative to the actual posting 2

times of the day, where subsequent retweet times are orderly arranged in an increas- 3

ing manner. The numbers of followers are naturally attached to these times, and so 4

the first observation for each retweet cascade accounts for the number of followers 5

of the original poster/tweeter and the remaining numbers are of the retweeters. 6

The first retweet in sample cascade 1 of Table 1.3.1 occurred almost instanta- 7

neously, that is, 11 seconds after the original tweet was published. This can be 8

attributed to the large number of followers of the original poster, counting at a 9

staggering 283,215. The effect attributable to the number of followers is also exhib- 10

ited by the rest of the sample cascades, where a larger number generally results in 11

shorter waiting time until the arrival of the first retweet. Also, most of the retweet 12

cascades available in the data originate from tweeters with considerably large num- 13

bers of followers, which is consistent with the finding of Wu et al. (2011) regarding 14

the domination of elite users on the network. 15

Based on the time and date of a tweet, we can further calculate the relative 16

posting time in unit days, which accounts for the time passed since the start date 17

of collection, with the integer part denoting the number of days removed. For 18

9



Table 1.3.1: The posting time and date, the tweet and retweet times, and the
numbers of followers of the tweeter and retweeters, for each retweet cascade in
Figure 1.3.2. For sample cascade 1, the first retweet occurred 11 seconds after the
original tweet was posted, the swift response by which can be attributed to the large
number of followers of the original poster/tweeter.

Sample
cascade

Time
(UTC)

Date
(dd-mm)

Tweet and
retweet times

Numbers of
followers

1 03:07:33 09-10 0,11,. . . ,447527 283215,369,. . . ,84
2 02:54:38 08-10 0,70,. . . ,255232 122,330728,. . . ,943
3 22:09:55 09-10 0,37,. . . ,394301 12037,80,. . . ,70
4 01:50:00 10-10 0,17,. . . ,249778 114755,221,. . . ,100
5 19:12:34 08-10 0,55,. . . ,68745 8835,38592,. . . ,2074

example, sample cascade 1 in Table 1.3.1 was tweeted 2 days, 21 hours 7 minutes1

and 33 seconds after the start date on 6th October 6:00 UTC, which equates to2

2.880 days or the relative posting time of 0.880 days. The relative posting times3

for the remaining sample cascades can be calculated similarly, yielding the values of4

0.871, 0.674, 0.826, and 0.550 days respectively. Such measurement of posting time5

is useful for models built based on the diurnal patterns of humans’ activity levels,6

as we shall see in Chapter 5.7

On another note, the empirical cumulative distribution of the retweet times is8

shown in Table 1.3.2. A close scrutiny reveals that approximately half of the total

Table 1.3.2: The percentages of retweets that occurred up to each censoring time in
the training data. The majority of retweets have happened in the first 12 hours.

Censoring time (hours) 1 2 3 4 5 6 12 168
% of retweets 51.1 59.1 63.8 67.1 69.6 71.6 79.0 100.0

9

numbers of retweets have accumulated within one hour since the publications of10

the original tweets, thereby exhibiting the transient nature of tweets (Bray, 2012;11

Rey, 2014). The severely right-skewed distribution of the retweet times also seems12

compatible with the heavy-tailed distributions of human response times in other13

activities like e-mail correspondence (Malmgren et al., 2008). Such observation has14

motivated us to use a heavy-tailed function, for example the power-law function,15

when modelling the variation of the retweet intensity over time.16

It might also be of interest to have some insights on the sizes of the retweet17

cascades. For that, we show in Table 1.3.3 the summary statistics for the actual18

popularity values towards the end of the observation period of seven days, or the final19

popularity , for both the training and test data sets. By the first, second, and third20

quartiles (Q1, Q2, and Q3), both data sets seem to have nearly identical distributions21

of final popularity. The similarities between both data sets imply some degree of22

homogeneity, which is important in the modelling process so that a model can be23

10



Table 1.3.3: The summary statistics for the actual final popularity values, with Q1,
Q2 and Q3 denoting the first, second, and third quartiles respectively. The values
are nearly identical for both the training and test data sets.

Min Q1 Q2 Q3 Max Mean
Training 49 70 109 216 33484 205.5
Test 49 70 110 222 17183 210.7

built based on the training data set and the performance can, in turn, be evaluated 1

based on the test data set. 2

To facilitate our discussion in later chapters, for each retweet cascade we denote 3

the original tweet time by τ 0 = 0, and the subsequent retweet times by τi, i = 4

1, 2, . . . , relative to the posting time of the original tweet t0. That is, τ 0 < τ1 < 5

τ2 < . . . . Furthermore, we denote the number of followers of the original tweeter by 6

n0 and the numbers of followers of subsequent retweeters by ni, i = 1, 2, . . . . The 7

superscripts have been used for τ 0, n0, and t0 to account for the readily available 8

information as soon as a tweet is posted. 9
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Chapter 2 1

Point Processes 2

Point processes are stochastic processes whose realizations consist of point events in 3

time or space which have been extensively studied due to their wide applicability in 4

various fields. Probabilistic models formulated based on such processes have been 5

abundantly proposed in the recent years, many of which aiming to accurately predict 6

the popularity of tweets. In relation to our discussion and model formulations in 7

later chapters, we shall present herein a brief introduction to some of these processes. 8

The inhomogeneous Poisson process and self-exciting point process are frequently 9

used to capture the retweeting dynamics and predict the future popularity of tweets. 10

The former is preferred for its convenient mathematical properties, and the latter 11

for its attribute where the past instances of observed events tend to make future 12

occurrences of events more probable. Self-excitation is an especially useful feature 13

in modelling the retweet activities on Twitter as posts rapidly going viral tend to 14

get retweeted more by interconnected users on the network. Based on the forms 15

assumed by these processes, the estimations of model parameters and predictions of 16

the future retweet volumes can be properly implemented. 17

This chapter aims to provide introductory remarks to the theory of point pro- 18

cesses by explaining the fundamental concepts used in this thesis. We commence 19

by giving flavour to the definitions of point processes in Section 2.1. We discuss 20

the properties of the Poisson processes in Section 2.2, introduce the concept of 21

conditional intensity in Section 2.3, and present details on the self-exciting point 22

process in Section 2.4. We show how parameter estimation can be done for any 23

given time sequence from the derived likelihood function in Section 2.5, and discuss 24

how the goodness-of-fit of a point process model can be assessed in Section 2.6. We 25

demonstrate how the Poisson processes can be simulated efficiently in Section 2.7, 26

and finally how the predictions of future events based on different processes can be 27

made in Section 2.8. 28

13



2.1 Definitions and Interpretations1

We shall focus primarily on temporal point processes in this thesis, since the retweet2

events are distributed over the positive half-line R+ along the time axis. The tem-3

poral point process can be defined as a random sequence of points τ1, τ2, . . . ∈ R+,4

with the associated counting process,5

N(t) =
∞∑
i=1

1 {τi 6 t} , t > 0,

where N(t) := N((0, t]) counts the number of events from time zero up to time t,6

and is piecewise constant with a jump size of one at times τi. It is also convenient7

sometimes to interpret the point process N as a random measure via N(B) =8 ∑∞
i=1 δτi(B) for all measurable set B, where δτi is the Dirac measure defined by9

δτi(B) = 1 {τi ∈ B} =

1 if τi ∈ B

0 otherwise.

The sequence of event times can be accompanied by certain random variables with10

some degree of influence on the process, called the event marks. Such marks can take11

some diverse forms, including integers, real numbers, lines, geometrical objects or12

even other point processes (Moller and Waagepetersen, 2003), and are often assumed13

to be independent of each other and identically distributed (i.i.d). Our discussion in14

this chapter generalizes to point processes with marks, or marked point processes , but15

we shall be conservative at this point and describe the processes without involving16

marks, as they will be elucidated in later chapters.17

2.2 The Poisson Process18

The Poisson process is a subclass of point process which supports the more complex19

formulations of point processes such as the Hawkes process. Specifically, if the20

sequence of interevent times τi − τi−1 for i = 1, 2, . . . are i.i.d exponential random21

variables with mean 1/λ, then the process is a homogeneous Poisson process with22

rate λ. In this case, if we denote by N(a, b) the number of points in the half-open23

interval (a, b] for 0 6 a < b, the probability of having x points in the interval with24

mean λ(b− a) =
∫ b
a
λ ds is,25

Pr {N(a, b) = x} =
[λ(b− a)]x

x!
e−λ(b−a).

In contrast, when the rate of event arrival varies with time, the inhomogeneous26

Poisson process with a time-dependent function λ(t) will be useful. In this case,27
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the probability of having x points in the interval (a, b] for 0 6 a < b with mean 1

Λ(a, b) =
∫ b
a
λ(s) ds is, 2

Pr {N(a, b) = x} =
[Λ(a, b)]x

x!
e−Λ(a,b).

The Poisson process has the property that each point is stochastically independent 3

to all the other points in the process, and is occasionally referred to as a purely or 4

completely random process (Daley and Vere-Jones, 2003). Nonetheless, the inherent 5

nature of the process implies that it does not adequately describe phenomena in 6

which there are sufficiently strong interactions between the points. This implies 7

that other point processes, such as the self-exciting point process, might be suitable 8

to capture the interactions. Before we proceed to presenting the self-exciting point 9

process, it helps to first present the concept of conditional intensity. 10

2.3 Conditional Intensity 11

A temporal point process can be considered a model for an evolving stochastic system 12

which may depend on the historical events in a certain way. The idea requires a 13

proper definition of the history that has to reflect, at any time t, the accumulated 14

information up to that time point. Therefore, we define 15

Ft := σ{N(s), 0 < s 6 t}

Ft− := σ{N(s), 0 < s < t},

where the system {Ft, t > 0} represents the dynamic evolution of a point process 16

N , and is the natural filtration generated by N . The notation Ft can be interpreted 17

as the process history at time t, and Ft− as the prior-t history. 18

A point processN can be conveniently characterized by its (conditional) intensity 19

function λ(t), t > 0, where λ(t) can be defined as the instantaneous event rate at 20

time t given the prior-t history, that is, 21

λ(t) = lim
h→0

Pr {N([t, t+ h)) = 1| Ft−}
h

. (2.3.1)

The conditional intensity in (2.3.1) is a rather naive definition, but a mathematically 22

more precise formulation requires the theory of martingales, detailed for example 23

in Section 8.3 of Last and Brandt (1995). For an inhomogeneous Poisson process 24

with rate function λ(t), it is easy to see that its intensity process is deterministic 25

and equals λ(t), t > 0, which does not depend on its history. However, the intensity 26

of certain point processes, such as the self-exciting point process detailed next in 27

Section 2.4, can be dependent on its history. 28
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2.4 Self-Exciting Point Process1

The self-exciting point process is a process where the event arrival rate depends2

on instances from the past. Such effect is typically governed by a memory kernel3

function where the cumulative effects of all previous instances are accounted for,4

with the most recent event exerting the greatest influence. When triggered by5

such excitation effect, the arrival of each event will inflate the conditional intensity,6

thereby making future arrivals of events more probable.7

Figure 2.4.1 depicts ten sample events1 in terms of the event times, counting8

process, and the conditional intensity. The upper panel shows that the events tend
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Figure 2.4.1: Ten sample events with different representations, starting at τ 0 = 0 and
followed by τ1 < τ2 < . . . < τ9. The upper panel shows the times of such activities,
the middle panel shows the counting process N(t) with the increment of one every
time an event is observed at time t, and the bottom panel shows the conditional
intensity λ(t) based on a memory kernel function that decays exponentially with
time t.

9

to occur in clusters or bursts, suggesting that each event may trigger subsequent10

events. The counting process is shown in the middle panel of Figure 2.4.1 in the11

form of a nondecreasing step function, which is intuitive for the counts of events12

over time. The bottom panel shows how the arrival of an event will trigger the13

intensity to jump by a certain degree, the shape of which depends on the form of14

the memory kernel assumed and the parameter values used. This said, before we15

specify the assumed form of the memory kernel, we shall first detail an archetypal16

1from sample cascade 1 in Figure 1.3.2
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self-exciting point process in Section 2.4.1, called the Hawkes process. 1

2.4.1 Hawkes Process 2

The Hawkes process was introduced by Hawkes (1971) and serves as a natural way to 3

model events where self-excitation is present. The process has found a wide variety 4

of applications over the years, from its early use in seismology (Ogata, 1988) to 5

its contemporary use in sociology (Rizoiu et al., 2017). Surveys with fine-grained 6

details focusing on Hawkes processes and their applications in various fields have 7

also been conducted, for example by Liniger (2009) and Zhu (2013). 8

The conditional intensity for the Hawkes process takes the following specific form 9

λ(t) = ν +

N(t−)∑
i=1

φ(t− τi) = ν +

∫
(0,t)

φ(t− s)N( ds), (2.4.1)

where ν denotes the constant baseline intensity or the background rate, and φ(·) is 10

a function which governs the excitation effect or clustering density for each point τi, 11

called the memory kernel function. The memory kernel function is used to account 12

for the human response time on the social networks (Zhao et al., 2015; Kobayashi 13

and Lambiotte, 2016), and has also been referred to as the delay function in some 14

instances (Simma and Jordan, 2012). 15

To adapt to the various needs when modelling real-life phenomena, some more 16

generalized versions of the process in (2.4.1), such as the one with time-varying 17

baseline intensity (Chen and Hall, 2013) or different excitation functions (Mehrdad 18

and Zhu, 2014) can prove to be useful. Moreover, the Hawkes process has also been 19

studied in different contexts, giving rise to the so called intensity-based and cluster- 20

based variants (Dassios et al., 2013). The form of the intensity function, together 21

with the description of the cluster process interpretation, shall be presented in the 22

following nested sections. 23

2.4.1.1 The Intensity Function 24

The baseline intensity ν in (2.4.1) describes the arrivals of events perturbed by ex- 25

ogenous interventions, which are referred to as the exogenous events or immigrants. 26

It can be observed based on the intensity specified that the arrivals of these immi- 27

grants are independent of previous instances. However, the baseline intensity needs 28

not take a constant value, but can be time-varying, which implies that the equation 29

in (2.4.1) can be rewritten as 30

λ(t) = ν(t) +

N(t−)∑
i=1

φ(t− τi). (2.4.2)

17



Although many of the existing literature assumes self-exciting models with deter-1

ministic baseline intensities, such assumption seems to be unrealistic under many2

circumstances. An indicative example would be the work of Utsu (1961) which3

models the aftershocks of earthquake events. They discovered that the background4

aftershock rate shows a clear sign of temporal decay, which opines that the baseline5

intensity should decrease with time. Similarly, when modelling intraday stock trad-6

ing, a self-exciting point process with a constant baseline intensity tends to fail when7

the intensity of trades is much higher during the opening of market compared to8

when the market is closing down (Engle and Lunde, 2003). Therefore, self-exciting9

point processes with varying baseline intensities often serve as more viable alterna-10

tives to model many real-life phenomena.11

The memory kernel function φ(t − τi), on the other hand, is responsible for12

accumulating the excitation effects up to time t for all the instances of τi 6 t,13

which will jointly contribute to the event intensity at time t. The memory kernel is14

typically a monotonically decreasing function, so that more recent events will exert15

greater influence on the resultant intensity compared to events further away in the16

past. The form of the memory kernel assumed at the bottom panel of Figure 2.4.117

takes the following exponential decay form,18

φ(t) = δ1e
−δ2t, (2.4.3)

for δ1 > 0, δ2 > 0, and δ1 < δ2. Specifically, the parameter δ1 is used to denote the19

intensity jump right after the occurrence of an event, and the parameter δ2 is used20

to account for the exponential decay. Both the parameters will jointly determine21

the clustering properties of the process, and it is usually the case that δ1 < δ2 to22

prevent the process from becoming explosive.23

Based on the intensity in (2.4.1) where the memory kernel takes the form shown24

in (2.4.3), we used the parameter values (ν, δ1, δ2) = (0.5, 0.1, 0.5) to produce the25

pictorial output in the lower panel of Figure 2.4.1. This is done for demonstrative26

purposes, but the impacts of changing the parameter values, in particular the ex-27

ponential decay parameter δ2, should be noted. Figure 2.4.2 shows the strengths28

of excitation based on different parameter values of δ2. Specifically, the top panel29

of Figure 2.4.2 uses δ2 = 0.05, a value much lesser than that of the δ1 value. Con-30

sequently, the intensity tends to inflate continuously over time, making the process31

explosive. The middle panel of Figure 2.4.2 shows a more realistic decay at the32

parameter value of δ2 = 0.5, which is the value used in Figure 2.4.1 to produce a33

visually more sensible curve. Lastly, the bottom panel of Figure 2.4.2 shows a very34

fast decay at δ2 = 5, a value much greater than that of δ1. Thus, it is important to35

have a set of sensible parameter values, as it tends to affect the predictions of future36
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Figure 2.4.2: The effects of varying the exponential decay parameter values δ2 at
0.05, 0.5, and 5 respectively from the top to the bottom panel, using the kernel
in (2.4.3) and the form of intensity in (2.4.1). The baseline parameter is fixed at
ν = 0.5 and the jump size parameter is fixed at δ1 = 0.1. A suitable parameter
value of δ2 is required to produce a realistic decay over time.

events beyond the observation time. 1

The exponential kernel is typically the primary choice of kernel used in Hawkes 2

processes, notably in financial data analysis (Filimonov and Sornette, 2015). As 3

for the modelling of human dynamics on the social networks, the two main kernels 4

used are the power-law kernel (Crane and Sornette, 2008) and the lognormal kernel 5

(Zaman et al., 2014), the applicability of which depends on the platform of analysis. 6

2.4.1.2 Cluster Process Interpretation 7

When the intensity function λ(·) is linear, the Hawkes process is said to be linear 8

and can be studied via the immigration-birth representation and interpreted as a 9

Poisson cluster process (Hawkes and Oakes, 1974). This essentially categorizes the 10

occurrences of events into immigrants and offspring , where the baseline intensity 11

is responsible for generating the immigrants, and the memory kernel is responsible 12

for generating the offspring. Specifically, immigrants will arrive independently to 13

generate their respective offspring, thus forming their respective clusters. Such be- 14

19



haviour is attributable to the distinctive feature of the process, called the branching1

structure.2

Recall from Figure 2.4.1 that we have events τ1 < τ2 < . . . < τ9 originating3

from τ 0 = 0. Suppose now that τ1, τ6 and τ9 are immigrants. We assume that4

immigrant τ1 directly generates τ2 and τ3, immigrant τ6 directly generates τ7, and5

immigrant τ9 has no offspring. Furthermore, we assume that τ3 generates both6

τ4 and τ5, whereas τ7 generates τ8. The branching structure forming clusters of7

events can be seen in Figure 2.4.3. The collection of immigrants {τ1, τ6, τ9} can be

  𝜏1 

  𝜏2   𝜏3 

  𝜏4   𝜏5 

  𝜏6 

  𝜏7 

  𝜏8 

  𝜏9 

t 

Figure 2.4.3: The branching structure of sample events τ1 < τ2 < . . . < τ9. The
shaded regions represent the individual clusters originating from immigrants. The
first cluster consists of the events {τ1, τ2, τ3, τ4, τ5}, the second cluster consists of the
events {τ6, τ7, τ8}, and the third cluster consists of the event {τ9}.

8

referred to as generation 0 events, and their direct offspring {τ2, τ3, τ7} are called9

generation 1 events. Following this, the children of generation 1 events {τ4, τ5, τ8} are10

called generation 2 events. Naturally, events of further generations adhere to such11

nomenclature. From Figure 2.4.3, it is clear that the set of events {τ1, τ2, τ3, τ4, τ5}12

forms a cluster, {τ6, τ7, τ8} forming another, and {τ9} is also a cluster. This cluster13

process interpretation has important implications to simulate the process through14

efficient algorithms such as the cascading algorithm of Chen and Hall (2013, 2016),15

as we shall see later in Section 4.4.3.16

One prime quantity associated with the branching structure of a Hawkes process17

is the branching ratio/factor , typically denoted by n∗, which corresponds to the18

expected number of events directly generated by an immigrant. By the memory19

kernel function in (2.4.3), the branching ratio can be conveniently expressed as20

n∗ =

∫ ∞
0

φ(s) ds =

∫ ∞
0

δ1e
−δ2s ds =

δ1

δ2

. (2.4.4)

As mentioned in Section 2.4.1.1, when the memory kernel takes the form in (2.4.3),21

it is necessary that δ1 < δ2 to prevent the process from becoming explosive. This22

equates to satisfying n∗ < 1 in (2.4.4), a condition known as the subcritical regime.23

On the contrary, when n∗ > 1, the process is said to be in the supercritical regime,24

meaning that the process tends to be explosive and is expected to generate an infinite25

or unbounded number of events. These regimes, when applied on different memory26

20



kernel functions, can be useful in deducing if a point process can be numerically 1

predicted. 2

2.5 Parameter Estimation 3

One of the most important procedures needed to understand the dynamics of a point 4

process model is to estimate its parameters from the observed dynamics, frequently 5

achieved by using the maximum likelihood (ML) approach. 6

The statistical problem we are considering involves determining the parameters 7

for a conditional intensity function λ(·), which will then determine the distribution 8

of the process N . Taking the intensity specified in (2.4.2), this asserts that we are 9

considering a parametric problem where ν(·) and φ(·) are known up to a finite- 10

dimensional parameter θ. In this particular example, the intensity of N satisfies, 11

λ(t; θ) = ν(t; θ) +

N(t−)∑
i=1

φ(t− τi; θ),

where θ ∈ Θ ⊂ Rd, with Θ denoting the space of parameters and d is the dimension 12

of the parameter vector. By the point process theory (Daley and Vere-Jones, 2003, 13

Proposition 7.3.III), the likelihood of a point process with realizations at times 14{
τ1, τ2, . . . , τN(T )

}
over the interval of [0, T ], where T denotes the censoring time, 15

takes the form 16

L(θ) =


N(T )∏
i=1

λ(τi; θ)

 exp

(
−
∫ T

0

λ(t; θ) dt

)
. (2.5.1)

For computational convenience, the logarithm of the likelihood, or the log-likelihood, 17

`(θ) = logL(θ) =

N(T )∑
i=1

log λ(τi; θ)−
∫ T

0

λ(t; θ) dt, (2.5.2)

is often used when obtaining the ML estimator θ̂ in practice. The maximization of 18

the log-likelihood in (2.5.2) can be achieved by using various optimization techniques, 19

such as the simplex search method of Nelder and Mead (1965) or those based on the 20

Newton methods, discussed for example in Section 3.1 and Section 3.2 of Fletcher 21

(2013). 22

2.6 Goodness-of-Fit Assessment 23

The assessment of the goodness-of-fit for a model, or the model adequacy, is often 24

of interest after fitting the model to a data set. The residual point process approach 25
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based on Papangelou’s random time change theorem (Daley and Vere-Jones, 2003,1

Theorem 7.4.I) can be used in achieving this purpose. Specifically, if the collection2

of random points {τi}i=1,2,... follows the specified conditional intensity function over3

the interval [0, T ], then the integral transformed point pattern Λ(τi) should follow4

a unit rate Poisson process on [0,Λ(T )], where Λ(t) =
∫ t

0
λ(s) ds is the cumulative5

intensity process.6

Given the event times τ1 < τ2, . . . < τN(T ) up to the censoring time T , we can ob-7

tain the estimated parameter values θ̂ using the procedures discussed in Section 2.5.8

Since the joint distribution of the ordered event times would be equal to the order9

statistics of an equal number of uniformly distributed times over the interval [0, T ],10

the model adequacy can be inspected based on the uniformity of the transformed11

event times Λ̂(τi) over the interval [0, Λ̂(T )], where12

Λ̂(τi) =

∫ τi

0

λ̂(s) ds,

for λ̂(·) ≡ λ(·; θ̂). The uniformity of the residuals Λ̂(τi) can be visually checked13

using the histogram or the quantile-quantile plots, or more formally through tests14

like the Kolmogorov-Smirnov test . When using the test of uniformity, we note that a15

larger p-value would indicate a better model fit. However, since the transformation16

function Λ̂ carries some randomness in the observed data, the distribution of the test17

statistic would be more dispersed than that calculated from a stipulated Λ, which18

implies that smaller p-values should be tolerated.19

2.7 Simulation of the Poisson Processes20

To simulate a homogeneous Poisson process, we first note that the interevent times21

of the process are exponentially distributed. These exponential random quantities22

can be generated using the inversion sampling method, through sampling from23

u ∼ U(0, 1) and obtain an interevent time from the inverse cumulative distribution24

function F−1(u) = − ln(u)/λ, for a constant arrival rate λ. These exponential25

random variables can then be summed up to the target time point T̂ to obtain a26

homogeneous Poisson process.27

Simulating from an inhomogeneous Poisson process is slightly more challenging,28

and depends on the form of the intensity assumed. This said, we shall focus on simu-29

lation by thinning, similar to that proposed by Lewis and Shedler (1979) and Ogata30

(1981). The thinning property of the Poisson process postulates that the process31

intensity is piecewise constant such that it can be split into several independent pro-32

cesses, implying that an inhomogeneous Poisson process can be simulated through33

thinning its homogeneous counterpart with the intensity λmax > λ(·). Thus, we34
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show below an efficient algorithm to simulate the inhomogeneous Poisson process 1

given its intensity over the interval [0, T̂ ], following the simPois function in the 2

IHSEP R package of Chen and Hall (2013, 2016): 3

1. Find the maximum intensity value from the input intensity over the interval 4

[0, T̂ ] and denote it as λmax. 5

2. Generate around λmaxT̂ + 1.96
√
λmaxT̂ exponential variables based on λmax. 6

3. Sum up all the generated exponential variables, and if their sum has not 7

reached T̂ , iteratively generate more exponential variables in blocks with rate 8

λmax. The block size can be around
√
λmaxT̂ , but a size limit can also be set 9

for efficiency. 10

4. Retain the cumulative sums of exponentials that are not more than T̂ as the 11

event times of the homogeneous Poisson process. 12

5. Perform thinning based on the retention probability λ(t)/λmax from the gen- 13

erated event times to obtain the event times for the inhomogeneous Poisson 14

process. 15

Such efficient simulation method can be a building block to simulate more complex 16

processes, such as the marked self-exciting point process detailed in Section 4.4.3, 17

which is in turn useful for making predictions from those processes. 18

2.8 Prediction of Future Events 19

Various models can be built based on the theory of point processes, and by observing 20

the dynamics up to the censoring time T , the predictions of future events up to a 21

certain time point T̃ can be made. This is demonstrated as follows, 22

N(T̃ )pred = N(T ) + (N(T̃ )−N(T ))pred, (2.8.1)

where N(T ) is the observed number of events at time T , and (N(T̃ )−N(T ))pred is 23

the predicted number of events from T to T̃ . 24

For a relatively simple model like the Poisson process model, N(T̃ ) − N(T ) is 25

Poisson distributed with its mean arrival rate equals to the integral of the identified 26

intensity function from T to T̃ , or 27

∫ T̃

T

λ̂(s) ds ≡
∫ T̃

T

λ(s; θ̂) ds, (2.8.2)

where θ̂ is the estimated parameter values obtainable from various optimization 28

routines. The mean rate in (2.8.2) can then serve as a point prediction. 29
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For more complex processes such as the Hawkes process with time-varying base-1

line intensity, it is useful to consider the auxiliary point process Ñ(t) = N(T + t)−2

N(T ) whose intensity process is given by,3

λ̃(t) = λ(T + t) = ν(T + t) +

N(T+t−)∑
i=1

φ(T + t− τi), (2.8.3)

where we note that N(T̃ ) − N(T ) = Ñ(T̃ − T ). Using (2.8.3), the predicted num-4

bers of future events, in the forms of the conditional expectation and the conditional5

median over the interval (0, T̃ − T ] can be obtained through simulation-based ap-6

proaches. However, if only the conditional expectation is needed, we can construct7

an integral equation based on (2.8.3) and solve it numerically to obtain the mean8

intensity on [0, T̃ − T ], using for example some flexible parametric functions to ap-9

proximate the unknown function in the integral equation.10
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Chapter 3 1

Existing Prediction Methods 2

The phenomenal influence exerted by Twitter has motivated a multitude of research 3

over the past few years, ranging from deriving factors which make a tweet more pop- 4

ular than others to observing the retweeting dynamics and predicting the popularity 5

of tweets based on such dynamics. As per our previous discussion, the popularity 6

of a tweet is conventionally measured by the total number of retweets generated by 7

an original tweet up to a certain time point. 8

Numerous prediction methods have been proposed to forecast the future popu- 9

larity of tweets. These methods can require relatively simple inputs like the retweet 10

times and the corresponding numbers of followers of the retweeters, or more exten- 11

sive features such as the complete network structure or users’ demographic profiles. 12

Despite many of the existing prediction methods proposed focus specifically on Twit- 13

ter, methods applied on different social media platforms are also noteworthy for their 14

potential utility in tweet popularity predictions. 15

This chapter revolves around describing existing works on popularity predic- 16

tions, with special emphasis on the point process models of Zhao et al. (2015) and 17

Kobayashi and Lambiotte (2016), namely the SEISMIC and the TiDeH model, as 18

they were found to have outstanding prediction performances. The remainder of 19

this chapter is organized as follows. We first give an overview of popularity predic- 20

tions, highlighting their various applications and distinguishing the different classes 21

of existing prediction methods in Section 3.1. The specifics of these methods in 22

terms of the approaches employed and the various limitations prevalent are subse- 23

quently presented in Section 3.2. We proceed to exhibiting the forms assumed by 24

the SEISMIC and the TiDeH model, and discuss how these models can perform 25

tweet popularity predictions in Section 3.3 and Section 3.4 respectively. Lastly, we 26

demonstrate how the performances of different prediction methods can be assessed, 27

using the evaluation metrics suggested in Section 3.5. 28
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3.1 Overview1

Accurate popularity predictions can prove valuable to actors playing different roles2

on the internet. Public users can avoid the problem of information overload as only3

the most relevant information will be displayed, content providers can better orga-4

nize the information to make the platform more user-friendly, and advertising firms5

can design more profitable strategies to earn additional profits. This correlates to6

the wide applicability of popularity predictions, notably in web distribution systems7

and online marketing (Tatar et al., 2014). While we elaborate herein the usefulness8

of popularity predictions on a broader perspective encompassing the different vari-9

eties of web contents, it should be intuitive that these contents may refer specifically10

to tweets.11

The use of popularity predictions to cache and replicate contents more efficiently12

has been emphasized in our preliminary discussion of popularity prediction in Sec-13

tion 1.2.2. This said, reliable forecasts of popularity can also be of immense help14

in online marketing (Lakkaraju and Ajmera, 2011), and are essential in setting up15

powerful recommendation systems. By recommending likeable items to the right16

audience, the user experience can be enhanced, thereby boosting the site’s traffic17

and attracting more revenues. Therefore, advertising agencies can use such predic-18

tive capability to develop strategies for online advertisements (Wu and Shen, 2015)19

to earn additional profits and promote their reputation in a more dramatic fashion.20

Popularity prediction can also be used to forecast various real-world outcomes, such21

as candidates most likely to achieve electoral success. This brings the attention to22

Twitter, which has remained one of the most influential social media platforms to23

disseminate election-related information (Isaac and Ember, 2016).24

Popularity prediction methods can be categorized based on the granularity of25

information used in the prediction process (Tatar et al., 2014), as depicted in Fig-26

ure 3.1.1, where we note that the term domain refers to the venue wherein a web27

content resides. Based on Figure 3.1.1, the information used in the prediction pro-28

cess can come from the local domain, or from a different domain, known as cross29

domain. When modelling the information diffusion on Twitter, this equates to say-30

ing that the dynamics are observed internal or external to the network. The idea31

of cross domain prediction has been supported by the interconnectedness of social32

media which has endowed Twitter with the ability to share contents from various33

external sources such as online video sites, online news sites, social bookmarking34

sites, and other social networking sites.35

One of the most challenging tasks when performing a local domain prediction is36

to predict the popularity prior to the publication of the content, or pre-publication37

popularity prediction. Such prediction is usually achieved by relying on the metadata38
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Figure 3.1.1: Prediction methods based on the granularity of information used.
The methods can be based on local or cross domain, using information internal
or external to the platform. Pre-publication and post-publication methods refer
respectively to predictions made before and after observing events. Predictions at
the microscopic and macroscopic levels correspond to how the predictions are made
using individual and aggregated data.

or features such as the social connections of publishers. Pre-publication prediction 1

on Twitter, specifically, refers to how prediction can be made based solely on the 2

information readily available at time zero. For instance, one might question how 3

many retweets will his tweet attract up to a certain time, given features like his 4

number of followers and the intended publication time, both of which are available 5

in the Twitter data set discussed in Section 1.3. Furthermore, information like the 6

tweeter’s geographical location or the semantic features of the tweet can prove to be 7

useful in obtaining a more accurate popularity prediction, although it requires more 8

extensive feature engineering. 9

Most prediction methods in the literature need to rely on some observations prior 10

to making any predictions, so called the post-publication popularity predictions . Un- 11

der such prediction methods, the modelling procedures can be implemented either 12

at a microscopic or macroscopic level, where the former refers to modelling at an 13

individual user’s level, and the latter at an aggregated level. Microscopic level meth- 14

ods leverage the dynamics of heterogeneous users by giving them unique treatment, 15

with many of the existing prediction methods falling into this category. Macroscopic 16

level methods, in comparison, deduce the future popularity by assuming that the 17

users are relatively similar to each other, or are homogeneous. 18

Considering how users’ actions are not constrained on a single platform, that 19

is, some users may exhibit certain patterns of behaviours across different platforms, 20

cross domain popularity prediction methods can come in handy. It is often the case 21

that Twitter users tend to have multiple accounts spanning across different social 22

media platforms, which makes explaining popularity from the perspective of a single 23
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domain insufficient. A natural approach to overcome this problem is to extract and1

transfer information across the platforms. However, as it is nearly impossible to2

identify a user across two different platforms, such method is only known to have3

been constructed at a macroscopic level. Additionally, faced with the difficulties4

and practicality concerns when deducing cross-domain behaviours, methods under5

this class are expectedly scarce.6

3.2 The Specifics7

Having conferred an overview of popularity predictions in Section 3.1, we shall8

present the method specifics in this section. An abundance of popularity predic-9

tion methods have been proposed in the last decade, ranging from simple linear10

regression functions to complicated frameworks which correlate information across11

websites.12

3.2.1 Local Domain13

As mentioned in Section 3.1, most methods in the literature are local domain predic-14

tion methods where predictions can be made before or after the content publications,15

known respectively as pre-publication and post-publication prediction methods.16

Pre-publication prediction methods are useful for predicting the popularity of17

web contents with relatively short lifespans, which apply to the majority of tweets18

shared by non-elite users on the Twitter network. Existing works that specifically19

address the problem of pre-publication tweet popularity prediction have been scarce,20

but one of which with an intriguing discovery is that conducted by Martin et al.21

(2016). In particular, they proposed a model which distinguishes between two main22

sources of inaccuracy in pre-publication predictions, namely errors in the predictive23

model itself and the unpredictability of social system given its complexity. The24

model was then used to perform tweet popularity prediction by relying on a set of25

extensive features such as the prior knowledge on the popularity levels of tweets26

with nearly identical contents. Although the model prediction performance appears27

rather promising, they reported that the prediction accuracy can be further improved28

if the system in question is homogeneous and the prior knowledge is flawless.29

Another noticeable work focusing on pre-publication prediction is that of Bandari30

et al. (2012), where the number of tweets was used as an indicative measure of news31

popularity. The authors formulated the prediction tasks as both a numerical and32

classification problem, and concluded that while predicting the popularity as a single33

numeric value, or point prediction, is prone to large errors, predicting the popularity34

in a range, or interval prediction, shows outstanding prediction accuracy. However,35

the popularity of news articles here calculates the number of tweets shared with36
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the specific content, rather than the conventional number of retweets stemming 1

from a single tweet. This asserts that the popularity may be affected more by the 2

interestingness and degree of exposition of the content, instead of the distinctive 3

users’ features on the Twitter network. 4

Most, if not all, of the popularity prediction methodologies in the literature 5

assume observations of the retweet sequence of a tweet for a period of time before a 6

prediction can be made. Such prediction methods, as discussed in Section 3.1, are 7

referred to as post-publication popularity prediction methods, and can be broadly 8

classified into microscopic and macroscopic levels, with the prerequisites being the 9

individual retweeting dynamics and aggregated popularity over time respectively. 10

3.2.1.1 Microscopic Level Methods 11

A microscopic level method draws conclusions based on individual user’s behaviour, 12

and is mostly constructed by fitting a point process model to the observed retweet 13

sequence up to the censoring time, and then projecting the fitted point process to a 14

future time point. Examples of methods under this level include those based on the 15

Self-Exciting Model of Information Cascades (SEISMIC) of Zhao et al. (2015), the 16

Time-Dependent Hawkes (TiDeH) model of Kobayashi and Lambiotte (2016), and 17

the multilevel model of Zaman et al. (2014). 18

The SEISMIC of Zhao et al. (2015) describes the retweet intensity of a tweet, or 19

the expected number of retweets per unit time, as a product of the infectivity of the 20

original tweet and the accumulated excitation effects of all previous retweets. Zhao 21

et al. (2015) estimated the infectivity as a function of time using a kernel smooth- 22

ing estimator, and the excitation function, or the memory kernel, using a graphical 23

approach under the assumption that some retweeting processes follow an inhomo- 24

geneous Poisson process with the excitation function as its intensity function. They 25

also proposed to predict the future popularity of a tweet based on calculating the 26

expected number of future retweets by first assuming that the infectivity remains 27

constant since the censoring time, and a subsequent ad hoc adjustment to the ex- 28

pectation to incorporate the decaying trend of the infectivity. They reported that 29

the predictions of tweet popularity using their approach outperform those based on 30

some competing approaches (Crane and Sornette, 2008; Agarwal et al., 2009; Szabo 31

and Huberman, 2010; Gao et al., 2015), under several performance measures. 32

The TiDeH model of Kobayashi and Lambiotte (2016) models the retweet in- 33

tensity similar to the SEISMIC. They first estimated the infectivity and memory 34

kernel using similar nonparametric kernel smoothing estimators. Then, they fitted 35

a circadian rhythmic function to the nonparametrically estimated infectivity func- 36

tion up to the censoring time, and extrapolated it beyond the censoring time to 37

predict the future number of retweets. With certain choices of the smoothing pa- 38
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rameters, the tweet popularity predictions based on the TiDeH model are superior1

to those based on the SEISMIC, especially on longer cascades. However, Kobayashi2

and Lambiotte’s approach requires sufficiently long observation time on a retweet3

sequence to have reliable estimation of the infectivity function, and the prediction4

performance depends critically on the window size parameter used in the estimation5

step of the infectivity function.6

Another noticeable method under the microscopic level is that of Zaman et al.7

(2014), where a multilevel model based on the branching process was used together8

with a Markov Chain Monte Carlo (MCMC) Bayesian approach for inference. The9

probabilistic model was built based on the assumption that the pool of Twitter10

users portrays similar behaviours when reacting to a tweet, which then generates11

distinguishable patterns in the evolution of the tweet popularity. The model was12

able to produce reliable forecasts by observing from the retweet cascades within13

a matter of minutes, but the results were only testified on a very small data set.14

Moreover, the method requires extra knowledge about the network structure among15

the original tweeter and the retweeters, which, unfortunately, is not available in the16

data set described in Section 1.3.17

3.2.1.2 Macroscopic Level Methods18

A macroscopic level method predicts the popularity based on aggregated users’ at-19

tention, and is often a faster alternative to obtain the popularity estimate. The20

methods under this level can usually be further classified into studies focusing on21

aspects such as the cumulative growth of popularity and temporal analysis (Tatar22

et al., 2014). The former reveals the popularity level of a web item since its publica-23

tion to the prediction time point. The latter shows how the popularity temporally24

evolves up to the prediction time, with the time element being a prerequisite.25

A logistic regression model was proposed by Hong et al. (2011) to predict the26

future popularity of a tweet based on the cumulative growth of popularity. They27

addressed the prediction problem as a classification task consisting of several classes,28

and aimed specifically to predict the range of future popularity. By using a logis-29

tic regression classification function which makes use of topological, temporal, and30

content features, they reported that the proposed methodology can uncover which31

tweets will not receive any retweets at all, and which tweets tend to receive myriads32

of retweets. A more recent model proposed by Lymperopoulos (2016), along similar33

lines, captures the cumulative growth of popularity by interlacing linear and non-34

linear growth terms, which correspond respectively to stationary and nonstationary35

adoption phases. The model demonstrates a great fit to the empirical popularity36

patterns, and is able to generate accurate forecasts of future popularity via extrap-37

olation.38
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From the perspective of temporal analysis, Kong et al. (2014) proposed a model 1

motivated by the k-nearest neighbour algorithm to predict the tweet popularity a 2

certain number of days after its publication, based on the dynamics observed in the 3

first hour. Specifically, when a new tweet is detected, the algorithm calculates the 4

similarity index between the tweet and all other historical tweets published by the 5

same user, identifies the top-k most similar tweets based on the features extracted 6

from the time series of the retweet sequences, and estimates the popularity based on 7

the average popularity of these identified tweets. Kong et al. (2014) concluded that 8

their method outperforms a number of regression-based methods by a considerable 9

margin, although the implementation can be computationally demanding. 10

Before we proceed to describing models which cross-correlate information from 11

different platforms, we shall highlight the hybrid model proposed by Mishra et al. 12

(2016), which combines both the microscopic and macroscopic level prediction meth- 13

ods. In particular, the hybrid model makes use of a microscopic level predictor based 14

on a marked Hawkes process, and a macroscopic level predictor based on a set of 15

extensive features. The microscopic component of the method uses a power-law 16

memory kernel to model the retweeting dynamics, and a cluster process interpre- 17

tation to predict the future number of events. This is then combined with the 18

macroscopic component which uses certain key features, such as basic user features 19

and temporal features, to improve the prediction performance. The hybrid model 20

bridges the gap of some undesirable limitations extant when employing a standalone 21

generative or feature-driven approach, and is especially useful when extra features 22

can be observed. 23

3.2.2 Cross Domain 24

We have discussed in Section 3.1 that the contents shared on Twitter can come 25

from various external sources such as online video sites, online news sites, social 26

bookmarking sites, and other social networking sites. A natural question to ask 27

is whether the popularity of a web item on one of these platforms can reflect its 28

popularity on Twitter, and contrariwise, if the tweet popularity can be predictive of 29

the popularity of a similar web item in an external environment. As compelling as it 30

may seem, popularity prediction which cross-correlates information across different 31

platforms, or cross-domain popularity prediction, has remained largely unexplored. 32

Due to the difficulties in proper identifications of users across different plat- 33

forms, approaches in the literature seem to have only included macroscopic level 34

methods, with emphasis on post-publication popularity predictions. The algorithm 35

proposed by Roy et al. (2013), for example, extracts information from Twitter to 36
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detect videos likely to experience sudden bursts of popularity on Youtube1. Bursty1

videos are lucrative to detect, since the sudden rise in popularity of such videos2

provides a unique opportunity for advertising and caching. The procedures involved3

in cross-correlating the information is rather straightforward. That is, hot topics4

on Twitter are extracted and associated with videos on Youtube, both of which are5

then compared in terms of their popularity levels in their respective domains, and6

if the popularity of a topic on Twitter overwhelms that on Youtube, it is a clear7

indication that the video is susceptible to a sudden burst of popularity on Youtube.8

It should be noted, however, that the popularity of a Youtube video is defined dif-9

ferently here, by the total number of views the video has attracted up to a certain10

time point.11

Note how the relationship demonstrated in Roy et al.’s work is unidirectional,12

that is, a hot topic on Twitter can speak volume on the popularity of a video on13

Youtube, but a viral Youtube video might not necessarily be popular on Twitter.14

This can be attributed to the fact that Youtube is an open channel comprising of15

videos viewable by the general public, whilst videos shared on Twitter are visible16

only to followers or viewers visiting the profile page. More importantly, if a Youtube17

video is shared by a non-elite user on Twitter who has a small number of followers,18

then the video will most likely be not getting much attention at all, at least on the19

tweeter’s profile page. This signals that the tweet popularity depends largely on20

the tweeter’s features, and that its prediction based on external media is usually21

infeasible.22

As a remark, the work of Oghina et al. (2012) is also noteworthy for its capability23

to make cross-domain prediction, where the ratios of likes and dislikes on Youtube is24

combined with the positive and negative unigrams on Twitter to predict the ratings25

of movies on IMDb2. A survey on popularity prediction methods from a slightly26

different perspective can be found in Li et al. (2017). Next, we shall explain in27

details the prediction approaches proposed by Zhao et al. (2015) and Kobayashi28

and Lambiotte (2016), in Section 3.3 and Section 3.4 respectively.29

3.3 The Self-Exciting Model of Information Cascades30

The intensity function of the SEISMIC (Zhao et al., 2015) which captures the dy-31

namics of the retweeting process is given by32

λ(t) = p(t)

N(t−)∑
i=0

niφ(t− τi), t > 0, (3.3.1)

1https://www.youtube.com/
2https://www.imdb.com/
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where ni, i = 0, 1, . . . denotes the i.i.d event mark or the number of followers, and 1

τi, i = 0, 1, . . . denotes the event time, or the time of tweet at i = 0 or retweet at 2

i = 1, 2, . . . . As per our discussion in Section 2.4.1, the function φ(·) is referred to as 3

the memory kernel function, and accounts for the human response time. The extra 4

component function p(·), on the other hand, is known as the infectivity function, 5

and accounts for the tweet virality. 6

To estimate the memory kernel function φ(·), Zhao et al. (2015) selected 15 7

relatively popular tweets in the training data set to approximate the parameters 8

and used these parameters as a part of the intensity process in (3.3.1) to predict 9

the future number of events. These tweets were assumed to have the following 10

probability density function 11

φ(s) =

c if 0 < s 6 s0

c( s
s0

)−(1+β) if s > s0,
(3.3.2)

where s0 = 300 seconds for a constant reaction time distribution, followed by a 12

power-law decay afterwards. The parameter c in (3.3.2) is a constant which can be 13

estimated by making use of the basic property of a probability density function, 14∫ ∞
0

φ(s) ds = c

∫ s0

0

1 ds+ cs1+β
0

∫ ∞
s0

s−(1+β) ds = 1. (3.3.3)

By fitting the aforementioned popular tweets, the parameters in (3.3.3) were 15

found to be β = 0.242 and c = 6.27 × 10−4. The implementation of such an 16

approach ensures that the SEISMIC can produce results in a computationally inex- 17

pensive way, as the estimation procedure would only involve p(·), which is defined 18

nonparametrically as 19

p(t) =

∑N(t−)
i=1 K(t− τi)∑N(t−)

i=0 ni
∫ t
τi
K(t− s)φ(s− τi) ds

. (3.3.4)

The estimation in (3.3.4) can be performed by using a certain smoothing function, 20

for example the triangular kernel function 21

K(s) = max

{
1− 2s

t
, 0

}
, s > 0, (3.3.5)

to discard posts as they get stale. Specifically, Zhao et al. (2015) required posts 22

older than t/2 to be discarded by the kernel. Their choice of the triangular kernel 23

was driven by its several desirable properties, such as its ability to discard unstable 24

and potentially explosive period at the incipient phase of observation, its adjustable 25

window size based on the time t, its emphasis on more recent posts compared to 26
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older posts in the window, and its piecewise linear form which gives the integral1 ∫
K(t− s)φ(s− τi) ds a closed form expression.2

After estimating the parameters, the SEISMIC can make predictions based on3

two important regimes, namely the supercritical and subcritical regimes. Specific to4

information diffusion modelling on Twitter based on the SEISMIC, we have5

1. Supercritical regime: if p̂(T ) > 1
R

, then E
[
N(T̃ )

∣∣∣FT]→∞ as T̃ →∞.6

2. Subcritical regime: if p̂(T ) < 1
R

, then supE
[
N(T̃ )

∣∣∣FT] <∞.7

The parameter R = E [ni] is the expected number of followers, referred to as the8

expected response, and can be estimated from the training data set. These two9

classes of regimes have been previously discussed in Section 2.4.1.2 when we touch10

on the branching structure of Hawkes processes. Furthermore, recall that FT denotes11

the history of the retweeting process up to the censoring time T . As highlighted12

in Section 2.4.1.2, when a tweet is under the supercritical regime, it is considered13

explosive and is expected to generate an infinite number of retweets as the time14

extends to infinity. Thus, to make a sensible prediction, the SEISMIC needs to15

satisfy p̂(T ) < 1/R.16

By the SEISMIC approach, the expected number of events from T to T̃ given17

the history up to time T , or E[N(T̃ ) − N(T )|FT ], can be calculated based on the18

branching process interpretation,19

E
[
N(T̃ )−N(T )

∣∣∣FT] = E

[
∞∑
k=1

Nk

]

=
E [N1]

1−Rp̂(T )

=
p̂(T )

1−Rp̂(T )

N(T−)∑
i=0

ni

(
1−

∫ T

τi

φ(s− τi) ds

)
,

(3.3.6)

where Nk denotes the number of kth generation events, and the functions p(·) and20

φ(·) take the forms shown in (3.3.4) and (3.3.2) respectively. After obtaining (3.3.6),21

Zhao et al. (2015) proposed an impromptu adjustment to further improve the predic-22

tion accuracy, based on the incorporation of two scaling constants to the conditional23

expectation. Specifically, they added the constant κ to ensure that the infectivity24

will decay and eventually die out after a sufficiently long time, and the constant ψ25

to account for the possible mutuality in the followers of retweeters. Adapting such26

constants to (3.3.6) yields a slightly different conditional expectation of the number27
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of events, 1

E
[
N(T̃ )−N(T )

∣∣∣FT] =
κp̂(T )

1− ψRp̂(T )

N(T−)∑
i=0

ni

(
1−

∫ T

τi

φ(s− τi) ds

)
. (3.3.7)

These scaling constants were naturally estimated from the training data set, based 2

on minimizing the median absolute percentage error. In addition, as the impact of 3

κ on the prediction accuracy was found to be much more significant than that of ψ, 4

Zhao et al. (2015) fixed the value of ψ but allowed κ to be time-varying. 5

From (3.3.7), we can predict the popularity of a tweet by using individual vector 6

of times τi and marks ni for i = 0, 1, . . . alongside with a specified censoring time 7

T . This can be implemented conveniently using Zhao et al.’s R package seismic. 8

In general, the computational cost of the SEISMIC is inexpensive, although the 9

prediction accuracy may sometimes be lacklustre. The efficiency of the SEISMIC 10

can be attributed to the closed forms assumed by the memory kernel in (3.3.2) and 11

the triangular kernel in (3.3.5), both of which are piecewise-polynomials. 12

Despite the efficiency of the SEISMIC, its nonparametric form restrains the pos- 13

sibility of performing useful simulations. Furthermore, one major limitation of the 14

SEISMIC is that it considers some tweets to be explosive and unpredictable, which 15

may be a consequence of model misspecification. To cope with tweets portraying 16

explosiveness, one can perform experiments using different memory kernel functions, 17

or resort to using various alternative models, for instance the TiDeH model proposed 18

by Kobayashi and Lambiotte (2016), discussed next in Section 3.4. 19

3.4 The Time-Dependent Hawkes Model 20

The Time-Dependent Hawkes (TiDeH) model of Kobayashi and Lambiotte (2016) 21

is a variant of the SEISMIC useful in fitting and predicting the popularity of longer 22

retweet cascades. The TiDeH model predicts the popularity of a tweet by summing 23

up individual expected number of events in equally-spaced time windows, from a 24

censoring time T to a certain prediction time T̃ . 25

The forms of the intensity and memory kernel functions of the TiDeH model 26

are identical to those of the SEISMIC in (3.3.1) and (3.3.2) respectively, but the 27

infectivity function p(·) now involves a two-step approach estimation, albeit the 28

similar assumption on its decay over time. In particular, both the SEISMIC and the 29

TiDeH model assume a time-decreasing infectivity, which is intuitive as the virality, 30

or newsworthiness of a tweet, should decay and eventually die out after a sufficiently 31

long time. This implies that highly infectious tweets can last for weeks or even 32

months before they get stale and lose interestingness completely, but tweets with 33

considerably low infectivity can die out almost instantly after their publications. 34
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The TiDeH model assumes both nonparametric and parametric forms of the1

infectivity functions as shown in (3.4.1) and (3.4.2),2

p0(t) =
N(ta, tb)∑N(t−)

i=0 ni {Φ(tb − τi)− Φ(ta − τi)}
, (3.4.1)

p(t) = α0 exp

(
− t

β0

){
1− γ0 sin

(
2π

Td
(t+ δ0)

)}
. (3.4.2)

We note from (3.4.1) that ni denotes the number of followers of the ith retweeter,3

the function Φ(·) is the integral of the memory kernel in (3.3.2) where Φ(t) =4 ∫ t
0
φ(s) ds, and [ta, tb] is a moving time window from which t falls in, with window5

size ∆ = tb − ta. The function (3.4.2) consists of the parameters α0, β0, γ0, and δ06

to account for the retweet intensity, the characteristic time of popularity decay, the7

relative amplitude of oscillation, and its phase. In addition, the parameter Td used8

to denote the oscillation period is naturally fixed at one day to reflect the diurnal9

patterns of activity levels.10

The nonparametric function in (3.4.1) is essentially the preliminary estimate of11

the tweet infectivity, followed by its subsequent parametric estimation in (3.4.2)12

which adapts a time-dependent oscillating function to account for the repetitiveness13

of human routine activities. To estimate the parameters, Kobayashi and Lambiotte14

(2016) proposed to minimize the sum of squares of p0(k) − p ((k + 0.5)∆) over all15

the time windows. They calibrated the TiDeH model by using all the extremely16

popular tweets, each with at least 2,000 retweets, available in the whole data set17

described in Section 1.3.18

With the fitted parameters α̂0, β̂0, γ̂0, δ̂0 for a retweet cascade obtained, its future19

evolution can be predicted. For that, it would be useful to express the intensity20

function of the TiDeH process beyond the censoring time T , denoted by λ̃(t), shown21

as follows,22

λ̃(t) = λ(T + t)

= p(T + t)

N(T+t−)∑
j=0

njφ(T + t− τj)

= p(T + t)

N(T )∑
j=0

njφ(T + t− τj) + p(T + t)

N(T+t−)∑
j=N(T )+1

njφ(T + t− τj)

= ν̃(t) + p(T + t)

Ñ(t−)∑
j=1

nN(T )+jφ(t− (τN(T )+j − T ))

= ν̃(t) + p̃(t)

Ñ(t−)∑
j=1

ñjφ̃(t− τ̃j).

(3.4.3)
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The intensity in (3.4.3) is essentially the intensity process for Ñ(t) = N(T + t) − 1

N(T ), or a temporally shifted version of the intensity in (3.3.1) with the baseline 2

intensity, 3

ν̃(t) = p(T + t)

N(T )∑
j=0

njφ(T + t− τj).

To predict the future popularity, Kobayashi and Lambiotte (2016) proposed to 4

use a method based on solving an integral equation, which requires a proper defini- 5

tion of the mean intensity function of the TiDeH process, denoted by λ̄(t), illustrated 6

as follows, 7

λ̄(t) = E
[
λ̃(t)

∣∣∣FT]
= E

 ν̃(t) + p̃(t)

Ñ(t−)∑
j=1

ñjφ̃(t− τ̃j)

∣∣∣∣∣∣FT


= ν̃(t) +Rp̃(t)

∫ t

0

φ̃(t− τ)λ̄(τ) dτ.

(3.4.4)

Similar to the SEISMIC, R = E [ni] is used to denote the expected response. It 8

should be noted, however, that despite that same notation, they are calculated 9

differently and are used in different scenarios. For the SEISMIC, R is used to 10

determine the regime from which a cascade falls in, and is also used in the prediction 11

process together with the scaling constant ψ, as indicated in (3.3.7). The value 12

should, in principle, be estimated based solely on the numbers of followers in the 13

training data set, but can be adjusted accordingly to a smaller volume to prevent 14

too many instances of cascades falling under the supercritical regime. As for the 15

TiDeH model, the value of R is estimated based on the numbers of followers of the 16

tweeter and previous retweeters within the same retweet cascade, up to time T . 17

To obtain the conditional expectation of the number of events from T to T̃ given 18

its history, or E[N(T̃ )−N(T )|FT ], the integral equation in (3.4.4) needs to be solved 19

numerically, for example using the B-spline function with sufficiently many knots 20

and a certain order. Specifically, let B(t) = (B1(t), B2(t), . . . , Bk(t))
> denote the set 21

of B-spline basis functions of a certain order on the interval (0, T̃ −T ] with a further 22

assumption that λ̄(t) ≈ B(t)>η for a k-vector η. Then, by solving the equation for 23

η as follows 24

B(t)>η = ν̃(t) +

{
Rp̃(t)

∫ t

0

φ̃(t− τ)B(τ)>η dτ

}
, (3.4.5)

we can predict the number of events in (0, T̃ − T ] using (
∫ T̃−T

0
B(t) dt)>η. 25

Different from the SEISMIC, the TiDeH model has its intensity function taking a 26

parametric form. This implies that the TiDeH Ñ process can be simulated by using 27
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some appropriate algorithms, such as the rejective method of Lewis and Shedler1

(1979). The method involves serially generating events one after another, and for2

that purpose, we need to first define the hazard functions for the TiDeH Ñ(t) process3

based on its λ̃(t) intensity. Specifically, the first event beyond the censoring time4

T can be generated based on the hazard function hτ̃1(t), the second event can be5

generated based on the hazard function hτ̃2(t), and by this convention the ith event6

can be generated based on the hazard function hτ̃i(t). The equations in (3.4.6) shed7

light on the specific forms of the process intensities,8

hτ̃1(t) = λ(T + t) = p(T + t)

N(T )∑
j=0

njφ(T + t− τj),

hτ̃2(t) = λ(T + τ̃1 + t) = p(T + τ̃1 + t)

N(T )+1∑
j=0

njφ(T + τ̃1 + t− τj),

hτ̃i(t) = λ(T + τ̃i−1 + t) = p(T + τ̃i−1 + t)

N(T )+i−1∑
j=0

njφ(T + τ̃i−1 + t− τj).

(3.4.6)

Intuitively, the events τ̃i will be generated from T to T̃ , where it is important to9

take note of the relationship,10

τN(T )+i = T + τ̃i. (3.4.7)

With the information on time and mark (τi, ni) available for i = 0, 1, . . . , N(T )11

and the definitions of hazard functions in (3.4.6), events over the interval (0, T̃ − T ]12

for the TiDeH Ñ(t) process can be simulated by using the following procedures,13

1. Define the maximum intensity by λ̃m(t) = max λ̃(t) where the initial max14

intensity is set to λ̃m(0) for t = 0.15

2. Generate the first proposed event τ̃ ∗1 based on Exp(λ̃m(0)).16

3. Generate a number V ∼ U(0, 1) and,17

• If V 6 hτ̃1(τ̃
∗
1 )/λ̃m(0) then τ̃ ∗1 is an event time, making τ̃ ∗1 ≡ τ̃1. In18

this case, generate ñ1 from previous marks ni for i = 0, 1, . . . , N(T ) and19

add the validated event time and mark (τN(T )+1, nN(T )+1) to the existing20

pairs of event times and marks {(τ 0, n0), (τ1, n1), . . . , (τN(T ), nN(T ))} fol-21

lowing (3.4.7). Then, update the max intensity by λ̃m(τ̃1) and generate22

the next proposed event τ̃ ∗2 using τ̃1 + Exp(λ̃m(τ̃1)).23

• If V > hτ̃1(τ̃
∗
1 )/λ̃m(0) then τ̃ ∗1 is not an event time. In this case, continue24

performing τ̃ ∗1 = τ̃ ∗1 +Exp(λ̃m(0)) as long as V > hτ̃1(τ̃
∗
1 )/λ̃m(0), updating25

hτ̃1(τ̃
∗
1 ) each time.26
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4. Repeat step 3 in decreasing intervals of (0, T̃ − T − τ̃ ∗i ] using hτ̃i(τ̃
∗
i )/λ̃m(τ̃i−1) 1

as the acceptance/rejection criterion. 2

By simulating the TiDeH Ñ process for sufficiently many replications, we can acquire 3

the mean- and median-forecasts for a retweet cascade from T to T̃ based on the 4

generated event numbers. Intuitively, a prediction interval based on these numbers 5

using some appropriate quantiles can also be obtained to see the range of predicted 6

popularity values. 7

Before we proceed to presenting the various evaluation metrics used in assessing 8

the performances of different prediction methods proposed in the literature, we note 9

that the SEISMIC in Section 3.3 and the TiDeH model discussed herein have incor- 10

porated some basic network information of Twitter into their model formulations 11

and prediction methodologies. Specifically, compared to models of greater complex- 12

ity, such as the multilevel model of Zaman et al. (2014) which requires the complete 13

network structure to be operable, the SEISMIC and the TiDeH model utilize sim- 14

plified network information like the observed tweet popularity levels up to a certain 15

time point and the corresponding numbers of followers of tweeters and retweeters to 16

predict the future popularity levels of tweets. 17

3.5 Performance Evaluation Metrics 18

In relation to our discussion in later chapters, we shall discuss how the performances 19

of prediction methods under the microscopic level can be assessed, with an additional 20

assumption on that the data consists of uncorrelated retweet time sequences as 21

described in Section 1.3. Furthermore, recall from (2.8.1) that we have denoted the 22

predicted final popularity by N(T̃ )pred and the actual final popularity by N(T̃ ), for 23

T̃ = 7 days. 24

The performances of different prediction methods can be assessed using evalu- 25

ation metrics like the root mean squared error (RMSE), the mean absolute error 26

(MAE), the mean absolute percentage error (MAPE), and finally the median ab- 27

solute percentage error (MdAPE). The formulas to calculate the RMSE and MAE 28

are shown respectively in (3.5.1) and (3.5.2), while the MAPE and MdAPE can be 29

obtained based on the mean and median of (3.5.3). 30

RMSE =

√√√√ 1

nc

nc∑
j=1

(
N(T̃ )predj

−N(T̃ )j

)2

(3.5.1)

MAE =
1

nc

nc∑
j=1

∣∣∣N(T̃ )predj
−N(T̃ )j

∣∣∣ (3.5.2)
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APE =

∣∣∣∣∣N(T̃ )predj
−N(T̃ )j

N(T̃ )j

∣∣∣∣∣ (3.5.3)

We note from (3.5.1), (3.5.2), and (3.5.3) that the subscript j denotes the jth1

individual cascade, and nc denotes the total number of retweet cascades under eval-2

uation. This implies that nc = 94254 if the whole test data in Section 1.3 were to3

be used.4

Gneiting (2011) asserted that different prediction functionals are optimal based5

on different error metrics, and concluded that the RMSE is optimal relative to mean-6

based prediction whilst the MAE is optimal relative to median-based prediction. We7

note here that the RMSE will penalize larger errors more, and tends to get heavily8

distorted by the presence of outliers. This may be problematic for models such as9

the SEISMIC of Zhao et al. (2015). Under a propounded supercritical regime, the10

SEISMIC assumes that the process will generate an infinite number of events, which11

then impedes the evaluation based on the RMSE. In contrast, when one knows the12

range of actual popularity values, measures based on the absolute errors, such as13

the MAE, will be relatively more useful.14

The APE, or the absolute relative error expressed in term of percentage, is ar-15

guably a more informative metric to measure how much the predicted popularity16

deviates from the actual popularity value, and is particularly useful in comparing17

the efficiency of prediction methods when the popularity values are distributed very18

differently. In fact, both Zhao et al. (2015) and Kobayashi and Lambiotte (2016)19

used the MdAPE to evaluate the prediction performances of their proposed method-20

ologies, since the median is known to be a robust estimator which is more resistant21

to the presence of outlying APE values. There is, however, a clear pitfall when using22

such median-based evaluation metric in assessing the performance of a prediction23

method, since it allows up to half of the predicted popularity values to be arbi-24

trarily bad. Therefore, statistical inferences and conclusions as to how a prediction25

method outperforms the others should be made using both mean- and median-based26

evaluation metrics, or in this case the MAPE and MdAPE.27

Although the predictive mean and the predictive median are not optimal relative28

to the MAPE or the MdAPE in general, they are typically much easier to obtain than29

the functionals that are optimal relative to these metrics3. In addition, they are often30

approximately optimal when the predictive distribution is unimodal. Therefore, they31

have been widely used in popularity prediction even when the MAPE or the MdAPE32

is used as the performance evaluation metric.33

3The functionals that are optimal relative to the MAPE and the MdAPE are the order −1
median and the harmonic median respectively; see Appendix A for more details.
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Chapter 4 1

A Marked Self-Exciting Point 2

Process Model1 3

We have discussed that the sequence of random variables τi satisfying τi < τi+1 4

can be referred to as the event times. These event times may be associated with 5

some random elements ni called the event marks. Each (τi, ni) is said to be a 6

marked point, and the sequence of such marked points for i = 0, 1, . . . is said to 7

be a marked point process. The frequent clustering of retweet events on Twitter 8

suggests that a self-exciting point process might be useful in capturing the retweeting 9

dynamics. Furthermore, as such surge of events seems to be highly correlated with 10

the magnitude of event marks, this prompts us to model the activities based on a 11

marked self-exciting point process. 12

The model we propose herein to capture the retweeting dynamics and predict the 13

future popularity of tweets is termed the Marked Self-Exciting Process with Time- 14

Dependent Excitation Function, or the MaSEPTiDE for short. It is motivated by 15

the SEISMIC and the TiDeH model, and bears some similarities to them. However, 16

the MaSEPTiDE model has some important advantages. First, its intensity pro- 17

cess has a linear form similar to that of the original self-exciting process of Hawkes 18

(1971), and therefore the resulting point process is interpretable as a cluster Pois- 19

son process, which implies that the MaSEPTiDE process can be simulated using a 20

cascading algorithm similar to that used for the efficient simulation of Hawkes pro- 21

cesses. Second, the estimation of the model and the assessment of its goodness-of-fit 22

can be implemented using principled approaches from the point process theory, and 23

prediction based on the model can also be done properly by exploiting its probabilis- 24

tic properties, without resorting to ad hoc assumptions such as those needed by the 25

SEISMIC. The model is also found to be able to capture the retweeting dynamics 26

and make accurate popularity predictions based on much shorter observation times 27

1Most of the content shown in this chapter has been published in the Annals of Applied Statis-
tics; see Chen and Tan (2018).

41



than those required by the TiDeH model.1

We shall give comprehensive elaborations of the MaSEPTiDE model in this chap-2

ter, including some of its limitations and potential for future work. The remainder3

of this chapter is structured as follows. We first present the form of the intensity4

assumed by the MaSEPTiDE model in Section 4.1. This is followed by its parameter5

estimation in Section 4.2, and the assessment of its goodness-of-fit in Section 4.3.6

The procedures involved to predict the future popularity of tweets are demonstrated7

in Section 4.4, including a solve-the-equation approach and a simulation-based ap-8

proach. By applying the proposed methodologies to the Twitter data set, we show9

the main results, in particular the evaluation of performances among different mod-10

els, in Section 4.5. Further discussion of the MaSEPTiDE model can be found in11

Section 4.6, and the concluding remarks are given in Section 4.7.12

4.1 Model Formulation13

Let (τi, ni), i = 1, 2 . . . be a marked point process where τ1 < τ2 < . . . denote14

the event times and n1, n2, . . . denote the respective event marks, originating from15

(τ 0, n0). Recall that τ 0 = 0 denotes the posting time of the original tweet, and n0
16

denotes the number of followers of the original tweeter. Correspondingly, the event17

times and marks for i = 1, 2, . . . refer respectively to the retweet times and the18

numbers of followers of the retweeters.19

Let N(t) =
∑∞

i=1 1 {τi 6 t} , t > 0 be the associated counting process of retweets,20

and F = {Ft; t > 0}, with Ft = σ {N(t), n0, (τj, nj), j = 1, 2, . . . , N(t)}, be the nat-21

ural filtration of the marked point process. In an informal but intuitive notation,22

the intensity can be written as23

λ(t) =
E [ dN(t)| Ft−]

dt
,

from which we note that the intensity at any time point is the expected number of24

events per unit time given the history of the process prior to that time point.25

As the evolution of a point process over time is fully determined by its intensity26

process, a commonly used approach to specify a point process model is to specify27

the form of the dependence of its intensity process on the prior-t history of the28

process Ft−. Specifically, the intensity assumed by the SEISMIC of Zhao et al.29

(2015) as presented in (3.3.1) consists of two main component functions, namely30

the infectivity function p(·) and the memory kernel function φ(·), both of which are31

positive functions. Assisted by these two component functions, the function (3.3.1)32

describes the retweet intensity of a tweet, or the expected number of retweets per33

unit time, as a product of the infectivity of the original tweet and the accumulated34

42



excitation effects of all previous retweets. Zhao et al. (2015) proposed to estimate the 1

infectivity function p(·) nonparametrically using a kernel smoothing estimator with a 2

triangular kernel. To estimate the memory kernel, they assumed that it is of a power- 3

law decaying form, and that 15 selected retweet cascades follow inhomogeneous 4

Poisson processes with their intensity functions being proportional to the memory 5

kernel. They then estimated the parameters using histogram and complementary 6

cumulative distribution function plots of the retweet times in those 15 cascades. 7

On the other hand, the TiDeH model of Kobayashi and Lambiotte (2016) as- 8

sumes an intensity process of the same form as in (3.3.1), except with the further 9

assumption that the infectivity function p(·) is also parametric, and takes a damp- 10

ened circadian oscillation form. To estimate the infectivity function p(·), Kobayashi 11

and Lambiotte (2016) proposed a two-step approach where a preliminary estimate 12

p0(·) was first obtained using a kernel method, and then the parametric form of p(·) 13

was fitted to the preliminary estimate by a least squares method. 14

4.1.1 Intensity Specification 15

The point process model we propose herein for the purpose of retweeting dynamics 16

modelling has the following intensity function, 17

λ(t) = ν(t) +

N(t−)∑
i=1

ω(τi, ni, t− τi), (4.1.1)

where ν(·) is the baseline intensity function, with ν(t) denoting the part of the event 18

intensity at time t that is due to the initial event at time zero. The function ω(·, ·, ·) 19

is the excitation function, with ω(τ, n, t − τ) denoting the impact of an event at 20

time τ with mark n on the event intensity at time t, where t is the time since the 21

publication of the original tweet. 22

Furthermore, both the baseline intensity and the excitation functions are time- 23

dependent and take multiplicatively separable forms as follows, 24

ν(t) = αφ(t),

ω(τ, n, t− τ) = p(τ)r(n)φ(t− τ).
(4.1.2)

Here α > 0 is a constant giving the direct excitation effect of the original tweet, that 25

is, how many retweets it is expected to generate directly. The function φ(·) is called 26

the memory kernel function, which describes how the excitation effect due to the 27

original tweet or a retweet is distributed over time. Similar to Zhao et al. (2015), we 28

require φ(·) to be a probability density function, so that φ(·) > 0 and
∫∞

0
φ(s) ds = 1. 29

The function p(·) indicates how the infectivity of a retweet varies over time and is 30
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also called the infectivity function, although its influence on the intensity process is1

different than that of the infectivity function p(·) in (3.3.1). For identifiability, we2

assume that p(0) = 1. The function r(·) is called the impact function, and describes3

the total excitation effect of a retweet attributed to the number of followers of the4

retweeter. Note, we do not require α = r(n0), to allow for the potentially different5

influences of the original tweet and of the retweets.6

More specifically, the functions in (4.1.2) are assumed to take the following para-7

metric forms,8

p(τ ; β) = e−βτ ,

r(n; γ) = γ log(n+ 1),

φ(t; δ) =
δ2(δ1 − 1)

δ1

(
1 +

δ2t

δ1

)−δ1
,

(4.1.3)

for parameters β > 0, γ > 0, δ1 > 1, and δ2 > 0. Here, we have adopted an9

exponential decay form for the infectivity function, based on the intuition that the10

infectivity, or the newsworthiness of a retweet, should decay very quickly over time.11

We further assume that the impact function is linear in the number of followers12

on a log scale, rather than on the original scale as in Zhao et al. (2015), because13

of the high degree of right skewness for the distribution of the number of followers14

(Cha et al., 2010; Kwak et al., 2010; Bakshy et al., 2011). Our choice of the power-15

law decay form for the memory kernel is motivated by Zhao et al. (2015) and the16

empirical findings of the heavy-tailed distributions for the human response time17

in social networks, reported in the literature (Barabasi, 2005; Crane and Sornette,18

2008; Zaman et al., 2014).19

Similar to Zhao et al. (2015) and Kobayashi and Lambiotte (2016), we also20

assume that the event marks ni are i.i.d with a common density function f(·) relative21

to a suitable reference measure on the space N of event marks, and moreover, ni is22

independent of τi and Fτi− for all i. As the excitation function associated with an23

event is allowed to depend on the time of that event, the model shall be referred to24

as the Marked Self-Exciting Process with Time-Dependent Excitation Function, or25

the MaSEPTiDE model for short.26

At this point we emphasize an important difference between the MaSEPTiDE27

model we propose and the SEISMIC of Zhao et al. (2015). From (4.1.1), we note28

that, unlike the SEISMIC, the MaSEPTiDE has an intensity process that is of a29

linear form similar to the self-exciting process of Hawkes (1971), whose intensity30

process takes the form as shown in (2.4.1). In fact, if we choose p(τ) ≡ 1 and31

r(n) ≡ r for a constant r in (4.1.2), then (4.1.1) reduces to the time-varying version32

of the Hawkes process considered by Chen and Hall (2013, 2016).33
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4.1.2 Interpretation as a Poisson Cluster Process 1

The linear structure of the intensity process implies that the MaSEPTiDE can also 2

be interpreted as a Poisson cluster process, as the original Hawkes process or the 3

generalized version with a time-varying background intensity, much of which has 4

been discussed in Section 2.4.1.2. 5

By this interpretation, immigrants arrive according to a marked inhomogeneous 6

Poisson process with its intensity function equal to the baseline intensity function 7

ν(·), and event marks distributed according to the density f(·). Once an immigrant 8

with mark n arrives at τ , it starts to independently produce children according 9

to a marked inhomogeneous Poisson process with intensity function ω(τ, n, ·) = 10

p(τ)r(n)φ(·) and event marks distributed according to f(·), so that the total number 11

of children is Poisson distributed with mean
∫∞

0
ω(τ, n, s) ds = p(τ)r(n). Given the 12

total number of children, the waiting times to births of the children are i.i.d with a 13

common density function φ(·), if the order of births is ignored. 14

Moreover, once an offspring of any generation is born, say at time τ ′ and with 15

mark n′, it starts to independently produce children of its own according to a similar 16

marked inhomogeneous Poisson process with intensity function ω(τ ′, n′, ·) and event 17

marks distributed according to f(·). The events of the MaSEPTiDE process by time 18

t consist of all immigrants and offspring of any generation that have arrived by time t. 19

This Poisson cluster process interpretation implies an efficient recursive cascading 20

algorithm to simulate the MaSEPTiDE process, and has important implications 21

for simulation-based predictions by the process. Figure 4.1.1 shows a graphical 22

representation of the discussed cluster process, where each circular point represents 23

an immigrant or offspring with a certain event time and mark, each line connecting 24

two points represents the parent-offspring relationship, each vertical arrow represents 25

the collective shift from one generation to another, and the vertical dotted line 26

represents the continuation of the process for future generations. 27

Because of the Poisson cluster interpretation, the memory kernel function φ(·) in 28

the MaSEPTiDE can also be called the offspring density function, and the function 29

p(·)r(·) might be interpreted as the branching ratio function which specifies how the 30

branching ratio, that is, the average number of direct offspring from an individual 31

(be it an immigrant or an offspring), depends on the birth time and event mark 32

of the individual. In contrast, the functions p(·) and φ(·) in the SEISMIC or the 33

TiDeH model do not permit such a neat interpretation. 34

It might also be of interest to note the difference between the treatments of 35

the background intensity in the MaSEPTiDE model and in the Hawkes process 36

model with a time-varying background intensity. In the former model, we require 37

the baseline intensity function to be proportional to the memory kernel φ(·), while 38
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Immigrants 
𝜈 ⋅  

𝑓 ⋅  
(𝜏, 𝑛) 

𝜔 𝜏, 𝑛,⋅  

𝑓 ⋅  
(𝜏′, 𝑛′) 

𝜔 𝜏′, 𝑛′,⋅  

𝑓 ⋅  
(𝜏′′, 𝑛′′) 

Generation 1 

Generation 2 

Figure 4.1.1: A cluster process representation of the MaSEPTiDE process. Each
immigrant arrives according to the baseline intensity ν(·) and mark density f(·), and
each offspring is generated according to the excitation function ω(·, ·, ·) and mark
density f(·), from its parent of the preceding generation. Events beyond generation
2 are represented by the vertical dotted line.

in the latter, the background intensity and the memory kernel can take different1

shapes. The advantage of our treatment is that it leads to a more parsimonious2

model, while the time-varying background intensity model can easily accommodate3

nonstationarity, such as that due to the diurnal patterns of human activity levels.4

4.2 Parameter Estimation5

Before we can use the MaSEPTiDE model to predict the future number of events,6

we need to first estimate the model parameters. Since the event marks are assumed7

to be i.i.d, their distribution can simply be estimated by the empirical distribution of8

ni, for i = 1, 2, . . . , N(T ). The main estimation problem is to estimate the parameter9

vector θ = (α, β, γ, δ1, δ2)>. To this end, we shall use the ML approach, which has10

been previously discussed in Section 2.5.11

By the point process theory, the likelihood of the MaSEPTiDE process based on12

observations over the interval [0, T ], where T denotes the censoring time, takes the13

following form14

L(θ) =


N(T )∏
i=1

λ(τi)

 exp

(
−
∫ T

0

λ(t) dt

)N(T )∏
i=1

f(ni), (4.2.1)

where λ(·) depends on the parameters through (4.1.1)-(4.1.3), and f(·) denotes the15
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event mark density, which is assumed to be free of the parameters θ. The likelihood 1

of the process without marks has also been shown in (2.5.1). 2

To compute the ML estimator of the parameter vector θ using general-purpose 3

numerical optimization routines, the efficient evaluation of the likelihood function 4

or its logarithm is very important. For this purpose, we need to be able to evaluate 5

the definite integral of the intensity function in (4.2.1) efficiently. Due to the linear 6

structure of the intensity function, the integral of the intensity function can be shown 7

to take an explicit form similar to the intensity function itself, and therefore can 8

be exactly computed without resorting to numerical quadrature routines. To show 9

this, it is convenient to use the random measure interpretation of a marked point 10

process. That is, we interpret 11

N( dτ, dn) =
∞∑
i=1

δ(τi,ni)( dτ, dn)

as a random measure on [0,∞)×N , so that the intensity in (4.1.1) can be written 12

as 13

λ(t) = ν(t) +

N(t−)∑
i=1

ω(τi, ni, t− τi)

= ν(t) +

∫
(0,t)×N

ω(τ, n, t− τ)N( dτ, dn).

Therefore, by Fubini’s theorem, a change of variables, and the assumed forms of the 14

functions ν, ω and φ, we have 15∫ T

0

λ(t) dt =

∫ T

0

ν(t) dt+

∫ T

0

∫
(0,t)×N

ω(s, n, t− s)N( ds, dn) dt

=

∫ T

0

ν(t) dt+

∫
(0,T )×N

∫ T

s

ω(s, n, t− s) dtN( ds, dn)

=

∫ T

0

ν(t) dt+

∫
(0,T )×N

∫ T−s

0

ω(s, n, t) dtN( ds, dn)

= αΦ(T ) +

N(T−)∑
i=1

p(τi)r(ni)Φ(T − τi),

where the integrated memory kernel function Φ(·) can be written as 16

Φ(t) = Φ(t; δ) =

∫ t

0

φ(s; δ) ds = 1−
(

1 +
δ2t

δ1

)−δ1+1

, t > 0. (4.2.2)

From the separable form of the likelihood function in (4.2.1) and the assump- 17

tion that the event mark distribution does not depend on the parameter vector 18
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θ, the ML estimation of the tweet specific parameters θ can be based on maxi-1

mizing the logarithm of the part of the likelihood that does not involve f(·), as2

shown previously in (2.5.2). In practice, the maximization can be done numerically3

using various general-purpose optimization routines. As previously mentioned in4

Section 2.5, Newton methods such as the BFGS method can be used in achieving5

this purpose. We have, however, used the more robust downhill simplex method of6

Nelder and Mead (1965) in our numerical experiments, which is the default method7

used by the function optim in the R software environment for statistical computing8

(R Core Team, 2016).9

4.3 Goodness-of-Fit Assessment10

The assessment of the goodness-of-fit of models to historical data can guide us to11

seek models that can describe the observed data well and therefore serves as the12

basis of predictions for future observations. To assess the goodness-of-fit of the13

MaSEPTiDE model, we shall use the residual point process approach based on14

Papangelou’s random time change theorem, detailed in Section 2.6.15

By the time change theorem, with Λ(t) =
∫ t

0
λ(s) ds denoting the cumulative16

intensity process, the transformed process N(Λ−1(t)) is a Poisson process with unit17

rate or equivalently, the random times Λ(τi), i = 1, 2, . . . , will be the event times of18

a unit rate Poisson process. Therefore, if the MaSEPTiDE with the parameters θ19

set to their ML estimates θ̂ is a sufficient model for the observed event times up to20

the censoring time T , then the transformed event times, Λ̂(τi), i = 1, 2, . . . , N(T )21

should be approximately equal in distribution to the event times of a unit rate22

Poisson process up to time Λ̂(T ). Here, Λ̂(t), t > 0 is the plugin estimate of the23

cumulative intensity Λ(t; θ) =
∫ t

0
λ(s; θ) ds, that is,24

Λ̂(t) = Λ(t; θ̂) = α̂Φ(t; δ̂) +

N(t−)∑
i=1

p(τi; β̂)r(ni; γ̂)Φ(t− τi; δ̂),

with p(·) and r(·) defined in (4.1.3), and Φ(·) defined as in (4.2.2).25

We have highlighted in Section 2.6 that the conditional distribution of the event26

times of a Poisson process in a fixed interval, given the total number of events in the27

interval, is equal in distribution to the order statistics of the same number of i.i.d28

random variables uniformly distributed in the interval. Thus, to assess the goodness-29

of-fit of the MaSEPTiDE model, we can assess the uniformity of the transformed30

event times Λ̂(τi), i = 1, 2, . . . , N(T ), in the interval (0, Λ̂(T )] using tests like the31

Kolmogorov-Smirnov test, or informally using graphical approaches such as the his-32

togram or the quantile-quantile plots. A similar analysis was performed by Ogata33

(1988) to assess the goodness-of-fit of point process models on earthquake data.34
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4.4 Predicting the Popularity 1

Given observations up to T , to predict the number of events from T to a future time 2

point T̃ > T , one commonly uses its conditional expectation or its conditional me- 3

dian. To obtain the conditional expectation, we can use either a solve-the-equation 4

approach or a simulation-based approach. The former approach involves deriving a 5

functional equation satisfied by the conditional expectation as a function of a future 6

time point, solving the equation, and evaluating the solution function at the desired 7

time point. The latter approach involves simulating the sample path of the MaSEP- 8

TiDE on the time interval (T, T̃ ] conditional on the observations up to time T for 9

a large number of times, counting the number of events on each simulated sample 10

path, and using the average of the simulated event counts to approximate its ex- 11

pectation. While the first approach is computationally less expensive, the solution 12

of the functional equation is not always easy to obtain. For the second approach, 13

although it is relatively less efficient, especially if the process to be simulated has 14

a large expected number of events, it is more robust than the first approach. To 15

obtain the conditional median, the only option seems to be a simulation-based ap- 16

proach, which involves simulating the conditional sample path of the MaSEPTiDE 17

process a large number of times and extracting the median of the resultant empirical 18

distribution of the number of events in the time interval (T, T̃ ]. 19

4.4.1 Translated Intensity 20

Both solve-the-equation approach and simulation-based approach rely on the obser- 21

vation that, conditional on the history of the MaSEPTiDE process up to time T , its 22

future evolution is the same as that of another MaSEPTiDE process with a different 23

baseline intensity function and a similar excitation function. Specifically, if we let 24

Ñ(t) = N(T + t)−N(T ), t > 0, and τ̃j = τN(T )+j−T , ñj = nN(T )+j for j = 1, 2, . . . , 25

where F̃t = FT+t, t > 0, then the F̃ -intensity process of Ñ(t) is given by 26

λ̃(t) = λ(T + t) = ν(T + t) +

N(T )∑
j=1

ω(τj, nj, T + t− τj) +

N(T+t−)∑
j=N(T )+1

ω(τj, nj, T + t− τj)

= ν̃(t) +

Ñ(t−)∑
j=1

ω̃(τ̃j, ñj, t− τ̃j),

where ν̃(·) denotes the function 27

ν̃(t) = ν(T + t) +

N(T )∑
j=1

ω(τj, nj, T + t− τj), (4.4.1)
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and ω̃(·, ·, ·) denotes the function1

ω̃(τ, n, t) = ω(T + τ, n, t) = p(T + τ)r(n)φ(t) ≡ p̃(τ)r(n)φ(t). (4.4.2)

Therefore, Ñ(t), t > 0 is a MaSEPTiDE process with baseline intensity function ν̃2

and excitation function ω̃ given in (4.4.1) and (4.4.2) respectively. The excitation3

function ω̃ has a similar separable form as ω, with r and φ the same as before, and4

the function p̃ equals to a time shift of the previous infectivity function, that is,5

p̃(τ) = p(T + τ).6

4.4.2 Solve-the-Equation Approach7

To calculate the expected number of events E[N(T̃ ) −N(T )|FT ] without resorting8

to simulations, we first note from the definition of the conditional intensity that,9

E
[
N(T̃ )−N(T )

∣∣∣FT] = E
[
Ñ(T̃ − T )

∣∣∣FT]
= E

[∫ T̃−T

0

λ̃(s) ds

∣∣∣∣∣FT
]

=

∫ T̃−T

0

E
[
λ̃(s)

∣∣∣FT] ds

=

∫ T̃−T

0

λ̄(s) ds,

(4.4.3)

with λ̄(s) = E[λ̃(s)|FT ] denoting the mean intensity function of Ñ(t) given FT . By10

the independence between event marks and previous event times, we have11

λ̄(t) = E
[
λ̃(t)

∣∣∣FT]
= E

[
ν̃(t) +

∫
(0,t)×N

ω̃(τ, n, t− τ)Ñ( dτ, dn)

∣∣∣∣FT]
= E

[
ν̃(t) +

∫
(0,t)×N

p̃(τ)r(n)φ(t− τ)λ̃(τ) dτ dF (n)

∣∣∣∣FT]
= ν̃(t) +

∫
N
r(n) dF (n)

∫ t

0

p̃(τ)φ(t− τ)E
[
λ̃(τ)

∣∣∣FT] dτ

= ν̃(t) +R

∫ t

0

p̃(τ)φ(t− τ)λ̄(τ) dτ,

(4.4.4)

where we have also used Ñ( dτ, dn) to denote the associated random measure again,12

and F denotes the distribution of the i.i.d event marks, while13

R = E [r(ni)] =

∫
N
r(n) dF (n) (4.4.5)

is the expected total excitation effect due to an event, or the expected response.14

Note how the expected response here differs from that of the SEISMIC and the15
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TiDeH model with R = E [ni]. Despite the difference, our expected response here 1

still bears a closer resemblance to that of the TiDeH model as both are influenced 2

by the previous instances of the numbers of followers, unlike that of the SEISMIC 3

which depends solely on the average number of followers in the training data set. 4

In general, we need to solve the integral equation in (4.4.4) numerically to obtain 5

λ̄(t) on [0, T̃ − T ] and use it in finding the conditional expectation of the number of 6

events in (4.4.3). One method to solve (4.4.4) is to approximate λ̄(t) by a flexible 7

parametric function and identify the parameters by requiring both sides of the equa- 8

tion to be equal or approximately equal at sufficiently many points in the interval 9

[0, T̃−T ]. Examples of the flexible parametric functions to approximate λ̄(t) include 10

a B-spline function with a specified order and knot sequence, or a truncated Fourier 11

series. In both cases, the unknown parameters of the approximating function can 12

be obtained by solving a linear equation of the unknown parameters. In practice, 13

we would try approximating functions with increasing flexibility until convergence 14

in the solution is achieved. 15

We have selected the B-spline function as a method to find λ̄(t) for its ease of 16

implementation and computational stability. This method has been shown in (3.4.5) 17

for the TiDeH model, although the implementation varies slightly. Similar to the 18

TiDeH model, the set of B-spline basis functions on the interval (0, T̃ − T ] shall be 19

denoted by B(t) = (B1(t), B2(t), . . . , Bk(t))
>, and we assume that λ̄(t) ≈ B(t)>η 20

for a k-vector η. Plugging this into (4.4.4) yields the following equation of η, 21

B(t)>η = ν̃(t) +

{
R

∫ t

0

p̃(τ)φ(t− τ)B(τ)>η dτ

}
. (4.4.6)

To solve (4.4.6) for η, we need to evaluate both sides of (4.4.6) at sufficiently many 22

(> k) t values over the interval (0, T̃ − T ], and solve the resulting overdetermined 23

linear system using the method of least squares. Once η is obtained, the predicted 24

value can be calculated from 25

{
N(T̃ )−N(T )

}
pred

=

(∫ T̃−T

0

B(t) dt

)>
η.

In evaluating the integrals in (4.4.6), we often need to use numerical quadrature 26

routines. In our case, we have used the R function integrate for this purpose. 27

4.4.3 Simulation-Based Approach 28

To simulate the MaSEPTiDE Ñ process over the interval (0, T̃ −T ], we can use the 29

following cascading algorithm, which is a generalization of that used for the simula- 30

tion of nonstationary self-exciting point processes (Chen and Hall, 2013, 2016). A 31
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similar algorithm has also been used recently by Chen and Stindl (2018) to simulate1

renewal Hawkes processes.2

1. Simulate an inhomogeneous Poisson process N0 with time-varying intensity3

ν̃(t) on (0, T̃ −T ] and denote the event times by τ
(0)
j , j = 1, 2, . . . , N0(T̃ −T ).4

2. Generate the associated event marks n
(0)
j independently from the event mark5

distribution F and call the events (τ
(0)
j , n

(0)
j ), j = 1, 2, . . . , N0(T̃−T ) generation6

0 events.7

3. For each generation 0 event (τ
(0)
j , n

(0)
j ), simulate an inhomogeneous marked8

Poisson process N1
j , with intensity function ω̃(τ

(0)
j , n

(0)
j , ·) and event mark dis-9

tribution F , on the interval (0, T̃ − T − τ
(0)
j ] and denote the corresponding10

events by (τ
(1)
jk , n

(1)
jk ), k = 1, 2, . . . , N1

j (T̃ − T − τ (0)
j ). We refer the collection of11

events {(τ (0)
j +τ

(1)
jk , n

(1)
jk ); k = 1, 2, . . . , N1

j (T̃−T−τ (0)
j ), j = 1, 2, . . . , N0(T̃−T )}12

to as generation 1 events.13

4. Continue generating events of generations 2, 3, . . . similarly on intervals of14

decreasing lengths, until a generation has no events.15

5. The events of all generations are pooled together to form the collection of all16

events of the MaSEPTiDE Ñ process on the interval (0, T̃ − T ].17

The algorithm shown above requires the simulation of inhomogeneous Poisson pro-18

cesses, which can be achieved using the thinning algorithm of Lewis and Shedler19

(1979). For that purpose, we have used the simulation procedures described in20

Section 2.7, which make use of the simPois function in the IHSEP package. Fur-21

thermore, our implementation of the above cascading algorithm is also based on a22

simple modification of a function in the same IHSEP package, namely the simHawkes123

function.24

It should be clear from the cascading algorithm shown above that the inho-25

mogeneous Poisson process N i essentially generates (τ (i), n(i)) where i = 0, 1, 2, . . .26

denotes the generation number, with the respective subscripts j, jk, jkl, . . . . To help27

visualizing the implementation of the algorithm, we demonstrate in Figure 4.4.1 how28

the events beyond the censoring time T , up to the prediction time point T̃ , can be29

generated. Similar to Figure 4.1.1, each circular point represents an event with a cer-30

tain time and mark, each line connecting two points represents the parent-offspring31

relationship, each vertical arrow represents the collective shift from one generation32

to another, and the vertical dotted line represents the continuation of the process33

for future generations.34

To predict the number of events in the interval (T, T̃ ], we simulate the sample35

path of the process Ñ(t) over the interval (0, T̃ − T ] for a large number of times,36
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Figure 4.4.1: The cascading algorithm used to simulate the MaSEPTiDE Ñ pro-
cess, where the events of ith generation are simulated from N i, and are denoted
by (τ (i), n(i)) for i = 0, 1, 2, . . . with subscripts j, jk, jkl, . . . . Each generation 0
event arrives according to the baseline intensity ν̃(·) with mark sampled from the
distribution F , and each event beyond generation 1 is generated according to the
excitation function ω̃(·, ·, ·) with mark similarly sampled from the distribution F .
Events beyond generation 2 are represented by the vertical dotted line.

say 100, and count the number of events on each simulated sample path. The mean 1

or median of these simulated event numbers will then be our point prediction of 2

the number of events of the MaSEPTiDE process in the interval (T, T̃ ]. It is also 3

worth noting that with sufficiently many replications, the mean of the simulated 4

event numbers should be consistent with the prediction based on that of the solve- 5

the-equation approach. 6

In practice, when we use the fitted model to make predictions, whether by using 7

the solve-the-equation approach or by using the simulation-based approach, the 8

unknown functions ν̃ and ω̃, and the event mark distribution F need to be replaced 9

by their respective estimators. In our numerical experiments, we have used the 10

plugin estimators ν̃(·; θ̂) and ω̃(·, ·, ·; θ̂) for ν̃ and ω̃, and the empirical distribution 11

function F̂ of the event marks n1, n2, . . . , nN(T ) for F . One implication is that the 12

constant in (4.4.5) is set to 13

R̂ =

∫
N
r(n) dF̂ (n) =

1

N(T )

N(T )∑
i=1

r(ni).

Finally, we note that, if the target of prediction is the total number of events of the 14

process N in the interval (0, T̃ ], then we simply add the observed number of events 15

in (0, T ], that is, N(T ), to the predicted number of events in (T, T̃ ], as in (2.8.1). 16
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4.5 Application to the Tweet Data1

Here, we report the results of applying the proposed model and inference method-2

ologies presented in Section 4.1-4.4 to the Twitter data described in Section 1.3. The3

performance of our prediction methods is also compared to those of the SEISMIC4

and the TiDeH model. The implementation details for the SEISMIC and the TiDeH5

model have been given in Section 3.3 and Section 3.4 respectively.6

4.5.1 Typical Parameter Values7

We fitted the MaSEPTiDE model to all the retweet cascades in the training data set8

with different censoring times, using the ML method described in Section 4.2. The9

estimated parameter values with the censoring time of seven days are found to be10

highly skewed, with the median estimates of α, β, γ, δ1 and δ2 equal to 48.349, 0.072,11

7.209, 1.416, and 0.007 respectively. To have some idea about the typical parameter12

values found in practice, we consider five random cascades from the training data13

set, depicted previously in Figure 1.3.2, and display their estimated parameter values14

in Table 4.5.1. Their final popularity values have also been included for statistical15

inference.

Table 4.5.1: Fitted parameter values and the actual final popularity for each of the
sample cascades shown in Figure 1.3.2. The parameter values are useful in gaining
insights on the retweet activities.

Sample cascade α̂ β̂ γ̂ δ̂1 δ̂2 N(T̃ )
1 5.711 0.024 1.455 1.254 0.173 159
2 3.075 0.021 6.351 1.414 0.029 85
3 58.136 0.246 1.144 1.490 0.001 55
4 8.209 0.031 2.095 1.444 0.040 74
5 4.173 0.019 5.049 1.229 0.046 89

16

The estimated values of the parameter β suggest very fast decays of infectivity,17

with the times taken for the infectivity to drop to 1% of the initial levels vary from18

about 19 seconds (log(100)/0.246 = 18.7 seconds) in sample cascade 3 to about 419

minutes (log(100)/0.019 = 242.4 seconds) in sample cascade 5. While the estimated20

values of the shape parameter of the memory kernel δ1 are more or less similar21

to each other, the scale parameter δ2 has substantially more variable values. In22

particular, the extremely small δ̂2 value of 0.001 in sample cascade 3 implies a very23

long range memory effect, which, together with a relatively large β̂ value, suggest24

that the later retweets are more likely to be generated by the original tweet or25

retweets within the first few seconds of the original tweet, if any. In contrast, the δ̂226

value for sample cascade 1 is 0.173, which implies that the later retweets are more27

likely to be generated by more recent retweets.28
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The estimated values of the scale parameter α of the baseline intensity, together 1

with the values of the δ parameters and the final popularity, suggest highly variable 2

proportions of generation 0 retweets, from 3.4% (= 5.711Φ(T̃ ; 1.254, 0.173)/159) in 3

sample cascade 1 to nearly 100% (= 58.136Φ(T̃ ; 1.490, 0.001)/55) in sample cascade 4

3. On another note, the estimated γ values on the five sample cascades also seem to 5

have quite substantial variation, with the increase in the excitation effect associated 6

with one unit increase in the number of followers of a retweeting account on the log 7

scale varies from 1.144 to 6.351 units. The overall shapes of parameters from the 8

infectivity function p(·), the impact function r(·), and the memory kernel function 9

φ(·) for these five sample cascades have been appended in Figure B.1.1 for reference. 10

4.5.2 Model Goodness-of-Fit 11

By the goodness-of-fit assessment method described in Section 4.3, we tested the 12

uniformity of the point process residuals Λ̂(τi) over the interval (0, Λ̂(T )] using the 13

Kolmogorov-Smirnov test. At significance levels of 0.01 and 0.05 with different 14

censoring times, the percentages of all the cascades from the training data set where 15

the estimated MaSEPTiDE model passes the residual uniformity test are shown in 16

Table 4.5.2. From this table we note that the percentage of cascades from which the

Table 4.5.2: The percentages of cascades in the training data set where the MaSEP-
TiDE model passes the goodness-of-fit test at different significance levels and cen-
soring times. At significance levels of 0.01 and 0.05, the percentages of cascades
passing the test using data accumulated in the first 12 hours are considerably high,
at 82% and 78% respectively, which indicate a good fit of the model to the data.

Significance level
Censoring time (hours)

2 4 6 8 10 12 168
0.01 92.0% 88.2% 85.8% 84.2% 82.8% 81.8% 74.9%
0.05 89.3% 84.7% 81.9% 80.1% 78.5% 77.5% 69.2%

17

estimated model passes the test decreases when the censoring time increases. This 18

is to be expected as the amount of data increases with the censoring time, implying 19

that the difficulty of finding a fitting model also increases. 20

At significance level of 0.01, when fitted to the complete retweet cascade data, 21

that is, with the censoring time of 168 hours or seven days, the MaSEPTiDE model 22

passes the goodness-of-fit test on roughly 75% of the cascades. In contrast, by the 23

censoring time of 12 hours, the MaSEPTiDE model passes the goodness-of-fit test 24

on the majority of the cascades, at roughly 82%. Given that the majority of the 25

retweets, or 80% on average, have already occurred within the first 12 hours since 26

the publications of the original tweets, as shown in Table 1.3.2, we conclude that the 27

MaSEPTiDE model is able to describe the retweeting dynamics reasonably well. 28
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4.5.3 Prediction Performance Comparisons1

For all the tweets in the test data set, we applied the fitted MaSEPTiDE model with2

the retweet cascades censored at different times to predict their final popularity, us-3

ing the prediction methods discussed in Section 4.4. For the purpose of comparison,4

we also obtained the predictions based on the SEISMIC of Zhao et al. (2015) and5

the TiDeH model of Kobayashi and Lambiotte (2016). We only report the results of6

comparisons with these two methods, because they were found to outperform other7

methods in the literature, such as those reported in Crane and Sornette (2008),8

Agarwal et al. (2009), Szabo and Huberman (2010), and Gao et al. (2015), both in9

our numerical experiments and in the works of Zhao et al. (2015) and Kobayashi and10

Lambiotte (2016). We further note here that although the hybrid method of predic-11

tion proposed by Mishra et al. (2016) performs relatively better than the SEISMIC12

and the TiDeH model, the method has not been included for comparisons since it13

requires additional features such as those based on the other retweet cascades in the14

discriminative step to obtain accurate popularity predictions.15

Our point prediction of the final popularity of a tweet, or the total number16

of retweets by time T̃ = 7 days, using the MaSEPTiDE model estimated with17

the retweet cascade observed up to the censoring time T , is given by N(T̃ )pred =18

N(T )+(N(T̃ )−N(T ))pred as in (2.8.1), where (N(T̃ )−N(T ))pred is obtained either as19

the conditional expectation using the solve-the-equation approach or the simulation-20

based approach, or as the conditional median using the simulation-based approach.21

We have mentioned in Section 4.4.3 regarding the consistency of both the solve-22

the-equation and simulation-based approaches when using the conditional expec-23

tation as a point prediction. Our numerical experiments have confirmed that the24

two approaches produce identical predictions up to a negligible numerical error, as25

expected. For the majority of the retweet cascades, a moderately large number of26

simulation replications, for instance 100 or even 50, was enough to produce a pre-27

diction consistent with that by the solve-the-equation approach. The same set of28

simulation replications was used to calculate the conditional median. Justification29

on the suggested number of simulation replications can be found in Appendix C.2.30

To assess the performance of the conditional mean predictions, we shall first fol-31

low the literature (Zhao et al., 2015; Kobayashi and Lambiotte, 2016) and use the32

absolute percentage error (APE) shown in (3.5.3) to compare the accuracy of predic-33

tions by different models. Each prediction method under evaluation was applied to34

each of the retweet cascades in the test data set with censoring times T = 2, 4, . . . , 1235

hours, as most retweets would have already occurred within the first few hours since36

the publication of the original tweet, as exhibited in Table 1.3.2.37

For each censoring time, we calculated the APEs of the conditional mean predic-38
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tions based on the proposed model and the two competing models. The predictions 1

by the SEISMIC approach were calculated using the R package seismic. The predic- 2

tions by the TiDeH model approach were calculated using the algorithm described 3

in Section 3.4, with the window size parameter in the estimation step set to one 4

hour. Due to the lack of a principled approach to select the window size, we chose 5

this value based on experimenting with several different values and selecting the one 6

that seemed to produce reasonable estimates of the infectivity function by visual 7

inspection. 8

The boxplots of the APEs of the conditional mean predictions by the three 9

models at different censoring times are shown in Figure 4.5.1. In each boxplot, the
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Figure 4.5.1: Boxplots of the APEs of predictions by the MaSEPTiDE model, the
SEISMIC and the TiDeH model, at censoring times T = 2, 4, . . . , 12 hours. The
horizontal thick bar in each boxplot indicates the median while the circular point
indicates the respective mean of APEs. Both the median and mean of APEs demon-
strate the superior performance and stability of the MaSEPTiDE model.

10

horizontal thick bar indicates the median APE (MdAPE), and the circular point 11

indicates the mean APE (MAPE). The actual values of the MdAPEs and MAPEs at 12

all the censoring times considered are also provided in Table 4.5.3. From Figure 4.5.1 13

and Table 4.5.3, the MaSEPTiDE model seems to have consistently smaller MdAPE 14

and MAPE at each T than the SEISMIC. Compared to the TiDeH model, the 15

MaSEPTiDE model has clearly better performances when T = 2, 4, 6 hours, both 16

by the MdAPEs and MAPEs. The performances of these two models are comparable 17

when T = 8 hours, but the MaSEPTiDE model appears to slightly underperform 18

the TiDeH model when T = 10, 12 hours. 19

Note how the conditional mean predictions have been used here in obtaining 20
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Table 4.5.3: Median and mean APEs of the popularity predictions by different
approaches with observations up to various censoring times T . The MaSEPTiDE
model consistently performs better than the SEISMIC at all the censoring times
based on both the median and mean of APEs. The MaSEPTiDE model performs
better at earlier censoring times T = 2, 4, 6 hours compared to the TiDeH model,
is comparable when T = 8 hours, but underperforms the TiDeH model when T =
10, 12 hours.

T Median APE (%) Mean APE (%)
(hours) MaSEPTiDE SEISMIC TiDeH MaSEPTiDE SEISMIC TiDeH

2 19.1 22.8 23.7 26.1 29.3 33.8
4 13.9 18.6 17.1 19.8 24.8 27.8
6 11.2 15.1 12.7 16.5 21.2 21.6
8 9.5 13.1 9.3 14.3 18.9 15.8
10 8.2 11.7 7.4 12.7 17.1 12.2
12 7.3 10.6 5.9 11.4 15.5 9.6

the MdAPEs and MAPEs of the models at the various censoring times, although1

the optimal functionals relative to the MdAPE and MAPE, as demonstrated in Ap-2

pendix A, are the harmonic median and the order −1 median respectively. We have3

not used such prediction functionals primarily due to the computational complexity4

involved for their acquisitions, and the fact that nearly all past instances of existing5

works in the literature have consistently used the predictive mean as the point pre-6

diction. However, the APE as a prediction error measure is not consistent with the7

feature of the predictive distribution used as a point prediction here, which is the8

expectation. A more appropriate error measure when the conditional expectation9

is used as the point prediction, as conferred in Section 3.5, is the squared error.10

Therefore, we also calculated the prediction squared errors by the three models.11

The boxplots of the squared errors by the three models at different censoring times12

are shown in the left panel of Figure 4.5.2.13

As the models can occasionally produce extremely large predictions, even in-14

finity in the case of SEISMIC when cascades falling under the supercritical regime15

are prevalent, the outlying values have not been shown in the boxplots of Fig-16

ure 4.5.1 and Figure 4.5.2 for better visualization. The mean squared prediction17

errors (MSEs) at different censoring times are indicated by the circular points in the18

boxplots, and their squared roots, that is, the root mean squared errors (RMSEs),19

are shown in Table 4.5.4. From Figure 4.5.2 and Table 4.5.4, we note that, using20

the RMSE as the performance measure, the MaSEPTiDE model outperforms the21

SEISMIC at all the censoring times, and similar to the conclusion drawn based on22

the median of APEs, the MaSEPTiDE model again, outperforms the TiDeH model23

when T = 2, 4, 6 hours but slightly underperforms when T = 8, 10, 12 hours. In24

comparison, the SEISMIC only outperforms the TiDeH model at T = 2, 4 hours.25
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Figure 4.5.2: Left: squared prediction errors when the mean of the predictive dis-
tribution is used as the point prediction; Right: absolute prediction errors when the
median is used. The thick horizontal bar in each boxplot shows the median of the
errors, and the circular point shows the mean of the errors. Under both cases, the
MaSEPTiDE model performs well at earlier censoring times T = 2, 4, 6 hours.

Table 4.5.4: Root mean squared errors (RMSEs) and mean absolute errors (MAEs)
of predictions at different censoring times. Using the RMSE as the performance
measure, the MaSEPTiDE model consistently outperforms the SEISMIC at all the
censoring times, but only outperforms the TiDeH model at T = 2, 4, 6 hours. Using
the MAE as the performance measure, the MaSEPTiDE model, similarly, outper-
forms the TiDeH model at times T = 2, 4, 6 hours.

T RMSE MAE
(hours) MaSEPTiDE SEISMIC TiDeH MaSEPTiDE TiDeH

2 36.3 42.2 45.1 32.0 40.2
4 28.5 36.5 49.1 25.0 43.0
6 24.5 33.4 29.2 21.3 25.6
8 21.1 29.8 20.9 18.4 18.2
10 18.8 26.5 16.3 16.5 14.1
12 17.3 23.6 13.2 14.6 11.5

To assess the performance of the conditional median predictions by different 1

models, we shall use the mean absolute error (MAE), as advised by Gneiting (2011). 2

The conditional median predictions by the MaSEPTiDE model were calculated by 3

the simulation-based approach described in Section 4.4.3. The conditional median 4

predictions by the TiDeH model were similarly calculated using a simulation-based 5

approach, although the simulation of the TiDeH model was achieved by using a less 6

efficient method where the events have to be simulated serially one after another 7

using the rejective method of Lewis and Shedler (1979), as detailed in Section 3.4. 8

The conditional median prediction by the SEISMIC has not been included in this 9

comparison because this model does not specify the form of its intensity process 10

beyond the censoring time, and thus we cannot use the simulation-based approach 11

to obtain its conditional median. 12
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The right panel of Figure 4.5.2 shows the absolute errors of the conditional1

median predictions by the MaSEPTiDE model and the TiDeH model at different2

censoring times, where, as before, the circular points indicate the MAEs of the3

predictions at the corresponding censoring times. See also Table 4.5.4 for the specific4

MAE values. By the MAE, the MaSEPTiDE model is superior to the TiDeH model5

at the censoring times T = 2, 4, 6 hours, and is comparable albeit slightly inferior6

at the larger censoring times T = 8, 10, 12 hours.7

To further demonstrate how the MaSEPTiDE model outperforms the SEISMIC8

and the TiDeH model from a slightly different perspective, we append in Table B.2.19

the percentages of cascades with considerably small APE values (< 5%), grouped ac-10

cording to the quantiles of the observed final popularity levels of these cascades, that11

is, [q0.0, q0.2),[q0.2, q0.4),[q0.4, q0.6),[q0.6, q0.8), and [q0.8, q1.0]. Consistent with the con-12

clusions drawn based on the MdAPE, MAPE, RMSE, and MAE, the MaSEPTiDE13

model is highly accurate in predicting the popularity of tweets based on earlier cen-14

soring times T = 2, 4, 6 hours. It should be noted, however, that despite these highly15

accurate predictions, the MaSEPTiDE model may occasionally produce grossly er-16

roneous prediction values. This issue will be discussed in Section 6.1.2.17

By all the performance evaluation criteria considered, the prediction by the18

MaSEPTiDE model is clearly more accurate than those by the two competing mod-19

els, especially when the prediction needs to be made based on a shorter censoring20

time, for example within six hours since the publication of the original tweet.21

4.6 Discussion22

Additional implementation details of the MaSEPTiDE model shall be given here,23

including the full summary statistics of a retweet cascade, the proposed approach to24

expedite simulations, the procedures to validate the estimation and prediction pro-25

cesses, and finally the various candidate models with different component functions.26

4.6.1 Sample Summary Statistics27

We have sampled a retweet cascade from the test set of the Twitter data presented in28

Section 1.3 to demonstrate the full summary statistics obtained from the procedures29

described in Section 4.1-4.4, and the summary statistics are presented in Table 4.6.1.30

As some of the interpretations of the statistics have been given prior to this point,31

we shall only highlight the remaining important ones.32

The parameters in Table 4.6.1, or those of any other cascades in the test data set,33

were estimated based on a set of initial values learned from the training data, using34

the stochastic gradient descent method. The iterative method involves minimizing35

the objective function written as a sum of differentiable functions, or individual36
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Table 4.6.1: Summary statistics of a retweet cascade fitted by the MaSEPTiDE
model at censoring times T = 2, 4, . . . , 12 hours ordered according to the estimated
parameters, the number of observed retweets, the integrated intensity, the p-value
from the test of uniformity, the actual final popularity, predictions based on the
conditional expectation and the conditional median with their corresponding per-
formance measures, the prediction interval, and the integrated baseline intensity
beyond the censoring time.

Statistics
Censoring time (hours)

2 4 6 8 10 12
α̂ 95.957 13.165 100.646 100.656 98.246 99.447

β̂ 0.098 0.104 0.096 0.096 0.097 0.096
γ̂ 64.889 80.504 64.584 64.447 65.606 64.84

δ̂1 1.349 1.317 1.315 1.313 1.326 1.318

δ̂2 0.005 0.005 0.005 0.006 0.005 0.005
N(T ) 1218 1347 1404 1443 1466 1490

Λ̂(T ) 1217.91 1348.07 1404.15 1443.06 1466.77 1490.24
p-value 0.19 0.17 0.24 0.25 0.26 0.27

N(T̃ ) 1668 1668 1668 1668 1668 1668
STE meana 1645.41 1698.63 1693.71 1695.91 1681.46 1690.93
SB meanb 1637.44 1644.44 1699.80 1706.34 1690.64 1697.00

SB medianc 1646 1699 1694 1695 1682 1690
APE 1.35 1.84 1.54 1.67 0.81 1.37

Squared error 933.91 555.07 1011.24 1469.96 512.57 841.00
Absolute error 22 31 26 27 14 22

q0.025 1218 1347 1404 1443 1466 1490
q0.975 2288 2051 2129 2073 2006 2042

N̂ 427.06 351.63 289.71 252.91 215.46 200.93
aConditional mean prediction from the solve-the-equation approach
bConditional mean prediction from the simulation-based approach
cConditional median prediction from the simulation-based approach

negative log-likelihood functions, with the aim to obtain a parameter vector which 1

has a considerably small error based on a certain learning rate and a set batch size. 2

More details on the method can be found in Saad (1998) and Kiwiel (2001). 3

The insights of retweet activities can also be gained based on the estimated 4

parameter values in a similar fashion to those provided in Section 4.5.1, except that 5

we now have censoring times T = 2, 4, . . . , 12 hours instead of a fixed T̃ = 7 days. 6

Furthermore, if we apply the estimated parameters θ̂ to the integrated intensity 7

from 0 to T , that is, 8

Λ̂(T ) = Λ(T ; θ̂) =

∫ T

0

λ(s; θ̂) ds, (4.6.1)

for example using T = 2 hours and θ̂ = (95.957, 0.098, 64.889, 1.349, 0.005)>, we 9

would obtain a value consistent to that of the observed popularity up to the censoring 10

time, at N(T ) = 1218 and Λ̂(T ) = 1217.91. Similar procedures can be applied to 11
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later censoring times to yield the respective values of N(T ) and Λ̂(T ) in Table 4.6.1,1

where marginal differences can be observed. While this procedure seems to have2

limited utility here, it is important when we setup the prior distribution for model3

parameters in Chapter 5, or more specifically, Section 5.2.3.4

Next, the p-values obtained using the Kolmogorov-Smirnov test of uniformity5

shown in Table 4.6.1 are sufficiently larger than 0.05 at all the censoring times,6

implying that the residuals are uniformly distributed. An informal approach to7

evaluate the goodness-of-fit for a point process model, as discussed in Section 4.3,8

would be to visually inspect the uniformity of its residuals, using for example the9

histogram. Figure 4.6.1 shows the histograms of residuals at different censoring times10

T = 2, 4, . . . , 12 hours. Purely visually, the residuals seem to be rather uniformly11

distributed.
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Figure 4.6.1: Histograms to visualize the uniformity of residuals for the MaSEPTiDE
model with parameters set to their ML estimates θ̂ at different censoring times. The
x-axes indicate the cumulative retweet counts, while the y-axes indicate the point
process residuals λ̂(τi), i = 1, 2, . . . , N(T ) over the interval (0, λ̂(T )]. The residuals
at all the censoring times seem to be rather uniformly distributed.

12

We have also mentioned that point prediction based on the conditional ex-13

pectation can be obtained by using either the solve-the-equation approach or the14

simulation-based approach, and that with sufficiently many simulation replications,15

both methods should yield consistent prediction values. This is proven in Table 4.6.1,16

where point predictions based on both approaches seem to exhibit only marginal dif-17

ferences at all the censoring times T = 2, 4, . . . , 12 hours.18

Using the final popularity of the retweet cascade N(T̃ ), we can obtain different19

performance measures based on different functionals of the predictive distribution20

at each censoring time. As mentioned in Section 4.5.3, we have used the APE as21
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a performance measure for the conditional expectation from the solve-the-equation 1

approach, and the squared error or absolute error for the conditional expectation or 2

the conditional median from the simulation-based approach. It is worth noting that 3

although the MdAPE or MAPE is theoretically inconsistent with the conditional 4

expectation used here, the final conclusions drawn based on different performance 5

measures are largely similar. From Table 4.6.1, all the performance measures demon- 6

strate that the MaSEPTiDE model is able to predict the future popularity at each 7

censoring time reasonably well, and the precision increases when more data accu- 8

mulates over time. 9

The prediction interval at each censoring time can also be obtained from the sim- 10

ulated event numbers by using some appropriate quantiles, for example [q0.025, q0.975], 11

with q0.025 denoting the 0.025-quantile and q0.975 denoting the 0.975-quantile. The 12

future popularity is considered to have been correctly predicted when the predic- 13

tion interval at a certain censoring time includes the actual final popularity, and 14

that the interval is of plausible range. A close inspection on Table 4.6.1 reveals 15

that the prediction interval has successfully covered the actual final popularity since 16

T = 2 hours, and the interval gets narrower over time, implying a gradual increase 17

in precision. 18

Figure 4.6.2 shows the simulated sample paths and the corresponding predic- 19

tion interval for this specific retweet cascade censored at T = 2 hours. The close
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Figure 4.6.2: Left: sample paths generated using the simulation-based approach for
the MaSEPTiDE Ñ process at T = 2 hours; Right: the corresponding prediction
interval obtained based on the quantiles [q0.025, q0.975] from the generated event num-
bers. The plots in both panels indicate that the future popularity of the tweet has
been successfully predicted.

20

proximity of the simulated trajectories to the actual sample path as shown in the 21

left panel of Figure 4.6.2 demonstrates the capability of our MaSEPTiDE model 22

to quickly capture the retweeting dynamics and predict the future evolution of this 23

cascade. The right panel of Figure 4.6.2 shows the corresponding prediction interval, 24
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and conveys the similar message that accurate tweet popularity prediction has been1

made based on early retweeting dynamics.2

When simulating the MaSEPTiDE Ñ process over the interval (0, T̃ − T ], we3

note that the procedure can be very time consuming when the number of events to4

be simulated on each iteration is large. For that, it would be useful to estimate the5

minimum number of events to be generated, which can be calculated by integrating6

over the baseline intensity function ν̃(·) for the MaSEPTiDE Ñ process from 0 to7

T̃ − T with the estimated parameters θ̂, or specifically,8

N̂ ≡ N̂(T̃ − T ) = N(T̃ − T ; θ̂) =

∫ T̃−T

0

ν̃(s; θ̂) ds. (4.6.2)

The N̂ value naturally decreases as the censoring time increases, as shown in Ta-9

ble 4.6.1. This value can be used to expedite the simulation of the MaSEPTiDE Ñ10

process, as demonstrated in Section 4.6.2.11

4.6.2 Expediting Simulation12

When using the simulation-based approach, we note that, for some very popular13

tweets, the retweet cascades are very long and the numbers of retweet events to be14

simulated are very large, and therefore simulations can take a long time to complete.15

A trick we used to mitigate this issue is to simulate the process Ñ with a smaller16

baseline intensity function, say ν̃(·)/S, and inflate the simulated event numbers by17

the factor S. This factor can be referred to as the acceleration factor.18

The value N̂ from (4.6.2) can help to determine the acceleration factor suitable19

to be used in the simulations. Under some circumstances, one may simply resort to20

using the N̂ value as the acceleration factor in place of S. However, this may be21

be problematic for some retweet cascades as the issue of overdeflating the baseline22

intensity may arise. Specifically, if the baseline intensity has been deflated dispro-23

portionately, then there will be barely any events generated, and the numbers of24

simulated events will be zeros prior to inflating them. This contradicts to the real-25

ity when some events are actually simulated if the baseline intensity has not been26

deflated. Through several numerical experiments, we hereby propose the solution27

for how the acceleration factor S can be determined based on N̂ , as shown in Ta-28

ble 4.6.2. Such treatment is reasonably effective to improve the efficiency of the29

MaSEPTiDE simulations, without disrupting the conditional mean and conditional30

median predictions based on the simulated event numbers compared to when the31

baseline intensity is kept at its original form.32

As an illustrative example, we take the retweet cascade shown in Table 4.6.1,33

and select the censoring time T = 2 hours, with N̂ = 427.06. Using the deflated34
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Table 4.6.2: The acceleration factor S used to expedite the simulations of the
MaSEPTiDE Ñ process, based on the range of N̂ , where bxe denotes the near-
est integer of x. The intuition is to speed up the simulations without overdeflating
the baseline intensity function ν̃(·).

N̂ [0, 10) [10, 102) [102, 103) [103, 104) [104,∞)

S 1 b0.25N̂e b0.50N̂e b0.75N̂e bN̂e

baseline intensity ν̃(·)/S where S = b0.5(427.06)e = 214 based on Table 4.6.2, with 1

the estimated parameter values for α, β, γ, δ1, and δ2 being 95.957, 0.098, 64.889, 2

1.349, and 0.005 respectively, the simulated event numbers for the MaSEPTiDE Ñ 3

process at 100 replications are shown as follows. These event numbers are then

0 0 0 1 1 6 2 2 4 5 0 1 3 1 2 1 2 3 1 8 1 2 2 3 2
0 2 2 1 1 3 5 2 1 2 3 2 1 1 2 2 2 4 3 5 0 4 3 3 2
1 1 3 5 3 0 3 0 1 3 1 1 2 1 2 1 2 1 3 1 0 4 1 2 1
3 2 1 2 4 3 0 0 1 2 3 0 2 0 2 3 4 2 1 2 2 1 0 2 2

4

inflated with the acceleration factor S, and added to the observed number of events 5

N(T ) = 1218. The vector of event counts can then be used to obtain the conditional 6

expectation and the conditional median, at 1637.44 and 1646 respectively. The pre- 7

diction interval can also be obtained from the same set of simulated event numbers, 8

where [q0.025, q0.975] = [1218, 2288]. 9

A natural question to ask is whether or not the remarkable performance based 10

on interval prediction applies to the remainder of the retweet cascades in the data 11

set. That said, using the whole test data, the coverage probabilities at the stipu- 12

lated censoring times based on [q0.025, q0.975] are all less than the nominal coverage 13

probability of 95%, ranging only from 59.5% when T = 2 hours to 65.9% when 14

T = 12 hours. Ideally, when the process generating mechanism has been properly 15

identified and captured, the coverage probability should be very close to the nominal 16

level (Brooks and Gelman, 1998), even when the cascade has only been observed 17

for a short period of time. This will be substantiated by the systematic validation 18

procedures in Section 4.6.3. 19

4.6.3 Simulation Experiments 20

In order to validate the MaSEPTiDE estimation and prediction procedures, we 21

utilized the Poisson cluster process interpretation demonstrated in Section 4.1.2. 22

That is, we generated the immigrants based on the baseline intensity function ν(·) 23

and offspring using the excitation function ω(·, ·, ·), over the time interval (0, T̃ ]. 24

The corresponding event mark for each generated event time was simulated based 25

on a common normal density f(·;µ, σ2) with its mean and variance estimated from 26
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the training data set. We generated 1,000 synthetic cascades by this convention.1

For each of the synthetically generated retweet cascades, we censored them ac-2

cordingly at T = 2, 4, . . . , 12 hours. Then, we used the simulation-based approach3

to obtain the corresponding prediction interval [q0.025, q0.975] at each of the censor-4

ing time for each of the cascade, based on the MaSEPTiDE Ñ process. It should5

be noted, however, that the procedures used here to obtain the prediction interval6

vary slightly than those discussed in Section 4.4.3. Specifically, for a retweet cas-7

cade at a certain censoring time T , instead of using the same set of parameters θ̂8

to simulate the MaSEPTiDE Ñ process, we obtained the Hessian matrix H from9

the estimated parameter values θ̂ and used it to generate new parameter vectors θ∗k10

following a multivariate normal distribution, based on the mean vector θ̂ and the co-11

variance matrix H−1, at k simulation replications. Intuitively, the matrix H should12

be positive-definite to be invertible, and the parameter values should naturally follow13

that α > 0, β > 0, γ > 0, δ1 > 1, and δ2 > 0 as shown in Section 4.1.1.14

The newly acquired parameter vectors θ∗k can then be used to simulate the15

MaSEPTiDE Ñ process for each of the synthetic retweet cascades, thus yielding16

their respective prediction intervals at each of the censoring times. Table 4.6.317

shows the coverage probabilities of interval predictions at different censoring times18

based on all the synthetic retweet cascades. It can be observed that approximately

Table 4.6.3: The coverage probabilities of interval predictions based on the synthetic
data censored at times T = 2, 4, . . . , 12 hours. The coverage gradually increases with
time, attaining the nominal level at around T = 8 hours.

Censoring time (hours) 2 4 6 8 10 12
Coverage (%) 85.8 92.0 93.3 94.6 94.7 95.9

19

86% of the final popularity has been successfully predicted from as early as T = 220

hours, and the coverage increases over time, achieving the nominal probability of21

95% at around T = 8 hours.22

4.6.4 Candidate Models23

Prior to arriving at the final form of our MaSEPTiDE intensity function, we have also24

considered other combinations of the component functions, illustrated as follows,25

p1(t; β) = e−βt

p2(t; β) =

(
1 +

t

β1

)−β2
p3(t; β) = 1 ∧

(
t

β1

)−β2
φ1(t; δ) = δe−δt

φ2(t; δ) =
δ2(δ1 − 1)

δ1

(
1 +

δ2t

δ1

)−δ1
φ3(t; δ) =

δ2 − 1

δ1δ2

(
1 ∧

(
t

δ1

)−δ2)
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where the forms of p(·) and φ(·) may vary but the impact function r(·) is fixed. This 1

means that the excitation function may be a combination of p1(·)φ1(·), p1(·)φ2(·), . . . , 2

and p3(·)φ3(·), with each of them multiplied with the impact function r(·). The 3

specific combination of the component functions reported and used in our model 4

formulation that has the best fit to the training data is ω(·, ·, ·) = p1(·)r(·)φ2(·), as 5

shown in (4.1.3). 6

4.7 Concluding Remarks 7

We have proposed a marked self-exciting point process model in this chapter, termed 8

the MaSEPTiDE, to model the retweeting dynamics and to predict the future popu- 9

larity of tweets. The MaSEPTiDE is capable of modelling a large number of retweet 10

cascades adequately, and its prediction performance is superior to those of the com- 11

peting models and approaches in the literature that require the same input. 12

When the prediction is based on observing a retweet cascade for a long period of 13

time, the approach based on the TiDeH model of Kobayashi and Lambiotte (2016) 14

is found to outperform our model by a small margin. However, considering the fact 15

that this small advantage of the TiDeH model is not realized until the retweet cas- 16

cade has been observed for eight hours or longer, when the majority of the retweet 17

events would have already occurred, its practical significance is rather limited. On 18

the contrary, the approach based on the MaSEPTiDE model is able to provide ac- 19

curate prediction of the final popularity based on observations within two hours 20

since the publication of the original tweet. Another issue with the TiDeH model 21

is that the nonparametric estimation step to obtain the initial raw estimate of the 22

infectivity curve needs a large amount of data to work well. In fact, in their nu- 23

merical experimentation, Kobayashi and Lambiotte (2016) only verified the superior 24

performance of their prediction approach relative to the SEISMIC on 738 very long 25

cascades (containing 2,000 or more retweets), which account for less than 0.5% of all 26

the retweet cascades. In contrast, the approach based on the MaSEPTiDE is fully 27

parametric, and therefore does not require as much data to estimate. 28

The specific parametric forms of the functions in the MaSEPTiDE model have 29

been selected from a class of candidate models by comparing their goodness-of-fit 30

on the retweet cascades in the training data set and identifying the model that can 31

fit most of the cascades. In the class of candidate models, we have considered other 32

parametric forms of the component functions, such as infectivity functions that 33

decay at polynomial rate, and memory kernel functions that decay exponentially 34

fast. The model with the specific forms of the component functions reported herein 35

has the best goodness-of-fit on the training data set. 36

To further improve the MaSEPTiDE model, more complex models, such as those 37
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that incorporate the calendar time effects (Fox et al., 2016; Kobayashi and Lam-1

biotte, 2016) are worth considering. Another aspect of our approach that can be2

improved is that our approach still requires the observation of the retweet cascade3

for a substantial amount of time to accumulate enough data to identify the model (a4

post-publication prediction method), even though the required observation time is5

much less compared to approaches based on other models such as the TiDeH model.6

If we make stronger assumptions on the model parameters across the cascades, then7

parameter estimation might be achieved using only the training data set, which in8

turn allows us to predict the final popularity of a tweet as soon as it is published,9

or even before it is published.10

On another remark, the MaSEPTiDE model is a microscopic level prediction11

method. This implies that the retweet cascades can be evaluated individually, from12

parameter estimation to point prediction using the solve-the-equation approach or13

the simulation-based approach. An intuitive way to obtain the results for a huge14

number of cascades efficiently under the microscopic level method would be to run15

them in parallel, using for example some typical computational clusters.16

Finally, an important limitation of the data considered in our work, originally17

collected by Zhao et al. (2015), is that it contains only cascades with at least 4918

retweets. Such data is by no means representative of all the tweets published by19

Twitter users on the network, as the majority of the tweets do not even get a20

single retweet. Therefore, models developed based on such data are only useful for21

popularity predictions of reasonably popular tweets. To develop models suitable for22

the predictions of the popularity of average tweets, one would need to collect suitable23

random samples of tweets and their retweet cascades, and build models accordingly.24
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Chapter 5 1

An Empirical Bayes Approach 2

Tweets are renowned for their ephemeral nature, gaining popularity rapidly but 3

faced with their eventual decays soon afterwards. Such episode begs emphasis on 4

earlier tweet popularity predictions, or popularity predictions of tweets based on 5

shorter censoring times. The MaSEPTiDE model described in Chapter 4 has served 6

this purpose well, demonstrating superior prediction performance over the compet- 7

ing approaches in the literature. Nonetheless, it is still a post-publication prediction 8

method which needs to rely on some observations of retweets prior to making a 9

prediction. This affirms that pre-publication tweet popularity prediction remains a 10

gap to be bridged. 11

To the best of our knowledge, there has been no published work that specifically 12

addresses the problem of pre-publication tweet popularity prediction, except for that 13

of Martin et al. (2016), which has been discussed in Section 3.2.1. Performing tweet 14

popularity prediction at the time of publication is thus one of the motivations to our 15

work in this chapter. For that, it is worth noting that information readily available 16

at time zero for each retweet cascade we consider comprises only of t0 and n0, which 17

correspond to the relative tweet time and the number of followers of the tweeter 18

respectively. Our novel prediction methodology proposed herein shall leverage such 19

information. 20

Another important motivation to this chapter is the limited use of the training 21

data set by the state-of-the-art approaches for post-publication tweet popularity 22

predictions. For instance, the MaSEPTiDE model we proposed in Chapter 4 which 23

was found to outperform the selected competing prediction methods, only utilizes the 24

training data to inform its model construction, and completely ignores the training 25

data when fitting the model to the observed retweet sequence of a specific tweet 26

whose popularity is to be predicted. This has led to computational difficulties when 27

the tweet in question has only accumulated a small number of retweets by the 28

censoring time. As a result, the approach may struggle when attempting to obtain 29

the model parameter estimate and may subsequently fail to produce any prediction 30

69



at all.1

The last motivation is the computational complexity of the approaches based2

on the MaSEPTiDE model and the TiDeH model. When making tweet popularity3

predictions from the estimated models, each of the approaches requires either nu-4

merically solving an integral equation for a positive function followed by numerically5

integrating the solution function over a suitable interval, or simulating the fitted6

point process model from the censoring time to a future time point over sufficiently7

many iterations followed by extracting suitable numerical features from the simu-8

lated sample paths. However, the numerical procedure to solve the integral equations9

can occasionally fail to produce a legitimate solution, the numerical integration may10

fail even though a legitimate solution is obtained, and the simulation-based method11

can be intolerably slow, especially on very popular tweets.12

In this chapter, we propose a novel approach which is not only capable of mak-13

ing pre-publication tweet popularity prediction, but is also able to produce more14

accurate predictions than the competing approaches at later censoring times. The15

approach is based on an inhomogeneous Poisson process model for the retweet time16

sequence, with advantages such as the ease-of-implementation and computational17

stability. Therefore, it is also much simpler compared to the self-exciting point pro-18

cess models in the literature (Zhao et al., 2015; Kobayashi and Lambiotte, 2016;19

Mishra et al., 2016), and is straightforward to make a prediction after fitting the20

model.21

We further propose a novel empirical Bayes type approach where the prior distri-22

bution for the model parameters specific to a tweet is constructed using the training23

data external to the tweet, and the maximizer of the posterior density function is24

taken as the estimator of the tweet specific parameters. Moreover, the approach en-25

ables prediction at time zero, by utilizing the estimated model based on taking the26

maximizer of the prior density function as the estimator of the tweet specific model27

parameters. The incorporation of external knowledge through the prior distribution28

not only enables pre-publication tweet popularity predictions, but also leads to more29

stable estimates of the tweet specific parameters than the ML estimator, and more30

accurate popularity predictions at various censoring times overall.31

The remainder of this chapter is systematically arranged as follows. First, we32

present the proposed model for a retweet sequence in Section 5.1, followed by de-33

scribing how the knowledge internal and external to the retweet sequence can be34

combined using an empirical Bayes type approach in Section 5.2. Then, we explain35

how predictions can be made using suitable functionals of the predictive distribu-36

tion for the number of retweets implied by the fitted model in Section 5.3. The37

main results are exhibited in Section 5.4, and further elaborations on the proposed38

methodology can be found in Section 5.5. Finally, the concluding remarks are given39
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in Section 5.6. 1

5.1 Model Formulation 2

Recall that for a retweet cascade, the retweet times are given by τ1 < τ2 < . . . , 3

relative to the posting time t0 of the original tweet and that n0 denotes the number 4

of followers of the original tweeter. We model the sequence of retweet times by 5

a Poisson process with a time-dependent intensity function λ(t). Specifically, let 6

N(t) = # {i > 1 : τi 6 t} count the number of retweets up to time t. Then N(t), 7

t > 0, is assumed to be a Poisson process with E [N(t)−N(s)] =
∫ t
s
λ(u) du, for 8

0 6 s < t. The intensity function λ(t) is assumed to take the following multiplicative 9

form, 10

λ(t) = p(t)d(t), (5.1.1)

where the function p(t) shall reflect the ageing effect of the original tweet on its 11

retweet intensity at time t, and can be similarly referred to as the infectivity function. 12

As the older a tweet is, the less likely it will get retweeted, the function p(·) should be 13

decreasing. Following the literature (Malmgren et al., 2008), we assume it decreases 14

at polynomial rate, where 15

p(t) = α(1 + βt)−γ, (5.1.2)

for parameters α > 0, β > 0, and γ > 0. The parameters α, β, and γ are referred 16

respectively to as the magnitude parameter, the scale parameter, and the shape 17

parameter. These parameters are assumed to be tweet specific, and may be different 18

for retweet cascades originating from different tweets. 19

The nonnegative function d(·) is a global parameter common to all retweet cas- 20

cades which reflects the circadian rhythm of all Twitter users, and is naturally 21

assumed to be periodic with period one day. Specifically, if we measure time in unit 22

days, then there is a function ρ(·) > 0 such that 23

d(t) = ρ(t0 + t− bt0 + tc), (5.1.3)

where bxc indicates the greatest integer 6 x. Here, d(·) is assumed to be a smooth 24

function, but is otherwise unspecified. For identifiability, we assume that the func- 25

tion ρ(·) integrates to unity, so that it is a probability density function supported 26

by [0, 1). The smoothness and periodicity of the function d(·) also imply that the 27

function ρ(·) is smooth, and furthermore satisfies the continuity condition, 28

ρ(0) = lim
t↓0

ρ(t) = lim
t↑1

ρ(t). (5.1.4)

For convenience, the function ρ(·) shall be referred to as the rhythm function, and its 29
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role in portraying the circadian rhythm of Twitter users shall be gradually demon-1

strated as we manoeuvre through the rest of this chapter. A somewhat relevant work2

modelling the information diffusion of retweet cascades based on the inhomogeneous3

Poisson process has also been done recently by Lee and Wilkinson (2018).4

5.2 Parameter Estimation5

Before we can combine the knowledge internal and external to a specific retweet6

time sequence, the function ρ(·) in (5.1.3) and the parameters in (5.1.2) have to7

be estimated first, detailed respectively in Section 5.2.1 and Section 5.2.2. The8

proposed novel approach to combine the knowledge is subsequently described in9

Section 5.2.3.10

5.2.1 Estimation of the Rhythm Function11

Our assumption that all retweet cascades share the same circadian rhythm function12

ρ(·) amounts to assuming that this function is equal to the density function of the13

distribution of the tweet publication times in the interval [0, 1), where 0 and 1 stand14

respectively for the beginning and the end of the day. Therefore, we can estimate ρ(·)15

nonparametrically using the kernel density estimator (KDE; see Silverman, 1986,16

Section 2.4) with the publication times of the original tweets in the training data.17

To correct for the well-known boundary effects suffered by the KDE, and to18

ensure the continuity condition in (5.1.4), we have adopted a pseudodata approach19

which is similar in spirit to the data reflection approach discussed in Silverman20

(1986) and the pseudodata approach of Cowling and Hall (1996). Specifically, if21

t01, t
0
2, . . . , t

0
n ∈ [0, 1) denote the data, that is, the publication times of the original22

tweets measured in days since 00:00:00 on the dates they were posted, we augment23

the data by adding t01−1, . . . , t0n−1 and t01 +1, . . . , t0n+1. Following this, we estimate24

the density on [0, 1) using the KDE with the augmented data, and subsequently25

rescale the estimates so that the estimated density curve ρ̂(·) integrates to unity.26

Finally, the estimated rhythm function for a retweet sequence originating from time27

t0 is simply28

d̂(t) = ρ̂(t0 + t− bt0 + tc). (5.2.1)

In our numerical implementation of the KDE, we have used the function density29

from the stats package of R (R Core Team, 2016), with the biweight kernel K(x) =30

15/16(1 − x2)2
+ and the bandwidth parameter selected using the default normal31

reference distribution approach based on the unaugmented data.32
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5.2.2 Estimation of the Infectivity Function 1

The parameters for a specific retweet cascade can be estimated based on the ML 2

approach discussed in Section 2.5, which involves maximizing the likelihood of the 3

parameters, or equivalently its logarithm, relative to the observed retweet times up 4

to the censoring time T , as a function of the parameters. Thus, our main objective 5

here is to estimate the parameter vector θ = (α, β, γ)> for each individual retweet 6

cascade. 7

The log-likelihood function specific to our model over the interval [0, T ] takes 8

the following form, 9

`(θ, d) =

N(T )∑
i=1

log λ(τi; θ, d)−
∫ T

0

λ(t; θ, d) dt, (5.2.2)

where λ(t; θ, d) = p(t; θ)d(t) = α(1 + βt)−γd(t), and the function d(·) is fixed at 10

its estimate d̂(·) when `(θ, d) is optimized to estimate θ. This implies that the ML 11

estimation of the parameters θ shown here is based on maximizing the logarithm of 12

the likelihood function which depends solely on the component function p(·). 13

The ML approach to estimate the parameters θ described above only uses the 14

retweet history of the specific tweet for which the prediction of its final popularity 15

is desired. The resulting estimate of the parameters and the prediction of its final 16

popularity based on these estimated parameters can be very unreliable, or even not 17

available at all when the retweet sequence is observed for too short a period of time 18

before any retweets can occur. To overcome this issue, we shall incorporate prior 19

knowledge learned from the training data set into the estimation of θ, using a novel 20

empirical Bayes type approach, described in Section 5.2.3. Further reading on the 21

empirical Bayes methods can be found in the works of Morris (1983) and Casella 22

(1985). 23

5.2.3 An Empirical Bayes Approach 24

The parameter estimates based on the empirical Bayes type approach, or the EB 25

estimates in short, require the acquisitions of the ML estimates from the training 26

data set. Therefore, as a first step, we compute the ML estimate for each of the 27

complete retweet sequences in the training data described in Section 1.3, and denote 28

these estimates by θ̂0
i = (α̂0

i , β̂
0
i , γ̂

0
i ), for i = 1, 2, . . . , 71815. 29

In the second step, we fit three separate nonparametric regression models with 30

yi = log α̂0
i , log β̂0

i and log γ̂0
i as the respective response variables, and xi = (m0

i , t
0
i ) 31

as the input variables, where m0
i = log(n0

i + 1), using the locally weighted kernel 32

regression approach (LOESS; Cleveland and Devlin, 1988; Fan, 2018). In our nu- 33
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merical implementation of the nonparametric regression, we have used the loess1

function from the stats package of R, with the degree of the local polynomial2

set to the default value of 2, the kernel function set to the default tricubic ker-3

nel K(x) = 70
81

(1 − |x|3)3
+, and the respective span parameters selected using the4

generalized cross validation (GCV; Golub et al., 1979) method.5

In the third step, for a tweet posted at time t0 by a tweeter with n0 follow-6

ers, we predict the values of the log-transformed parameters η = (η1, η2, η3) ≡7

(logα, log β, log γ) using the nonparametric regression models obtained in the last8

step, with x = (m0, t0) as the input. Then, we denote the predicted log-parameter9

values by η̃0 = (η̃0
1, η̃

0
2, η̃

0
3) ≡ (log α̃0, log β̃0, log γ̃0), and the associated standard er-10

rors by (e1, e2, e3), both of which are obtainable from the predict.loess function11

in R.12

Next in the fourth step, we define a prior density function for the log-parameters13

η as follows,14

π(η) = f(η1; η̃0
1, e

2
1)f(η2; η̃0

2, e
2
2)f(η3; η̃0

3, e
2
3), (5.2.3)

with f(·;µ, σ2) denoting the normal density function with mean µ and variance σ2,15

so that η̃0 comes as the maximizer of π(η). Here, we note that the prior distributions16

for the log-parameters η = (η1, η2, η3) are the respective confidence distributions (Xie17

and Singh, 2013) based on the training data for their means E [ηi], i = 1, 2, 3, when18

they are treated as random variables with means depending on (m0, t0).19

Finally, we define our estimator at censoring time T for the parameters θ as20

θ̃ = eη̃, where η̃ is the maximizer of the following criterion function,21

˜̀(η) = log π(η) + `(eη, d̂), (5.2.4)

with `(·, ·) given in (5.2.2) and d̂(·) given in (5.2.1). In fact, if we treat d = d̂22

as known, then ˜̀(η) is, up to an additive constant, equal to the logarithm of the23

posterior density of η. Therefore, η̃ can be regarded as a maximum a posteriori24

(MAP) estimator of η. Since our construction of the prior density for η is suggested25

by the data, the estimation approach might be considered an empirical Bayes (EB)26

approach, despite its obvious difference in the construction of the prior distribu-27

tion for model parameters than that in the conventional empirical Bayes estimation28

approach, described for example in Section 1.2 of Efron (2010).29

For convenience, the steps involved in obtaining the EB estimates have been30

summarized in Figure 5.2.1. We note that the final criterion function has essentially31

incorporated knowledge internal and external of a specific retweet sequence, com-32

ing respectively from the retweet sequence itself and the training data. It is also33

noteworthy that at censoring time zero, the maximizer of the prior density function,34

namely η̃0, will be taken as the estimator of the tweet specific model parameters,35
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Figure 5.2.1: A summary of the procedures involved to obtain the empirical Bayes
estimates. The final criterion function combines the knowledge internal and external
to a retweet cascade, depending respectively on the current log-likelihood function
and the log-prior density function. When the censoring time is at zero, the maximizer
of the prior density function η̃0 will be taken as the estimator of the tweet specific
model parameters.

which enables pre-publication tweet popularity prediction. 1

The most time-consuming calculation in the above steps is the fitting of the 2

model on all the retweet cascades in the training data, but this can be done in 3

parallel using a large number of CPUs available on a typical computational cluster. 4

Moreover, this time-consuming step, as well as the other relatively time-consuming 5

steps such as the selection of the GCV smoothing parameters, only need to be 6

performed once to obtain the prior distribution of the tweet specific parameters. 7

Once the prior distribution is constructed, it is to be used in the MAP estimation 8

of the tweet specific parameters for all the tweets in the test data set at all the 9

censoring times of interest. 10

At this point we shall emphasize the advantage of using the Poisson model in 11

making tweet popularity predictions, which is the ease of its likelihood evaluation 12

that only requires linear time in the number of retweets. In contrast, the likelihood 13

computations for the various self-exciting models in the literature, such as those of 14

Zhao et al. (2015), Kobayashi and Lambiotte (2016), and Mishra et al. (2016), all 15

require quadratic time due to the dependence of the intensity process on all previous 16
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instances of retweet times for a specific retweet sequence in each of the models.1

It is also worth noting that, although we have described the EB estimation2

approach assuming a Poisson process model, it is obvious that the approach to in-3

corporate both the internal history of a specific retweet sequence and the external4

knowledge on other similar retweet sequences into parameter estimation is also ap-5

plicable with other point process models, such as the MaSEPTiDE model and the6

TiDeH model. Based on the similar acronym, these models with the incorporation7

of prior knowledge can be referred to as the EB MaSEPTiDE model and the EB8

TiDeH model, and shall be described in Section 6.1 and Section 6.2 respectively.9

5.3 Predicting the Popularity10

After the parameters are estimated, the model for a specific retweet sequence is11

identified. We might then proceed to using the mean or median of the predictive12

distribution of the number of retweets from a censoring time T to a future time13

point T̃ implied by the identified model, plus the number of retweets observed by14

time T , as a point prediction of the total number of retweets by time T̃ , as shown15

in (2.8.1).16

For the Twitter data set considered in Section 1.3, since we know a priori that the17

final popularity is at least 49, the mean and median of the distribution for the number18

of future retweets should be calculated conditional on N(T̃ )−N(T ) > 49−N(T ).19

Under the Poisson process model, N(T̃ )−N(T ) is Poisson distributed with its mean20

equals to the integral of the identified intensity function from T to T̃ , or equivalently21

its shifted intensity from 0 to T̃ − T ,22

∫ T̃

T

λ(t; θ̃, d̂) dt ≡
∫ T̃−T

0

λ̃(t; θ̃, d̂) dt,

where λ̃(t) = λ(T + t). Therefore, the computations of its conditional mean and23

conditional median are relatively straightforward.24

Although the mean and median of the predictive distribution are frequently used25

when predicting the popularity of a tweet, the accuracy of tweet popularity predic-26

tion is frequently assessed using the MAPE or MdAPE (Zhao et al., 2015; Kobayashi27

and Lambiotte, 2016; Mishra et al., 2016). As pointed out by Gneiting (2011), the28

choice of the point predictor should be consistent with the performance evalua-29

tion metric being used to avoid misguided inferences. However, because popularity30

prediction needs to be made for a large number of tweets where their popularity31

distributions can be drastically different, the use of squared error or absolute error32

would be less informative compared to the use of unitless error measures, such as33

the APE.34
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Therefore, the MAPE or MdAPE should be used as the evaluation metric when 1

comparing the performances of different popularity predictors. It should be noted, 2

however, that even though the mean and median are optimal predictors when the 3

RMSE and the MAE are used as the respective evaluation metrics, they are, in gen- 4

eral, not optimal relative to the MAPE and MdAPE. To be consistent with these 5

two performance evaluation metrics, suitable functionals of the predictive distribu- 6

tion should be used, instead of the mean and median. A discussion on this has been 7

included in Appendix A. 8

5.4 Application to the Tweet Data 9

Having presented the form of the intensity assumed by the Poisson process model 10

and the approach employed to obtain the empirical Bayes estimates followed by 11

how these estimates can be used to predict the future popularity of tweets, we shall 12

hereby exhibit the graphical and numerical results obtained alongside the various 13

stages. 14

5.4.1 Estimated Activity Levels 15

One of the most important components in the formulation of our model is the rhythm 16

function ρ(·) as shown in (5.1.3) which reflects the diurnal patterns of Twitter users’ 17

activity levels. The estimated rhythm function by the KDE with the pseudodata 18

approach for the boundary effect correction is shown in Figure 5.4.1, which suggests 19

that the activity levels are at their peak between 23:00 and 03:00 UTC. On the 20

contrary, the activity levels plummet to their lowest point at around 14:00 UTC. 21

Besides being useful in gaining insights on the active hours of typical Twitter 22

users, Figure 5.4.1 also indicates the times when a tweet is likely to attract more 23

retweets. For instance, to maximize the potential number of retweets, one should 24

choose to tweet during the peak hours of activities, when many other users are 25

actively engaged with the microblogging platform. This is intuitive in the sense 26

that the densely clustered number of tweets made during these times should be 27

correlated to the attention received by tweets posted by other users, since tweeters 28

can essentially be retweeters themselves, thereby portraying a cyclical pattern of 29

interactivity. 30

Our implementation relies on the fact that both time zero and time one in Fig- 31

ure 5.4.1 account for 06:00 UTC, following the continuity condition in (5.1.4), which 32

implies that ρ̂(0) = ρ̂(1) ≈ 1.1, and that both ends in the figure at 0:00 UTC 33

correspond to ρ̂(0.75) ≈ 1.3. The incorporation of such diurnal patterns is use- 34

ful in improving the accuracy of tweet popularity predictions, especially at earlier 35

censoring times when the circadian rhythms are in strong effect. 36
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Figure 5.4.1: Estimated function ρ(·) showing the diurnal patterns of Twitter users’
activity levels, which suggests that the peak hours of activities are between 23:00
and 03:00 UTC. Conversely, the hours between 12:00 and 16:00 UTC are rather
dormant in the activity levels. The horizontal dotted line is used to indicate the
continuity of both ends in the plot.

5.4.2 Estimates from the Training Data1

Each of the retweet cascades in the training data set was estimated by maximizing2

over the log-likelihood function in (5.2.2), with the censoring time set to seven3

days. The logarithms of the ML estimates obtained were then used to construct the4

prior distribution for model parameters needed when predicting the popularity of5

a tweet in the test data set. The statistics of the estimated log-parameter values6

are summarized in Table 5.4.1. As indicated in the table, the median estimates of

Table 5.4.1: The summary statistics of the log-parameters obtained using the ML
estimation approach based on the training data set, at T = 7 days. The median
estimates for log α̂, log β̂, and log γ̂ are 9.535, 5.617, and 0.407 respectively.

Min Q1 Q2 Q3 Max Mean
log α̂ 3.454 8.485 9.535 10.355 42.185 9.297

log β̂ −37.892 4.098 5.617 6.629 41.207 4.646
log γ̂ −25.200 0.206 0.407 0.687 14.285 0.970

7

the log-transformed parameters, namely log α̂, log β̂, and log γ̂ are 9.535, 5.617, and8

0.407 respectively.9

The summary statistics in Table 5.4.1 are naturally acquired based on log α̂i,10

log β̂i, and log γ̂i, for i = 1, 2, . . . , 71815, which, when used in the EB estimation11

approach, are denoted respectively by log α̂0
i , log β̂0

i , and log γ̂0
i . As detailed in Sec-12
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tion 5.2.3, we ought to fit three separate nonparametric regression models based 1

on these estimated log-parameters, with yi = log α̂0
i , log β̂0

i , and log γ̂0
i being the 2

respective response variables, and (m0
i , t

0
i ) being the input variables. The construc- 3

tion of prior distribution based on these estimated log-parameter values instinctively 4

propounds their importance, and therefore their convergence at this stage based 5

on (4.6.1) has to be warranted. 6

5.4.3 Selecting the Span Parameters 7

The GCV method was used to select the span parameter values for the nonpara- 8

metric regression models, or the LOESS regressions, previously discussed in Sec- 9

tion 5.2.3. The optimal span values with log α̂0, log β̂0, and log γ̂0 being the respec- 10

tive response variables are shown in the first row of Table 5.4.2 at 0.003, 0.008, and 11

0.020 respectively. The suboptimal span values, which will produce nearly identical

Table 5.4.2: Optimal and suboptimal span values for each of the logarithms of the
ML estimates. The first row shows the optimal span values, and the subsequent
rows show the suboptimal span values in decreasing optimality based on the GCV
scores.

log α̂0 log β̂0 log γ̂0

Span Score Span Score Span Score
0.003 2.0198 0.008 11.9782 0.020 4.5124
0.004 2.0201 0.009 11.9797 0.010 4.5128
0.005 2.0215 0.007 11.9798 0.009 4.5137
0.006 2.0231 0.010 11.9815 0.030 4.5138
0.002 2.0244 0.006 11.9829 0.008 4.5149

12

model parameters based on the EB estimation approach, and also similar predic- 13

tions based on various censoring times, have been included in the subsequent rows 14

of Table 5.4.2 for reference. 15

5.4.4 Empirical Bayes Estimates 16

The LOESS fitted values of the log-parameters, or equivalently the EB estimates of 17

the log-parameters at censoring time zero, as functions of m0 and t0, are illustrated 18

in Figure 5.4.2. From the figure, the span parameters seem to be too small to 19

produce visually smooth regression surfaces. Nonetheless, we can still observe that 20

the magnitude parameter α tends to increase with m0, the shape parameter γ tends 21

to decrease with m0, but the dependence of the scale parameter β on m0, and the 22

dependence of all the parameters on t0, do not seem to portray any obvious patterns. 23

Although it is possible to obtain visually more pleasing as well as easier-to-interpret 24
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Figure 5.4.2: Logarithms of the EB estimates of the Poisson model parameters
as functions of m0 and t0 which correspond respectively to the log-transformed
number of followers of the original tweeter and the relative publication time of the
original tweet. The uneven regression surfaces can be attributed to the small span
parameters used.

regression surfaces by using larger span parameters, we have not done so because1

our primary concern is on prediction rather than estimation.2

The EB estimates of the log-parameters, together with their corresponding ML3

estimates using only the internal history of the retweet cascades, at different censor-4

ing times for four randomly selected retweet cascades are illustrated in Figure 5.4.3.5

It is worth noting that at censoring time T = 0, Figure 5.4.3 only shows the EB esti-6

mates, but not the ML estimates. This is because the ML estimates are unavailable7

due to lack of any observations of the corresponding retweet sequences, while the8

EB estimates are available as the LOESS fitted values based on the training data.9

Furthermore, the figure also reveals that the EB estimates at different censoring10

times are substantially more stable compared to the ML estimates, which suggests11

that the use of the prior distribution has a regularization effect on the ML estimates.12

Table 5.4.3 shows the typical log-parameter values found in practice using both13

the ML and EB estimation approaches, based on the four randomly selected retweet14
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Figure 5.4.3: Estimates of the log-parameters for the Poisson process model using
the empirical Bayes (EB) and maximum likelihood (ML) approaches at different
censoring times, for four randomly selected retweet cascades. The top panel of each
subfigure shows the sample path of the counting process N(t) for the correspond-
ing retweet sequence up to 12 hours, the lower panels of each subfigure show the
estimated log-parameters at censoring times T = 0, 1, . . . , 12 hours.
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cascades shown in Figure 5.4.3, although we censor them at seven days here instead.1

We note from Table 5.4.3 that the log-parameters fitted using the ML approach are

Table 5.4.3: The log-parameters for the four randomly sampled retweet cascades
in Figure 5.4.3 based on both the ML and EB estimation approaches at T = 7
days, together with their respective final popularity values. The degree of changes
in the parameter values seems less conspicuous in sample cascade 4, where its final
popularity is considerably larger than the other cascades.

Sample
ML EB

N(T̃ )
log α̂ log β̂ log γ̂ log α̃ log β̃ log γ̃

1 9.997 5.488 0.500 8.600 3.066 1.112 93
2 11.872 7.375 0.165 11.443 6.810 0.202 498
3 11.611 6.124 0.148 11.066 5.309 0.221 957
4 13.443 6.392 0.014 13.440 6.384 0.014 9597

2

denoted by log θ̂ = (log α̂, log β̂, log γ̂), whilst the log-parameters fitted using the3

EB approach are denoted by log θ̃ = (log α̃, log β̃, log γ̃), which is essentially η̃ that4

appears as the maximizer of the criterion function in (5.2.4).5

Interestingly, based on Table 5.4.3 we can observe that the EB estimation ap-6

proach seems to dampen the estimated log-parameter values for both α and β, which7

account for the magnitude and scale respectively. On the other hand, the EB esti-8

mation approach elevates the estimated log-parameter values for γ which accounts9

for the shape, except for sample cascade 4 where the value remains unchanged. It10

is also notable that the difference in the estimated log-parameter values based on11

the two approaches seems to be the least conspicuous in sample cascade 4, where12

its final popularity is considerably larger than the other three.13

In conjunction with the statistics shown in Table 5.4.1 for the log-parameters14

obtained via the ML estimation approach, we also include the summary statistics15

of the log-parameters obtained via the EB estimation approach, at T = 7 days16

and based on the test data set, in Table 5.4.4. It can be observed from the table

Table 5.4.4: The summary statistics of the log-parameters obtained using the EB
estimation approach based on the test data set, at T = 7 days. The median estimates
for log α̃, log β̃, and log γ̃ are 9.340, 5.205, and 0.461 respectively.

Min Q1 Q2 Q3 Max Mean
log α̃ 4.298 8.682 9.340 9.961 13.766 9.296

log β̃ −5.822 4.298 5.205 5.890 8.984 4.845
log γ̃ −1.384 0.269 0.461 0.722 6.751 0.588

17

that the median estimates for log α̃, log β̃, and log γ̃ are 9.340, 5.205, and 0.46118

respectively. Compared to the median estimates for the log-parameters obtained via19

the ML approach, which come at the respective values of 9.535, 5.617, and 0.407,20
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the magnitude parameter α and the scale parameter β seem to have been deflated, 1

whilst the shape parameter γ seems to have been inflated. This is consistent with 2

the conclusion drawn based on that of Table 5.4.3. The summary statistics of the 3

EB estimates of the log-parameters based on the training data set, through our 4

additional numerical experiments, also reveal very similar values, as exhibited in 5

Table B.2.3. 6

5.4.5 Prediction Performance Comparisons 7

Based on the estimated Poisson process model using the empirical Bayes approach 8

at different censoring times, we predicted the final popularity of all the tweets in 9

the test data by the mean, median, median of order −1, and harmonic median of 10

the predictive distribution, and calculated the RMSE, MAE, MAPE, and MdAPE 11

of the predictions. The point predictions at different censoring times using different 12

functionals of the predictive distribution are nearly identical to each other, with the 13

maximum absolute difference between different functionals across the 13 censoring 14

times considered (T = 0, 1, . . . , 12 hours) equals to 9.91. 15

Table 5.4.5 shows the prediction accuracy of different prediction functionals ac- 16

cording to different error metrics at censoring time zero. From this table we can

Table 5.4.5: The prediction accuracy of different prediction functionals at censoring
time zero, using the complete test data set. Point predictions based on the pre-
dictive mean seem to be consistently more accurate than those based on the other
functionals.

RMSE MAE MAPE MdAPE
Mean 382.47 135.67 47.86% 43.57%

Median 382.57 135.94 48.08% 43.86%
Order (−1) median 382.82 136.23 48.07% 43.96%
Harmonic median 382.86 136.56 48.49% 44.47%

17

observe that, by any of the four error metrics, the point predictions by the four 18

prediction functionals have comparable accuracy, although the predictions by the 19

predictive mean are slightly yet consistently more accurate than those based on the 20

other functionals. The comparison results at later censoring times are similar, and 21

can be found in Table B.2.2. We have only shown the tables for censoring times 22

T = 2, 4, . . . , 12 hours in the appendix since the patterns portrayed are identical 23

across all the times considered. 24

It is somewhat surprising that the theoretically optimal functional for a specific 25

error metric does not necessarily lead to a more accurate prediction by the corre- 26

sponding metric, although in our simulations the optimal functionals do produce 27

slightly more accurate predictions than the other functionals, by the compatible 28

83



error metrics. An explanation to this phenomenon is that the numbers of retweets1

may not follow the Poisson distributions exactly while they do in the simulations.2

Due to this observation and the ease-of-computation of the mean of the predictive3

distribution, in the sequel we shall use the predictive mean as the point prediction4

under the Poisson process model, irrespective of the error metric chosen.5

Moreover, based on Table 5.4.5 and Table B.2.2 we can see that the MAE, MAPE6

and MdAPE all exhibit increasingly better performances with larger censoring times,7

but the RMSE seems to fluctuate indefinitely. This can be attributed to the presence8

of grossly erroneous predictions from which their errors are severely magnified by9

the metric, which then conceal the good performance of the model. Thus, our10

recommendation regarding the use of unitless error measures such as those based11

on the APE is further substantiated. Another important thing to note is that the12

values shown in Table B.2.2 are not directly comparable to those of Table 4.5.3 and13

Table 4.5.4, since the values in Table 4.5.3 and Table 4.5.4 require the exclusion14

of a very small amount of outliers. The assessments of prediction accuracy shown15

in Table 5.4.5 and Table B.2.2, on the other hand, take into consideration all the16

retweet cascades in the test data set, without excluding any values.17

Therefore, to compare the performance of the prediction method proposed in18

this chapter with those of the competing approaches in the literature, we shall use19

the prediction APE. The choice of this evaluation metric, as discussed before, is20

partly due to the highly heterogeneous tweet popularity levels, demonstrated in21

Table 1.3.3. Furthermore, as our MaSEPTiDE model in Chapter 4 and the TiDeH22

model of Kobayashi and Lambiotte (2016) have been shown to outperform the other23

competing models, such as the SEISMIC of Zhao et al. (2015), we shall only compare24

the prediction performance of our model proposed herein with these two specific25

models.26

Figure 5.4.4 shows the boxplots of APEs based on the final popularity predictions27

at T̃ = 7 days, by the approaches based on the EB Poisson model, the Poisson model,28

the MaSEPTiDE model, and the TiDeH model, at censoring times T = 0, 1, . . . , 1229

hours. Note that the Poisson model labelled in Figure 5.4.4 refers to the model30

with its parameter estimated based on the ML approach, and the EB Poisson model31

refers to that estimated based on the EB approach. Both these models have been32

included in Figure 5.4.4 to show how the incorporation of prior knowledge can help33

improving the overall prediction performance.34

Because the distributions of the APEs of the methods shown have very long35

right tails, the outlying APE values have not been shown in the boxplots for better36

visualization. Note, at time zero, only the EB Poisson model can produce predictions37

while the other methods are not able to produce any predictions at all due to the lack38

of the parameter estimates. Moreover, recall that the smoothing parameter used in39
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Figure 5.4.4: The APEs of different prediction methods across different censoring
times at T = 0, 1, . . . , 12 hours. The Poisson model has been included for the
purpose of comparisons with its EB counterpart. The circular point in each boxplot
shows the MAPE, while the horizontal thick bar shows the MdAPE. The EB Poisson
model is clearly the best performing model at all the censoring times, and is able to
make a prediction even at time zero.

the nonparametric estimation for the infectivity function of the TiDeH model is set 1

at one hour. This impedes the approach from producing any meaningful predictions 2

at T = 1 hour, and is thus excluded from the comparison at that time. 3

From Figure 5.4.4 we note that the horizontal thick bar in each boxplot refers 4

to the MdAPE and the circular point refers to the MAPE. For each prediction 5

method under evaluation, both the MdAPE and MAPE decrease as the censoring 6

time increases, indicating a gradual improvement in the prediction accuracy. More 7

importantly, the EB Poisson model seems to consistently outperform the other com- 8

peting approaches across all the censoring times based on both the metrics. 9

It should be noted that, for fair comparisons, the Poisson model, the MaSEP- 10

TiDE model, and the TiDeH model approaches have also incorporated the knowledge 11

on the lower bound of the predicted final popularity. Nonetheless, even without im- 12

posing the lower bound, the EB Poisson model would still stand out as the best 13

performing model, as proven in Figure B.1.2. Thus, it can be concluded that the 14

EB Poisson model serves as an efficient and powerful popularity prediction method. 15

5.5 Discussion 16

The assessment of the goodness-of-fit shall be presented here as an additional dis- 17

cussion, since it is useful in unveiling how good our Poisson and EB Poisson models 18
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are, in terms of their capabilities to describe the historical data. We first note that1

the proposed EB approach is essentially a penalized maximum likelihood approach2

which poses a larger curvature on the likelihood function, and so its model fit is not3

expected to be as good as that based on the ML estimation approach. This also4

implies that a good model fit to the observed data does not necessarily lead to a5

more accurate popularity prediction.6

The goodness-of-fit of the Poisson model and the EB Poisson model can be as-7

sessed similarly using the residual point process approach based on Papangelou’s8

random time change theorem, presented in Section 2.6 and used in a similar manner9

in Section 4.5.2. In essence, to assess the goodness-of-fit of the Poisson model, we10

can assess the uniformity of the transformed event times Λ̂(τi), i = 1, 2, . . . , N(T ),11

in the interval (0, Λ̂(T )] where Λ̂(t) = Λ(t; θ̂) =
∫ t

0
p(s; θ̂)d̂(s) ds using a similar12

Kolmogorov-Smirnov test of uniformity. The goodness-of-fit of the EB Poisson13

model can also be assessed similarly, by replacing θ̂ with θ̃.14

The results of the assessments are illustrated in Table 5.5.1, where the upper15

panel shows the percentages of cascades passing the goodness-of-fit test in the train-16

ing data based on the ML estimation approach, and the lower panel shows those17

passing in the test data based on the EB estimation approach. By referring to both

Table 5.5.1: The percentages of cascades where the Poisson model (upper panel)
and the EB Poisson model (lower panel) pass the goodness-of-fit test, at different
significance levels and censoring times. At significance level of 0.01, the percentages
of cascades passing the test using data accumulated in the first 12 hours for the
Poisson model and EB Poisson model are 74.6% and 50.4% respectively.

Significance level
Censoring time (hours)

2 4 6 8 10 12 168
0.01 77.7% 76.3% 75.6% 75.1% 74.9% 74.6% 69.3%
0.05 71.6% 70.7% 69.9% 69.4% 68.9% 68.3% 61.5%

Significance level
Censoring time (hours)

2 4 6 8 10 12 168
0.01 63.4% 58.1% 55.2% 53.2% 51.5% 50.4% 43.3%
0.05 48.6% 43.3% 40.6% 38.7% 37.3% 36.3% 30.4%

18

panels in the table, the decrease in the goodness-of-fit when the EB estimation ap-19

proach is used instead of ML estimation approach is quite substantial. Specifically,20

at the censoring time of 12 hours, the ML estimation approach has successfully fitted21

around 75% of the retweet cascades in the training data, based on the significance22

level of 0.01. This value drops to around 50% when the EB estimation approach is23

used, although the approach was applied on the test data.24

To make the interpretation more convincing, we have also included the results of25

the goodness-of-fit assessment for the EB Poisson model based on the training data26
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set, in Table B.2.4. We have only shown the assessment results at censoring times 1

T = 2, 4, . . . , 12 hours in this section, since those based on T = 1, 3, . . . , 11 hours 2

have rather consistent changes, and should be self-explanatory. Also, we note that 3

the goodness-of-fit test cannot be run without first observing some retweet events, 4

and so we have excluded the assessment at time zero. 5

5.6 Concluding Remarks 6

In this chapter we have proposed a simple Poisson process model for the sequence 7

of retweet times of a tweet and a novel Empirical Bayes (EB) type approach to fit 8

the model. Although the Poisson process model is not expected to provide better 9

fit to the retweet time sequences than the more elaborate models available in the 10

literature, when used with the EB approach for inference, this simple model was 11

found to produce overall more accurate tweet popularity predictions. An additional 12

important advantage of the proposed approach is its ability to produce a prediction 13

at censoring time zero before any retweets occur, or making a pre-publication tweet 14

popularity prediction. 15

The proposed EB approach of tweet specific parameter estimation is essentially 16

a penalized maximum likelihood approach whereby a concave quadratic penalty is 17

added to the log-likelihood function and penalizes parameters further away from 18

the initial nonparametric regression estimators of the parameters more than those 19

nearer. Because of the presence of the quadratic penalty, the penalized log-likelihood 20

function tends to have larger curvature than the unpenalized log-likelihood, and 21

therefore it is much easier to maximize than the original log-likelihood. Indeed, 22

during our numerical analysis, we were always able to obtain a reasonable MAP 23

estimator, or maximum penalized likelihood estimator, of the tweet specific param- 24

eters, and a sensible popularity prediction, on each of the retweet cascades in the 25

test data set. This is commendable compared to the state-of-the-art popularity pre- 26

diction approaches in the literature which may produce grossly erroneous popularity 27

predictions or fail to produce any predictions at all on a number of tweets in the 28

data set. 29

As mentioned earlier, the EB approach to incorporate knowledge in the training 30

data external to a specific retweet time sequence when estimating the model pa- 31

rameters, can also be applied on other point process models. In fact, our numerical 32

experiments with the EB approach on the MaSEPTiDE model seem to suggest even 33

better prediction performance than the EB Poisson model when the retweet data 34

has been accumulated and observed for a reasonably long time. Nonetheless, the 35

EB MaSEPTiDE model still requires substantially longer computational time than 36

the EB Poisson model. 37
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In selecting the bandwidth parameter used by the kernel density estimator to1

estimate the circadian rhythm function in the retweet intensity, we have also exper-2

imented with other bandwidth selectors, such as the solve-the-equation and direct3

plug-in methods of Sheather and Jones (1991). These alternative approaches all tend4

to produce much smaller bandwidths and similar but more wiggly density curve es-5

timates than the default normal reference approach. The wiggly curve estimates6

can cause the numerical integration needed in evaluating the log-likelihood function7

in (5.2.2) and the criterion function in (5.2.4) to converge very slowly or even break8

down altogether, and when the estimation based on such wiggly curve estimates9

works out, the resulting popularity prediction does not differ materially from that10

based on the estimates obtained using the default bandwidth selector. Therefore, we11

recommend the use of the default bandwidth selector adopted by R when estimating12

the rhythm function.13

An important assumption we make when estimating the circadian rhythm func-14

tion is that all tweeters and retweeters share the same rhythm function, which might15

not hold given that the Twitter users are likely to come from different time zones.16

Therefore a stratification of the tweets according to the time zone from which the17

original tweeter comes from should be able to further improve the prediction ac-18

curacy of our approach. However, this has not been implemented due to the lack19

of relevant location information of the tweeters. To collect information on the ge-20

ographical locations of the tweeters, we note that the tweets posted must be geo-21

tagged, which first require the geolocation services to be manually enabled by the22

tweeters.23

The construction of the prior distribution for the tweet specific parameters in24

our empirical Bayes approach has been inspired by the concept of confidence distri-25

bution, which, as we have noted above, leads to an interpretation of the maximum26

a posteriori estimator or the maximum penalized likelihood estimator. A natural27

question to ask is whether the penalty implied by the choice of the prior distribu-28

tion is optimal in any sense. To answer this question we have also experimented29

with other choices of prior distributions for the parameters, such as the predictive30

distribution for the parameters when they are treated as the response variables in31

the nonparametric regression step. However, with the other choices of the prior dis-32

tributions we have experimented, the accuracy of the popularity predictions tends33

to worsen. Therefore the prior distribution motivated by the confidence distribu-34

tion seems optimal to some extent. Still, the prior distributions suggested by other35

regression methods to learn the functional dependence of the tweet specific param-36

eters on the input variables can potentially lead to even more accurate popularity37

predictions. A systematic study on the choices of the prior distributions in the EB38

framework might be interesting future work.39
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Chapter 6 1

The Empirical Bayes Approach 2

Applied on Alternative Models 3

The usefulness of the empirical Bayes (EB) type approach in combining the knowl- 4

edge external to a specific retweet time sequence with that observed internally up 5

to a certain censoring time has been well demonstrated in Chapter 5. A notable 6

feature of the EB approach is its regularization effect on the maximum likelihood 7

(ML) estimates. This is accomplished through the addition of a concave quadratic 8

penalty to the log-likelihood function, which imposes greater penalties on param- 9

eters further away from the initial nonparametric regression estimators than those 10

nearer. Therefore, the EB approach is efficacious in eliminating parameters likely 11

to produce erratic or nonsensical prediction values, as suffered by a small amount 12

of retweet cascades predicted via the MaSEPTiDE model approach. An additional 13

advantage of the EB approach, as we have mentioned, is its capability to perform 14

pre-publication tweet popularity prediction. 15

On another note, by the original data presented in Section 1.3, the only infor- 16

mation readily available for any cascade at time zero is n0 and t0, which correspond 17

respectively to the number of followers of the tweeter and the relative posting time 18

of the tweet. Nonetheless, the contents of tweets can still be extracted by using the 19

Twitter application programming interface (API). This in turn enables us to ana- 20

lyze the sentiments of the extracted contents based on their semantic features, and 21

allows us to inspect if any further improvement to the existing models is possible. 22

Such an objective can be achieved by, say, including the sentiment values obtained 23

as input variables used in the nonparametric regression step. The practicality of 24

sentiment analysis under this context shall be briefly discussed in this chapter. 25

For extra clarity on the prediction performances of various models, we shall 26

focus on presenting the numerical results in this chapter. Also, for the purpose 27

of consistency and ease-of-interpretation, these numerical results shall be based on 28

point predictions using the predictive mean, with the MAPE and MdAPE being the 29
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performance evaluation metrics. We have also incorporated the extra knowledge on1

the lower bound of the final popularity of tweets for all the models considered herein,2

although similar conclusions can be drawn even without such implementation.3

The remainder of this chapter is organized as follows. We first describe the4

MaSEPTiDE model employing the EB approach in Section 6.1. To further testify5

the applicability of the EB approach on different point process models, a parametric6

version of the TiDeH model based on the approach is subsequently presented in7

Section 6.2. For supplementary purposes, we also present in Section 6.3 a viable8

alternative to the aforementioned EB Poisson model which makes use of the results9

obtained from sentiment analysis. Finally, we give some concluding remarks in10

Section 6.4.11

6.1 The Marked Self-Exciting Point Process Model12

Despite being able to make accurate tweet popularity predictions based on early13

censoring times, the MaSEPTiDE model has some noticeable limitations. First,14

it is unable to make any popularity prediction without accumulating some events15

beforehand. Second, the estimation of its parameters and the prediction based on16

these estimated parameter values can be computationally expensive for a number of17

retweet cascades. Third, the predictions based on both the solve-the-equation and18

simulation-based approaches can sometimes be unreasonably large. These addressed19

issues, however, can be alleviated by using the EB approach, as we shall demonstrate20

in the following nested sections.21

6.1.1 Parameter Estimation and Prediction22

The conditional intensity assumed by the MaSEPTiDE model, together with its23

parametric components, have been shown through (4.1.1)-(4.1.3). The model con-24

sists of the parameters θ = (α, β, γ, δ1, δ2), which, as we have mentioned, can be25

obtained for each retweet cascade via the ML estimation approach, through maxi-26

mizing the likelihood function in (4.2.1) over the interval [0, T ]. These ML estimates,27

when obtained at the censoring time of seven days for all the retweet cascades in the28

training data, can be used to setup the prior distribution for model parameters used29

in the EB estimation approach, which involves the analogous procedures discussed30

in Section 5.2.3.31

Briefly, the steps include obtaining the ML estimates for all the retweet cascades32

in the training data set, denoted by θ̂0
i = (α̂0

i , β̂
0
i , γ̂

0
i , δ̂1

0

i , δ̂2

0

i ), i = 1, 2, . . . , 71815,33

fitting five separate nonparametric regression models with yi = log α̂0
i , log β̂0

i , log γ̂0
i ,34

log δ̂1

0

i , log δ̂2

0

i as the respective response variables and xi = (m0
i , t

0
i ) as the input35

variables, predicting the values of log-parameters η = (η1, η2, η3, η4, η5) = (logα,36
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log β, log γ, log δ1, log δ2) based on these fitted regression models for any new input 1

x = (m0, t0), and denoting the predicted log-parameters by η̃0 = (η̃0
1, η̃

0
2, η̃

0
3, η̃

0
4, η̃

0
5) = 2

(log α̃0, log β̃0, log γ̃0, log δ̃0
1, log δ̃0

2) with the standard errors (e1, e2, e3, e4, e5). The 3

prior density for the log-parameters η, following (5.2.3), can then be defined as 4

follows, 5

π(η) = f(η1; η̃0
1, e

2
1)f(η2; η̃0

2, e
2
2)f(η3; η̃0

3, e
2
3)f(η4; η̃0

4, e
2
4)f(η5; η̃0

5, e
2
5),

where f(·;µ, σ2) denotes the normal density function with mean µ and variance 6

σ2, and the estimate η̃0 should appear as the maximizer of π(η). The external 7

knowledge based on the log-prior density and the internal knowledge based on the 8

current log-likelihood can then be combined into the following criterion function, 9

˜̀(η) = log π(η) + `(eη),

where `(·) has been given in (2.5.2), with its intensity and component functions 10

defined through (4.1.1)-(4.1.3). Recall that at censoring time T , the estimator for 11

the parameters θ is θ̃ = eη̃, where η̃ is the maximizer of ˜̀(η), or equivalently the 12

MAP estimator of η. When the parameters of the MaSEPTiDE model are estimated 13

by this convention, the model can be referred to as the EB MaSEPTiDE model. 14

The prediction procedures are similar to those explained in Section 4.4, except 15

that under the EB framework we can treat mi as an additional parameter which 16

depends solely on the external knowledge at time zero, with increasingly more weight 17

imposed on the internal knowledge as the censoring time T increases. This value 18

is needed in the expected response R̂ when using the solve-the-equation approach, 19

and will be iteratively sampled from when using the simulation-based approach. In 20

fact, we can even use a more crude approach, say, when no retweet event has been 21

observed internally, we choose a cascade in the training data which is of the closest 22

distance based on (m0, t0), and use the log-transformed average number of followers 23

in R̂ of the solve-the-equation approach or its empirical distribution function F̂ in 24

the simulation-based approach, and when an event has arrived, we revert to using 25

the internal knowledge for prediction. 26

6.1.2 Numerical Results 27

The numerical results for the procedures described in Section 6.1.1 shall be presented 28

here. First, the span parameter values used in the locally weighted kernel regressions 29

for the logarithms of the ML estimates log α̂0, log β̂0, log γ̂0, log δ̂1

0
, and log δ̂2

0
on m0

30

and t0 come at the respective values of 0.005, 0.030, 0.060, 0.020, and 0.004. These 31

values were similarly selected based on experimenting with different span parameters 32

91



using the GCV approach.1

The median estimates of the log-parameters based on the ML approach applied2

on the training data at the censoring time of seven days, namely log α̂, log β̂, log γ̂,3

log δ̂1, and log δ̂2 have the respective values of 3.935, −2.687, 1.815, 0.350, and4

−4.994, as shown in left panel of Table 6.1.1. The right panel of Table 6.1.1, in

Table 6.1.1: The quartiles of log-parameters for the MaSEPTiDE model estimated
based on the ML and EB approaches, censored at seven days. The median estimates
of the log-parameters by the ML approach are 3.935, −2.687, 1.815, 0.350, and
−4.994, while those by the EB approach are 4.298, −1.908, 2.127, 0.418, and −5.436
respectively.

ML EB
Q1 Q2 Q3 Q1 Q2 Q3

logα 2.863 3.935 4.840 4.009 4.298 4.742
log β −3.852 −2.687 −1.524 −2.567 −1.908 −0.685
log γ −0.035 1.815 4.632 0.944 2.127 3.212
log δ1 0.156 0.350 0.582 0.276 0.418 0.579
log δ2 −6.350 −4.994 −3.845 −6.315 −5.436 −4.737

5

tandem, shows the estimated log-parameter values based on the EB approach, for6

log α̃, log β̃, log γ̃, log δ̃1, and log δ̃2, with the median estimates being 4.298, −1.908,7

2.127, 0.418, and −5.436 respectively. Note that the EB estimates shown here were8

obtained based on the test data set, but those obtained based on the training data9

set have nearly identical values as well, revealed in Table B.2.5.10

From Table 6.1.1 we further note that, with the incorporation of prior knowl-11

edge, all the parameter values can fluctuate indefinitely, except for the infectivity12

parameter β which exhibits an overall increase. By the exponential decay form of13

the function in (4.1.3), this implies that the infectivity should deteriorate faster.14

To put that into perspective, using the median estimate based on the ML ap-15

proach, the time needed for the infectivity to drop to 1% of its initial level is16

log(100)/ exp(−2.687) = 67.6 seconds, while that based on the EB approach only17

needs log(100)/ exp(−1.908) = 31.0 seconds. This opines that the infectivity is18

now decaying twice as fast, and as a result the tweet popularity tends to die out19

more rapidly. This said, the existence of grossly erroneous predictions based on20

the original MaSEPTiDE model can be attributed primarily to the infectivity that21

decays at a disproportionately slow rate, which then causes the high explosiveness22

of the tweet, much like the supercritical regime portrayed in the framework of the23

SEISMIC (Zhao et al., 2015).24

Table 6.1.2 shows the percentages of large prediction APEs at various censoring25

times T = 1, 2, . . . , 12 hours based on the conditional expectation of the MaSEP-26

TiDE model. We can observe that at censoring time T = 1 hour, the percentages of27

retweet cascades in the test data set with the APE values of at least 103%, 104%, and28
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Table 6.1.2: Grossly erroneous predictions by the MaSEPTiDE model, based on
the absolute percentage errors (APEs) at various censoring times. At censoring
time T = 1 hour, the percentages of retweet cascades in the test data set with the
APE values of at least 103%, 104%, and 105% are around 1.6%, 0.4%, and 0.1%
respectively. Overall, the smaller censoring times are prone to larger errors.

T (hours)
APE (%)

> 103 > 104 > 105

1 1.554 0.390 0.099
2 1.301 0.132 0.081
3 1.097 0.080 0.056
4 1.002 0.088 0.058
5 0.880 0.080 0.067
6 0.818 0.079 0.061
7 0.742 0.075 0.064
8 0.638 0.072 0.059
9 0.572 0.073 0.059
10 0.517 0.067 0.057
11 0.393 0.054 0.047
12 0.334 0.056 0.047

105% are approximately 1.6%, 0.4%, and 0.1%. In addition, the table suggests that 1

the smaller censoring times are more susceptible to larger prediction errors. This can 2

be attributed to the limited time given to accumulate sufficient information needed 3

in the estimations of model parameters for the minority of the retweet cascades. The 4

numbers of grossly erroneous predictions, and hence the APEs, naturally diminish 5

over time, as more information is gathered and the dynamics are leveraged. 6

It is noteworthy that the values in Table 6.1.2 will all be reduced to zeros when 7

the EB approach is used, which signifies that the problem of grossly erroneous 8

popularity predictions has been coped with. This then leads to a noticeable increase 9

in the overall accuracy of prediction, as we shall show hereinafter. On another note, 10

the APEs obtained based on the Poisson model in (5.1.1) using the ML estimation 11

approach at the various censoring times can also be quite large, although the severity 12

is much less than those suffered by the MaSEPTiDE model. These large APE values 13

can be eliminated similarly by using the EB approach, yielding the aforementioned 14

EB Poisson model. 15

Although the number of extremely mispredicted tweet popularity at each cen- 16

soring time seems negligible, with barely 0.1% of them having intolerably large APE 17

values (> 105%), its impact on evaluation metrics such as the MAPE should not be 18

underestimated. The prediction MAPEs for the original MaSEPTiDE model with- 19

out the exclusion of outliers at various censoring times are shown in Table 6.1.3. The 20

MAPEs of the predictions based on the Poisson model and the EB Poisson model 21

have also been included in the table for comparisons. The prediction MAPEs of the 22
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Table 6.1.3: The MAPEs for the MaSEPTiDE model, the EB MaSEPTiDE model,
the Poisson model, and the EB Poisson model at various censoring times T =
0, 1, . . . , 12 hours, based on the complete test data set. The EB approach helps to
improve the prediction performances drastically, both for the MaSEPTiDE model
and the Poisson model. The EB MaSEPTiDE model seems to outperform the EB
Poisson model at all the censoring times, except when T = 0.

T (hours)
MAPE (%)

MaSEPTiDE EB MaSEPTiDE Poisson EB Poisson
0 - 196.2 - 47.9
1 12690.9 24.4 196.3 27.4
2 7767.1 20.8 104.3 23.4
3 2648.2 18.7 76.4 21.0
4 2179.2 17.2 64.9 19.5
5 2542.3 16.1 59.7 18.3
6 1227.9 15.2 54.2 17.4
7 1312.1 14.4 49.8 16.6
8 1587.2 13.8 44.5 15.9
9 1048.3 13.2 40.5 15.4
10 1131.8 12.7 36.1 14.8
11 806.6 12.3 33.5 14.3
12 797.8 11.8 30.5 13.9

MaSEPTiDE model and the Poisson model are considerably large at all the censor-1

ing times, as they have been severely magnified by the presence of outlying values.2

However, the use of the EB approach, as proven in the table, can drastically im-3

prove their prediction performances. More importantly, the EB MaSEPTiDE model4

seems to outperform the EB Poisson model at all the censoring times considered,5

except at time zero. A similar conclusion can be drawn when the MdAPE is used as6

the evaluation metric, as indicated in Table 6.1.4. Compared to when the MAPE is7

used as the metric to assess the prediction performances of models, the values based8

on the MdAPEs of predictions, by all the four models considered, seem much more9

orderly. This is to be expected as the predictive median is resilient to the presence10

of outliers.11

Based on both Table 6.1.3 and Table 6.1.4, the EB MaSEPTiDE model con-12

sistently performs better starting from censoring time T = 1 hour, but is inferior13

compared to the EB Poisson model at censoring time zero. This implies that the14

precise time point at which the EB MaSEPTiDE model starts to outperform the EB15

Poisson model remains unknown, and can be intriguing to investigate. Therefore,16

we further attempted popularity predictions with several censoring times under one17

hour on both the models to secure a more conclusive answer.18

The prediction MAPEs and MdAPEs based on both the models at the selected19

censoring times of T = 1, 2, 3, 4 minutes and T = 5, 10, . . . , 55 minutes are shown in20
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Table 6.1.4: The MdAPEs for the MaSEPTiDE model, the EB MaSEPTiDE model,
the Poisson model, and the EB Poisson model at various censoring times T =
0, 1, . . . , 12 hours, based on the complete test data set. The EB MaSEPTiDE model
outperforms the EB Poisson model at all the censoring times, except when T = 0.

T (hours)
MdAPE (%)

MaSEPTiDE EB MaSEPTiDE Poisson EB Poisson
0 - 62.0 - 43.6
1 23.7 18.3 26.3 21.8
2 18.8 14.0 19.7 16.5
3 16.4 11.7 16.3 13.6
4 14.7 10.3 14.2 11.7
5 13.1 9.3 12.8 10.4
6 12.1 8.5 11.6 9.4
7 11.2 7.7 10.7 8.7
8 10.4 7.3 9.8 8.0
9 9.7 6.8 9.1 7.4
10 9.2 6.4 8.5 7.0
11 8.7 6.0 8.0 6.6
12 8.2 5.8 7.5 6.2

Table 6.1.5. By both the metrics, the EB MaSEPTiDE model is a better approach

Table 6.1.5: The MAPEs and MdAPEs of predictions based on the EB MaSEPTiDE
model and the EB Poisson model, at censoring times T = 1, 2, 3, 4 minutes and
T = 5, 10, . . . , 55 minutes. By both the MAPE and MdAPE, the EB MaSEPTiDE
model performs better than the EB Poisson model starting from T = 3 minutes.

T (minutes)
MAPE (%) MdAPE (%)

EB MaSEPTiDE EB Poisson EB MaSEPTiDE EB Poisson
1 66.4 44.6 42.5 37.7
2 55.4 50.6 39.6 37.9
3 47.7 48.8 36.8 37.3
4 43.4 44.8 34.7 35.3
5 40.4 41.5 32.9 33.4
10 33.5 35.2 27.9 29.6
15 30.8 33.9 25.8 28.9
20 29.4 33.0 24.3 28.3
25 28.5 32.1 23.2 27.4
30 27.7 31.2 22.2 26.5
35 27.0 30.5 21.4 25.6
40 26.4 29.8 20.7 24.6
45 25.8 29.2 19.9 23.9
50 25.3 28.6 19.4 23.2
55 24.8 28.0 18.6 22.4

1

in predicting the popularity of tweets when T = 3, 4, . . . minutes. On the contrary, 2

the EB Poisson model is a better prediction method when T = 1, 2 minutes, aside 3
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from time zero. Thus, the EB Poisson model remains an efficient and reliable pre-1

publication tweet popularity prediction method, capable of predicting the popularity2

of tweets at time zero or slightly beyond time zero with outstanding accuracy.3

As a remark, similar to the EB Poisson model, the EB MaSEPTiDE model is4

not expected to provide a better fit to the retweet cascades than its ML counterpart.5

The results of the goodness-of-fit assessment for the MaSEPTiDE model based on6

the ML approach have been previously shown in Table 4.5.2, which, at censoring7

time T = 12 hours and significance level of 0.01 for instance, have roughly 82% of8

cascades in the training data passing the test. The assessment results based on the9

EB MaSEPTiDE model using the test data, in contrast, are shown in Table 6.1.6.10

At the same censoring time and significance level, the passing percentage is only

Table 6.1.6: The percentages of cascades where the EB MaSEPTiDE model passes
the goodness-of-fit test, at different significance levels and censoring times, based on
the test data. At significance level of 0.01, the percentage of cascades passing the
test using data accumulated in the first 12 hours is 60.6%.

Significance level
Censoring time (hours)

2 4 6 8 10 12 168
0.01 74.1% 68.8% 65.8% 63.6% 61.8% 60.6% 52.0%
0.05 60.2% 54.7% 51.7% 49.6% 48.0% 46.9% 39.3%

11

around 61%, which is 21% less than that based on the ML approach. Thus, we12

note again that although the goodness-of-fit test is useful in determining if a specific13

model is able to fit the historical data well, it does not necessarily imply a more14

accurate popularity prediction beyond the censoring time. The assessment results15

for the EB MaSEPTiDE model applied on the training data, with nearly identical16

values, have also been appended in Table B.2.6.17

6.2 The Time-Dependent Hawkes Model18

To demonstrate the applicability of the EB approach on other point process models,19

we note that the parameters of the TiDeH model in (3.4.2) can be obtained through20

the ML approach discussed in Section 2.5, instead of the semiparametric approach21

which relies heavily on the window size parameter shown in (3.4.1) and (3.4.2).22

6.2.1 Parameter Estimation and Prediction23

Before using the likelihood function in (2.5.2), it is noteworthy that the conditional24

intensity function assumed by the TiDeH model takes the following specific form,25

λ(t) = p(t)

N(t−)∑
i=0

niφ(t− τi)
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= p(t)

∫
(0,t)×N

nφ(t− τ)N( dτ, dn).

1

By the Fubini’s theorem, a change of variables, and the assumed forms of the func- 2

tions p and φ, we have 3∫ T

0

λ(t) dt =

∫ T

0

p(t)

∫
(0,t)×N

nφ(t− s)N( ds, dn) dt

=

∫
(0,T )×N

∫ T

s

np(t)φ(t− s) dtN( ds, dn)

=

∫
(0,T )×N

n

∫ T−s

0

p(s+ u)φ(u) duN( ds, dn)

=

∫
(0,T )×N

nf(s)N( ds, dn)

=

N(T−)∑
i=0

nif(τi),

where the function f(·) is used to accelerate the parameter estimation process 4

through a computationally less demanding integral of the form, 5

f(s) =

∫ T−s

0

p(s+ u)φ(u) du

=

∫ T−s

0

α0 exp

(
−s+ u

β0

){
1− γ0 sin

(
2π

Td
(s+ u+ δ0)

)}
c

{
1 ∧

(
u

s0

)−(1+β)
}

du,

with Td, s0, c, and β fixed at their respective values presented in Section 3.3 and 6

Section 3.4. Thus, the parameters to be estimated for each cascade in the training 7

data to be used as prior information in the EB approach are α0, β0, γ0, and δ0. 8

The implementation of the EB estimation approach based on the TiDeH model 9

follows the same convention in Section 5.2.3, except that the logarithmic transfor- 10

mations for the model parameters have not been implemented due to the presence 11

of negative values in γ̂0 and δ̂0. Therefore, we used the parameters in their original 12

scales to obtain the EB estimates, and predicted the future popularity of tweets 13

using the solve-the-equation or simulation-based approach discussed in Section 3.4. 14

Following the previous convention of nomenclature, the model shall be referred to 15

as the EB TiDeH model. 16

6.2.2 Numerical Results 17

The results of predictions based on the EB TiDeH model when the MAPE and 18

MdAPE are used as the evaluation metrics are shown in Table 6.2.1. Similar to 19
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Table 6.2.1: The MAPEs and MdAPEs of predictions based on the EB TiDeH model,
at censoring times T = 0, 1, . . . , 12 hours. The model seems to have predicted the
final popularity of tweets reasonably well, especially from T = 1 hour when some
retweet events have accumulated.

T (hours) MAPE (%) MdAPE (%)
0 354.5 52.9
1 26.2 20.7
2 22.1 16.5
3 19.9 14.4
4 18.3 12.9
5 17.1 11.8
6 16.0 10.9
7 15.2 10.0
8 14.4 9.3
9 13.8 8.6
10 13.2 8.0
11 12.6 7.5
12 12.2 7.0

the EB MaSEPTiDE model, Table 6.2.1 shows that the prediction performance1

of the EB TiDeH model is inferior compared to that of the EB Poisson model at2

censoring time zero. Furthermore, although the EB TiDeH model is performing3

quite decently at later censoring times T = 1, 2, . . . , 12 hours based on both the4

assessment metrics, the EB MaSEPTiDE model is still relatively more reliable. In5

contrast, if we based solely on the MAPE values, the EB TiDeH model seems to6

outperform the EB Poisson model at censoring times T = 1, 2, . . . , 12 hours, but by7

the MdAPE values, the EB Poisson model appears to outperform the EB TiDeH8

model at T = 3, 4, . . . , 12 hours. This asserts that both models have comparable9

prediction performances, except at time zero when the EB Poisson model is clearly10

the winner. As the EB TiDeH model is considerably better than the original TiDeH11

model without the incorporation of prior knowledge, the utility of the EB estimation12

approach is further substantiated.13

6.3 The Poisson Model Variant14

For all the regression models with different response variables, we have used (m0
i , t

0
i ),15

i = 1, 2, . . . , 71815 throughout as the input variables, as they are the only informa-16

tion readily available at time zero. That said, whether or not the addition of new17

input variables such as those based on the semantic features of tweets can improve18

the prediction performance of the model of interest remains questionable. Specif-19

ically, the contents of tweets can be extracted using the application programming20
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interface (API) based on their respective tweet identification numbers1, where fea- 1

tures of the extracted contents can be used as the input variables to potentially 2

improve the model prediction accuracy. 3

It is worth mentioning here that the maximum number of tweets that can be 4

fetched from the server is limited to merely 180 tweets per quarter-hour. The extrac- 5

tion process can be conveniently initiated in R software environment for statistical 6

computing (R Core Team, 2016) through the twitteR client, together with several 7

other dependencies and complementary packages. Also, access tokens in the forms 8

of a consumer key and a consumer secret are required to setup the open-standard 9

authorization credentials, which allow us to interact with the Twitter server API. 10

These tokens can be generated from an existing Twitter developer applications ac- 11

count. 12

6.3.1 Retrieving and Using the Sentiment Values 13

The feature we shall use herein is the tweet sentiment, which, as we have discussed in 14

Section 1.2.1, reflects the writer’s attitudes or perceptions towards a specific subject. 15

The sentiment of a tweet in general can be positive, neutral, or negative. For 16

instance, a tweet containing words expressing happiness, kindness, or enthusiasm, 17

asserts a positive sentiment, while that expressing sadness, hatred, or discrimination 18

intuitively asserts a negative sentiment. In contrast, when no emotions can be 19

detected, the tweet sentiment is said to be neutral. It is important to note here 20

that sentiments are inherently subjective, as individuals of varying morals, values, 21

and beliefs may interpret the attitude of the same tweet content rather differently. 22

This calls for the use of different dictionaries in analyzing the tweet sentiments from 23

different contexts. 24

Getting an artificial intelligence or a computer algorithm to classify tweet sen- 25

timents the way humans are capable of doing has been a major challenge. Natural 26

language processing tools aiming to do just that have been abundantly proposed 27

over the recent years, one of which that is relatively popular is the coreNLP package 28

of Manning et al. (2014). Performing sentiment analysis based on the package would 29

yield integer-valued outputs which can imply different tweet sentiments, from being 30

very positive to being very negative. A more recent SentimentAnalysis package 31

proposed by Feuerriegel and Proellochs (2018) performs similar analysis based on 32

different dictionaries, and returns continuous-valued outputs in the range of [−1, 1]. 33

Both these tools have multilingual support, meaning that they can perform senti- 34

ment analyses for textual contents of different languages. However, for simplicity we 35

1The status of a tweet can be checked using https://twitter.com/anyuser/status/x, where x is
the 18-digit identification number of the tweet
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shall focus on tweets made entirely in English, and use Feuerriegel and Proellochs’s1

package for its utility in obtaining more accurate tweet popularity predictions.2

Identifying if a tweet has been posted entirely in English is easy, and necessitates3

a repository containing a comprehensive list of contemporary English words. By4

filtering out noises like punctuations and numbers followed by splitting the extracted5

textual content into chunks of words, we can compare the words with those available6

in the repository, and based on the number of matching words, we can calculate the7

percentage of English words found in a single tweet, and intuitively if the tweet8

of interest has been posted entirely in English. However, such practice limits the9

use of non-standard words like slangs and dialects commonly found in many tweets,10

and completely disregards tweets made in other languages or consisting mainly of11

non-textual contents like graphics, emoticons, and symbols.12

We have attempted to extract all the tweet contents in the complete data set13

described in Section 1.3, but some of them are no longer available by the time of14

extraction. This can be attributed primarily to removal of the contents by the tweet-15

ers themselves, or that the contents have been flagged inappropriate and therefore16

being removed by the administrators. Nonetheless, we still have sufficiently many17

tweets with their contents remain intact (≈ 80%), although they consist of several18

different languages. From this pool of available tweets, we randomly chose 10,00019

English tweets for further analysis, where half of these tweets were used as the20

training set, and the remaining ones were used as the test set. We then used the21

Harvard-IV General Inquirer, Henry’s Finance-Specific, Loughran-McDonald, and22

Quantitative Discourse Analysis Package dictionaries with the respective acronyms23

of GI, HE, LM, and QD to get the sentiment values for each of the tweets with24

textual contents.25

Figure 6.3.1 shows three sample tweets with their contents, and how the dictio-26

naries perceive their sentiments. Recall that the sentiment values evaluated by the27

aforementioned dictionaries can come in any value between −1 to 1, where −1 refers28

to a very negative tweet sentiment and 1 refers to a very positive one. In fact, if29

we based purely on intuition, we can easily tell that the tweet on the upper panel30

of Figure 6.3.1 portrays a negative sentiment, while those in the middle and lower31

panels are of neutral and positive sentiments respectively. It can be seen that the32

sentiment values returned by the LM dictionary seem to be quite convincing. The33

values based on the GI dictionary are also reasonable, but those based on the HE34

and QD dictionaries, especially on the tweet in the upper panel, seem to deviate35

slightly from the perceived value.36

The implementation of the EB approach using the Poisson model has been de-37

scribed in Section 5.2.3, and conveniently summarized in Figure 5.2.1. As our model38

formulation here is largely similar, we shall only highlight the differences compared39
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I hate being ignored, a simple yes or no will be fine. 

Every decision you make stems from what you think you 

are and represents the value that you put upon yourself. 

You are more than rich if you have good friends, good 

health, and a good conscience. 

GI HE LM QD 

-0.17 0.00 -0.50 0.00 

GI HE LM QD 

0.11 0.00 0.00 0.11 

GI HE LM QD 

1.00 0.43 0.57 0.86 

Figure 6.3.1: Sample tweets with their contents evaluated using different dictionar-
ies. The respective sentiment values are shown underneath each tweet with GI, HE,
LM, and QD corresponding to the Harvard-IV General Inquirer, Henry’s Finance-
Specific, Loughran-McDonald, and Quantitative Discourse Analysis Package dictio-
naries.

to the procedures depicted in Figure 5.2.1. First, we use a slightly different intensity 1

function, where the function d(·) reflecting the circadian rhythm of all Twitter users 2

is removed so that λ(t) = α(1 + βt)−γ. Second, the input variables used in the 3

nonparametric regression models are now xi = (m0
i , s

0
i ), for i = 1, 2, ..., 5000, with 4

s0
i denoting the sentiment value returned by a specific dictionary, and the size i is 5

based on the 5,000 English tweets available in the training data set. Third, as the 6

method is only applicable to tweets with sentiment values, instead of making pre- 7

dictions using the full test data set, we only use its sample of 5,000 English tweets. 8

Tweet popularity predictions at various censoring times can then be performed using 9

similar procedures discussed in Section 5.3. 10

6.3.2 Numerical Results 11

Suppose we denote the sentiment values returned by the respective dictionaries for 12

i = 1, 2, . . . , 5000 as s0
GIi

, s0
HEi

, s0
LMi

, and s0
QDi

. Table 6.3.1 shows the prediction 13

MAPEs and MdAPEs at censoring times T = 0, 1, . . . , 12 hours when the infor- 14

mation on (m0, t0), (m0, s0
GI), (m0, s0

HE), (m0, s0
LM), and (m0, s0

QD) for each retweet 15

cascade in the test data set is used. Note that for (m0, t0) which refers to the original 16

EB Poisson model, the prior distribution for its model parameters was built based 17

on the same 5,000 training data, and its predictions were also made using the same 18

5,000 test data as those used by models based on the different dictionaries, for consis- 19

101



Table 6.3.1: The MAPEs and MdAPEs of predictions when the information on
(m0, t0), (m0, s0

GI), (m0, s0
HE), (m0, s0

LM), and (m0, s0
QD) for each retweet cascade

in the test data set is used. A slight improvement for the model built based on
the sentiment values returned by the LM dictionary compared to the original EB
Poisson model can be observed from both the MAPE and MdAPE values, starting
from T = 1 hour and T = 9 hours respectively.

T (hours)
MAPE (%) MdAPE (%)

t0 s0
GI s0

HE s0
LM s0

QD t0 s0
GI s0

HE s0
LM s0

QD

0 50.4 51.8 52.5 51.6 52.1 45.5 45.4 45.2 45.9 45.8
1 28.6 29.6 30.0 28.5 29.4 23.5 24.7 24.4 23.8 24.5
2 25.1 25.8 26.2 25.1 25.4 18.8 19.2 20.1 19.7 19.0
3 23.0 23.5 23.6 22.8 22.9 16.2 16.4 17.1 16.8 16.4
4 22.5 23.4 22.4 21.9 22.6 14.3 14.4 15.2 14.9 14.2
5 21.1 21.9 20.9 20.4 21.2 12.9 12.8 13.5 13.4 12.7
6 19.7 20.5 19.5 19.0 19.9 11.7 11.6 12.2 12.0 11.6
7 18.8 19.6 18.4 18.0 18.9 10.7 10.8 11.0 10.9 10.8
8 18.1 18.8 17.6 17.2 18.1 10.2 10.2 10.1 10.2 10.2
9 17.5 18.1 16.9 16.5 17.6 9.6 9.6 9.4 9.4 9.5
10 16.8 17.5 16.3 15.8 17.0 9.0 9.0 8.7 8.8 9.0
11 16.2 16.9 15.6 15.2 16.4 8.5 8.6 8.2 8.2 8.3
12 15.7 16.4 15.1 14.7 15.9 8.0 8.1 7.7 7.8 7.9

tency and comparability. From Table 6.3.1 we note that, by using the MAPE as the1

evaluation metric, the model constructed based on the sentiment values returned by2

the LM dictionary seems to slightly outperform the conventional EB Poisson model3

discussed in Chapter 5, starting from T = 1 hour, but by using the MdAPE metric,4

it only starts to outperforms the EB Poisson model from T = 9 hours. Given the5

overall slight improvement, the proposed EB Poisson model variant utilizing values6

obtained from sentiment analysis appears to be less practical.7

6.4 Concluding Remarks8

This chapter revolves around presenting the extended models based on the EB ap-9

proach, which applies prior knowledge to the estimation of model parameters to10

prevent the parameters from deviating too much from the typical values. The11

approach is applicable on various point process models which make use of para-12

metric approaches to estimate their parameters, with indicative examples being the13

MaSEPTiDE model, the TiDeH model, and the sentiment-based Poisson model.14

The first model we demonstrate to have benefited from the EB estimation ap-15

proach is the MaSEPTiDE model, or under the EB framework we refer it to as the16

EB MaSEPTiDE model. Despite its commendable prediction accuracy at earlier17

censoring times, the MaSEPTiDE model has some limitations, notably in terms18

of the occasionally expensive parameter estimation process and unreasonably large19
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predicted final popularity values. These problems can be circumvented through the 1

use of the EB estimation approach, which proves that the EB MaSEPTiDE model is 2

a relative faster model capable of producing reliable popularity predictions based on 3

information accumulated in a matter of minutes. Along similar lines, the EB TiDeH 4

model seems to be substantially more stable than its semiparametric counterpart, 5

both in terms of its parameter estimates and its ability to produce more accurate 6

tweet popularity predictions. 7

As it is rather compelling to testify if the use of sentiment values in point process 8

models can be helpful in improving their prediction performances, we have impro- 9

vised them in our proposed EB Poisson model. Specifically, we have used integer- 10

valued sentiments in our initial attempts to stratify the nonparametric regression 11

models followed by performing parameter estimations and predictions according to 12

these classes of models, but the results obtained are inferior compared to those of the 13

original EB Poisson model. We have also tried adding in the continuous sentiment 14

values on top of the input variables (m0
i , t

0
i ), but despite the increased complexity, 15

such practice does not seem to produce better results than the model based solely 16

on (m0
i , s

0
i ). Nevertheless, substituting s0 for t0 in the EB Poisson model appears to 17

have inconspicuous impact on the outcomes of tweet popularity predictions, assert- 18

ing that the approach has limited practicality. 19

As a remark, we note that by using the extracted contents from the API, we can 20

also gain access to additional information such as the character lengths of tweets, 21

which can prove to be useful in some feature-based models. The information on the 22

exact times and dates of tweets and retweets, or better still, with the locations of the 23

tweeters and retweeters available from geotagging services, can also be included in 24

models constructed based on the EB approach to potentially improve their prediction 25

performances. Combining information internal and external to a specific retweet 26

time sequence seems to be useful in producing more reliable popularity forecasts, 27

where the response and input variables may be modified accordingly to adapt to the 28

various needs of different models. 29
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Chapter 7 1

Conclusion 2

Numerous popularity prediction methods which can be categorized according the 3

granularity of information used have been proposed over the recent years. Our 4

focus is on local domain prediction under the microscopic level, which translates 5

to predicting the popularity of a tweet based on information available from within 6

the Twitter network at an individual user’s level. Such refined attention to single 7

entities can facilitate the identification of influencers to quickly spread information 8

when the needs arise. Examples of prediction methods under this level include 9

the SEISMIC and the TiDeH model, both of which specify the same intensity but 10

differ in the forms of the infectivity functions assumed. Specifically, the SEISMIC 11

uses a nonparametric filtering function to discard posts as they get stale, while the 12

TiDeH model uses a semiparametric circadian rhythm function to exemplify the 13

repetitiveness of human routine activities. 14

Motivated by the empirical evidence that retweet activities tend to occur in 15

clusters or bursts, we first proposed a marked self-exciting point process model, 16

termed the MaSEPTiDE, to leverage the retweeting dynamics and predict the future 17

popularity of tweets. The memory kernel which describes how the excitation effect 18

due to the original tweet or a retweet is temporally distributed plays a pivotal 19

role here, and is thus incorporated into both the baseline intensity and excitation 20

functions. It is reinforced by two other component functions to contribute to the 21

total excitation effect, one of which reflects how the infectivity of a retweet varies 22

over time, the other pronounces the impact attributable to the number of followers 23

of the retweeter. Based on the form of the intensity beyond the censoring time, the 24

future popularity of a tweet can be predicted, using either a solve-the-equation or 25

a simulation-based approach. The MaSEPTiDE model was found to be capable of 26

accurately predicting the final popularity of tweets, or the total numbers of retweets 27

seven days after their publications, based on substantially less observations than 28

those required by the competing approaches in the literature. 29

Despite the commendable prediction performance of the MaSEPTiDE model, 30
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it is a post-publication prediction method which still requires the accumulation of1

retweet events for a considerable amount of time before a prediction can be made.2

The transient nature of tweets implies that most tweets would reach the peaks of3

their attention very soon after their publications, and that any meaningful prediction4

should be made within a matter of minutes. Thus, we proposed an empirical Bayes5

(EB) type approach to estimate the finite-dimensional parameters of different models6

through combining internal knowledge on the times of historical retweets up to a7

certain censoring time, and external knowledge on complete retweet time sequences8

in the training data. This requires the likelihood to be calculated based on the9

internal knowledge, and the prior distribution for model parameters constructed10

based on the external knowledge.11

The EB estimation approach is essentially a penalized maximum likelihood (ML)12

approach which adds a concave quadratic penalty to the log-likelihood function so13

that parameters further away from the initial nonparametric regression estimators14

are imposed with heavier penalties than those nearer. Therefore, the penalized15

log-likelihood function has a larger curvature, and is easier to maximize than its16

unpenalized version. The prior distribution for the tweet specific parameters under17

the EB approach has been inspired by the concept of confidence distribution, which18

leads to an interpretation of the maximum a posteriori (MAP) estimator, or max-19

imum penalized likelihood estimator. Such treatment gives a regularization effect20

on the ML estimates, and enables pre-publication tweet popularity prediction, or21

prediction at time zero.22

We first employed the EB estimation approach on a relatively simple model where23

the retweet time sequence is modelled using an inhomogeneous Poisson process, with24

its intensity function depending on the age of the original tweet and the calendar25

time, termed the EB Poisson model. The model only requires linear time in the26

number of retweets to evaluate its likelihood, and the calculation of the future tweet27

popularity is also rather straightforward. Its remarkable accuracy in predicting the28

final popularity of tweets is exhibited when contrasted with that of the original29

Poisson process model, and further borne out when compared to predictions based30

on the MaSEPTiDE model and the TiDeH model.31

To see how other models can benefit from the EB estimation approach, we sub-32

sequently applied the approach on the MaSEPTiDE model and the TiDeH model.33

Using the MaSEPTiDE model, we illustrated how the EB approach can eliminate34

grossly erroneous predictions occasionally generated by the ML estimates. Backed35

by the knowledge from the training data, the EB MaSEPTiDE model predicts even36

more accurately than the original MaSEPTiDE model, although it still requires37

some observations to outperform the EB Poisson model. The numerical results ob-38

tained based on experimenting with the TiDeH model, on the other hand, suggest39
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that although the EB TiDeH model underperforms the EB MaSEPTiDE model in 1

terms of the prediction accuracy at the censoring times considered, it is comparable 2

to the EB Poisson model, except at time zero. A variant of the EB Poisson model 3

employing the results obtained from sentiment analysis had also been presented, but 4

its practicality was found to be rather limited. 5

It is worth noting that although the assessment of the goodness-of-fit can pro- 6

vide insights on how well a model fits the historical data, a model with a better 7

goodness-of-fit does not necessarily have a better prediction performance beyond 8

the observation time. This is especially true for EB models which generally predict 9

better than their ML counterparts but have noticeably lower percentages of cas- 10

cades passing the goodness-of-fit tests. As for the debatable episode on the suitable 11

evaluation metrics to use in assessing the prediction performances of different tweet 12

popularity prediction methods, the MAPE and MdAPE seem appropriate as the 13

tweet data we consider contains highly heterogeneous popularity levels. Although 14

the consistent prediction functionals based on these error metrics are the order −1 15

median and harmonic median respectively, we have resorted to using the predictive 16

mean as the prediction functional, both for its ease-of-acquisition and the finding 17

that predictions based on different functionals often do not differ materially by the 18

different metrics used. 19

Although we have attempted to construct models which are both efficient and 20

accurate in predicting the final popularity of tweets to the best of our abilities, 21

there might still be room for further improvements. For example, the circadian 22

rhythm function used in the EB Poisson model can be stratified based on the time 23

zones of the locations wherein the tweeters reside to potentially improve the model 24

prediction accuracy. More generally, we have assumed that the prior distributions 25

of tweet specific parameters used in the EB approach do not have any form of 26

dependency, although learning the functional dependence through other regression 27

methods can possibly lead to even more accurate popularity predictions by various 28

models employing the EB approach. 29

On another remark, we have used the MAP estimator, or the mode of the pos- 30

terior distribution, to find the most probable parameter value based on augmenting 31

the optimization objective with prior information, thereby avoiding the more compu- 32

tationally demanding procedures such as the Markov Chain Monte Carlo (MCMC) 33

methods. In fact, even by using the posterior mean as a point estimate of the pa- 34

rameter, our experiments indicate that the prediction performance does not appear 35

to improve at all, and so the choice on using the posterior mode seems well justified. 36

As supplementary information when making tweet popularity predictions based 37

on the different models proposed in this thesis, we have appended the details of 38

implementation, such as the statistical packages required, the estimated computa- 39

107



tional cost of each procedure, the suggested number of simulation replications, and1

the empirical contribution of each component function in each of the models to the2

resulting prediction accuracy in Appendix C. Besides being useful in reproducing our3

results, such information facilitates the constructions of future models with different4

component functions.5

Overall, the EB Poisson model serves as a simple yet powerful prediction tool6

capable of accurately predicting the final popularity of tweets based on informa-7

tion observed at time zero or slightly beyond time zero. If more observation time8

is allowed, say, three minutes or longer, then the EB MaSEPTiDE model should9

be opted for. The ability of the EB models in making accurate popularity pre-10

dictions based on very short observation times, particularly the EB Poisson model11

and the EB MaSEPTiDE model, can prove to be useful in various applications, for12

example in assisting marketing firms and political campaigners to develop effective13

online advertising strategies on the social networks. Ultimately, as the information14

diffusion mechanism on Twitter bears a close resemblance to those of other online15

social networks like Facebook, our models should also be applicable in predicting16

the popularity of contents found on these platforms.17
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Appendix A 1

Optimal Prediction Functionals 2

The use of the RMSE and MAE in evaluating mean- and median-based predic- 3

tions have been discussed in the work of Gneiting (2011). However, the MAPE and 4

MdAPE are frequently used in assessing the accuracy and reliability of tweet popu- 5

larity prediction methods in the literature, which are theoretically inconsistent with 6

the predictive mean and the predictive median respectively. Thus, our discussion 7

here focuses on the optimal functionals for these two evaluation metrics, with special 8

emphasis on how the functionals can be obtained for the models considered in this 9

thesis. 10

Assume the predictive distribution, F say, is supported by positive reals. Then, 11

as noted by Gneiting (2011), the point prediction that is optimal relative to the 12

MAPE is the order −1 median of F , denoted by med(−1)(F ) and defined as the 13

median of the tilted distribution, (
∫∞

0
y−1 dF (y))−1y−1 dF (y). Here, we note that 14

med(−1)(F ) is defined only when
∫∞

0
y−1 dF (y) < ∞, which is clearly true in the 15

case we are considering since the predictive distribution has a lower bound of 49, to 16

account for the minimum number of retweets observed over the course of seven days. 17

The point prediction that is optimal relative to the MdAPE, on the other hand, can 18

be shown to be the harmonic mean of the two closest numbers l 6 u such that 19

F (u) − F (l−) > 1/2 and F (u−) − F (l) 6 1/2, which we refer to as the harmonic 20

median, and is conveniently denoted by hamed(F ). It is worth noting here that 21

when F is continuous, the constraints on l and u in the definition of hamed(F ) can 22

be simplified to F (u)− F (l) = 1/2. 23

In general, the computations of the order −1 median and the harmonic me- 24

dian require numerical procedures. A general Monte Carlo approach to compute 25

med(−1)(F ) is to use importance sampling. Specifically, a large i.i.d sample S = 26

{yi, i = 1, 2, . . . , B} from the distribution F is simulated first, then a bootstrap re- 27

sample (with replacement) S∗ = {y∗i , i = 1, 2, . . . , B} is taken from S where the 28

selection probabilities for yi are proportional to y−1
i , and then med(−1)(F ) is ap- 29

proximated by the median of S∗. 30
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Under the Poisson process model considered in this chapter, F is a truncated and1

shifted Poisson distribution. Therefore, to simulate from F , we can first simulate2

from the truncated Poisson distribution, with the lower bound max {49−N(T ), 0},3

using either the rejection method or the inversion method, and then add N(T ) to4

the simulated values. The choice of the method here depends on the value of the5

lower bound relative to the mean of the (untruncated) Poisson distribution. In6

particular, when the lower bound is smaller than the Poissonian mean, then the7

rejection method is more efficient. On the contrary, when the Poissonian mean is8

much smaller than the lower bound, then the inversion method is more efficient.9

Under other point process models, such as the MaSEPTiDE model, the trun-10

cated distribution for N(T̃ ) − N(T ) might not have an explicit or otherwise easy-11

to-compute density or mass function, and therefore the inversion sampling method12

is not applicable. Under such a circumstance, we can use the rejection method,13

that is, by simulating values from the untruncated distribution and retaining only14

the values which meet the condition of being at least 49−N(T ). A potential issue15

with this rejection method, however, is that none of the values simulated from the16

untruncated distribution meets the retention condition, despite a large number of17

values have been simulated. When this happens, we can simply approximate the18

order −1 median of the predictive distribution by the corresponding lower bound.19

For a general predictive distribution F , the computation of its harmonic median20

can be challenging. However, for the truncated and shifted Poisson distribution un-21

der the Poisson process model that we are dealing with here, the numerical computa-22

tion is relatively easy. First, note that when the mode of the Poisson distribution is23

49−N(T ) at max, the probability function of the truncated Poisson distribution is a24

decreasing function, therefore l = 49, u = N(T )+med[N(T̃ )−N(T )|N(T̃ )−N(T ) >25

49−N(T )], and hamed(F ) = 2/(l−1 +u−1). In contrast, when the mode of the Pois-26

son distribution is greater than 49 − N(T ), we can calculate the harmonic median27

based on the following algorithm, where f(·) denotes the conditional probability28

mass function of N(T̃ )−N(T ) given that it is at least 49−N(T ):29

1. Set both l and u to the mode of the Poisson distribution, and if there are two30

modes, set l to the smaller mode and u to the larger one.31

2. While
∑

i:l<i6u f(i) < 1/2 is true, repeat the following:32

If l > max {49−N(T ), 0} and f(l − 1) > f(u+ 1), set l← l − 1;33

otherwise, set u← u+ 1.34

3. Set l← l +N(T ) and u← u+N(T ).35

4. Return 2/(l−1 + u−1) as the harmonic median.36
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Under models where the probability mass function of N(T̃ )−N(T ) is not available 1

but it is relatively easy to simulate from the distribution, we can try to get a sample 2

from the truncated distribution using the rejection method, and then use the em- 3

pirical mass function in the above algorithm to obtain an estimate of the harmonic 4

median. When a truncated sample is extremely difficult to acquire, we can again 5

approximate the desired harmonic median by the corresponding lower bound. 6
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Appendix B1

Figures and Tables2

B.1 Supplementary Figures3

B.1.1 The MaSEPTiDE Model4
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Figure B.1.1: The shapes of the parameters based on the impact function r(·), the
infectivity function p(·), and the memory kernel function φ(·).
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B.1.2 The EB Poisson Model 1
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Figure B.1.2: The APEs of different prediction methods across different censoring
times at T = 0, 1, . . . , 12 hours, without the adjustments for the lower bounds.
The circular point in each boxplot shows the MAPE, while the horizontal thick bar
shows the MdAPE. The EB Poisson model is the best performing model at all the
censoring times.
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B.2 Supplementary Tables1

B.2.1 The MaSEPTiDE Model2

Table B.2.1: The percentages of retweet cascades with considerably small APE
values (< 5%). The retweet cascades are stratified according to the quantile values
of popularity. The MaSEPTiDE model consistently outperforms the SEISMIC and
the TiDeH model at censoring times T = 2, 4, 6 hours except for some very long
cascades, where it slightly underperforms the TiDeH model at T = 6 hours.

Very short
cascades

Censoring time (hours)
2 4 6 8 10 12

MaSEPTiDE 23.33 32.53 38.16 43.11 47.42 51.26
SEISMIC 16.56 21.58 25.11 27.51 29.83 31.34
TiDeH 16.27 20.16 27.26 39.70 52.12 59.99

Short
cascades

Censoring time (hours)
2 4 6 8 10 12

MaSEPTiDE 18.98 26.22 32.00 35.56 39.74 42.87
SEISMIC 14.79 19.07 22.78 25.21 27.33 29.18
TiDeH 14.67 19.27 24.58 34.07 42.29 48.52

Middle-length
cascades

Censoring time (hours)
2 4 6 8 10 12

MaSEPTiDE 16.61 22.60 27.27 30.90 34.72 37.36
SEISMIC 13.47 16.83 20.88 23.34 24.92 27.73
TiDeH 13.63 18.10 23.02 31.18 37.49 42.89

Long
cascades

Censoring time (hours)
2 4 6 8 10 12

MaSEPTiDE 16.19 20.56 24.03 26.61 29.83 32.22
SEISMIC 12.42 15.33 18.29 21.37 23.35 25.31
TiDeH 12.48 16.22 20.07 25.36 31.81 36.10

Very long
cascades

Censoring time (hours)
2 4 6 8 10 12

MaSEPTiDE 13.14 15.03 17.04 19.87 22.01 24.07
SEISMIC 9.95 11.69 13.83 16.09 18.21 20.34
TiDeH 9.15 13.79 18.71 22.24 25.52 29.68
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B.2.2 The EB Poisson Model 1

Table B.2.2: The prediction accuracy of different prediction functionals at censoring
times T = 2, 4, . . . , 12 hours, using the complete test data set. Point predictions
based on the predictive mean seem to be consistently more accurate than those
based on the other functionals.

T = 2 hours RMSE MAE MAPE MdAPE
Mean 390.81 69.73 23.35% 16.54%

Median 390.83 69.86 23.48% 16.73%
Order (−1) median 390.82 69.90 23.51% 16.81%
Harmonic median 390.85 70.03 23.62% 16.95%

T = 4 hours RMSE MAE MAPE MdAPE
Mean 303.99 60.12 19.50% 11.74%

Median 304.01 60.22 19.61% 11.93%
Order (−1) median 303.98 60.24 19.62% 11.94%
Harmonic median 304.01 60.34 19.72% 12.09%

T = 6 hours RMSE MAE MAPE MdAPE
Mean 303.05 55.29 17.37% 9.40%

Median 303.06 55.37 17.46% 9.52%
Order (−1) median 303.02 55.37 17.46% 9.52%
Harmonic median 303.05 55.47 17.55% 9.67%

T = 8 hours RMSE MAE MAPE MdAPE
Mean 349.90 53.12 15.94% 8.03%

Median 349.91 53.19 16.01% 8.12%
Order (−1) median 349.87 53.19 16.01% 8.12%
Harmonic median 349.89 53.27 16.08% 8.23%

T = 10 hours RMSE MAE MAPE MdAPE
Mean 391.89 51.23 14.84% 6.98%

Median 391.89 51.29 14.90% 7.14%
Order (−1) median 391.86 51.28 14.89% 7.14%
Harmonic median 391.88 51.35 14.96% 7.20%

T = 12 hours RMSE MAE MAPE MdAPE
Mean 405.18 49.05 13.86% 6.18%

Median 405.18 49.10 13.91% 6.25%
Order (−1) median 405.14 49.08 13.91% 6.25%
Harmonic median 405.16 49.15 13.96% 6.35%
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Table B.2.3: The summary statistics of the log-parameters obtained using the EB
estimation approach based on the training data set, at T = 7 days. The median
estimates for log α̃, log β̃, and log γ̃ are 9.308, 5.211, and 0.469 respectively.

Min Q1 Q2 Q3 Max Mean
log α̃ 4.851 8.614 9.308 9.949 35.961 9.249

log β̃ −5.637 4.224 5.211 5.898 8.690 4.813
log γ̃ −1.768 0.269 0.469 0.742 6.244 0.601

Table B.2.4: The percentages of cascades where the EB Poisson model passes the
goodness-of-fit test, at different significance levels and censoring times, based on the
training data. At significance level of 0.01, the percentage of cascades passing the
test using data accumulated in the first 12 hours is 50.4%.

Significance level
Censoring time (hours)

2 4 6 8 10 12 168
0.01 64.1% 58.4% 55.3% 53.3% 51.7% 50.4% 43.0%
0.05 49.6% 43.9% 41.0% 39.1% 37.6% 36.6% 30.3%
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B.2.3 The EB MaSEPTiDE Model 1

Table B.2.5: The summary statistics of the log-parameters obtained using the EB
estimation approach based on the training data set, at T = 7 days. The median
estimates for log α̃, log β̃, log γ̃, log δ̃1, and log δ̃2 are 4.303, −1.912, 2.019, 0.424,
and −5.404 respectively.

Min Q1 Q2 Q3 Max Mean
log α̃ −1.144 3.999 4.303 4.774 13.925 4.441

log β̃ −14.207 −2.568 −1.912 −0.658 10.306 −1.503
log γ̃ −7.210 0.834 2.019 3.147 19.303 1.899

log δ̃1 0.001 0.276 0.424 0.589 2.221 0.463

log δ̃2 −14.200 −6.349 −5.404 −4.680 −0.048 −5.646

Table B.2.6: The percentages of cascades where the EB MaSEPTiDE model passes
the goodness-of-fit test, at different significance levels and censoring times, based on
the training data. At significance level of 0.01, the percentage of cascades passing
the test using data accumulated in the first 12 hours is 60.5%.

Significance level
Censoring time (hours)

2 4 6 8 10 12 168
0.01 74.5% 68.8% 65.7% 63.6% 61.9% 60.5% 51.9%
0.05 61.1% 55.1% 52.1% 50.2% 48.6% 47.3% 39.5%
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Appendix C1

Implementation Details2

Additional procedural details for the models we have proposed shall be presented3

here. This includes the statistical packages required, the approximate computation4

time, the suggested number of simulation replications, and the empirical contribu-5

tion of individual component function to the resulting prediction accuracy in each6

of these models.7

C.1 Recommended Software and Computation Time8

From the estimations of model parameters to the predictions of the final popularity9

values based on the models proposed in this thesis, we have relied on the R statistical10

software. The software has numerous built-in functions, but certain packages have11

to be retrieved from the repository and loaded prior to using them. Specifically, the12

MaSEPTiDE model and the EB MaSEPTiDE model require the splines package13

for the solve-the-equation approach, the simPois function in the IHSEP package to14

simulate inhomogeneous Poisson processes, and the modified simHawkes1 function15

in the same IHSEP package to generate events based on the cascading algorithm.16

For demonstrative purposes, we have selected some random, but somewhat rep-17

resentative retweet cascades, based on the classes of final popularity values in Ta-18

ble B.2.1. The computational costs and the APE values for the proposed models19

at censoring time T = 2 hours are provided in Table C.1.1. Note, the times exhib-20

ited in each subtable under Table C.1.1 may differ according to the specifications21

of the machines used1, or the resources requested when submitting jobs containing22

implementation codes to some high performance computational clusters.23

Based on the subtables in Table C.1.1 it can be seen that overall, the EB Poisson24

model is the fastest approach in obtaining the parameter estimates and prediction25

values. The times required to obtain the parameters for the EB MaSEPTiDE model26

1we have used a Windows 8.1 computer with core i7-4700MQ processor running at 2.40GHz,
topped with 8GB of RAM and 64-bit operating system to obtain the results
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are shorter than the original MaSEPTiDE model in general, and on the other hand, 1

the predictions based on the solve-the-equation approach are also substantially faster 2

than those based on the simulation-based approach (at 100 replications) for both 3

the MaSEPTiDE model and the EB MaSEPTiDE model. 4

If we scrutinize for instance the first sample in the subtable representing very 5

short retweet cascades, it can be observed that it barely costs a second to estimate 6

the parameters for each of the methods proposed. That is, only 0.70 seconds are 7

needed for the MaSEPTiDE model, 0.07 for the EB Poisson model, and 0.64 for the 8

EB MaSEPTiDE model. This translates to the EB Poisson model being roughly 9

ten times faster than the MaSEPTiDE model or the EB MaSEPTiDE model. The 10

predictions based on the solve-the-equation approach for the MaSEPTiDE model 11

and the EB MaSEPTiDE model can also be acquired promptly, requiring only 12

0.72 and 1.56 seconds respectively. The sole prediction method based on the EB 13

Poisson model yields the prediction result almost instantaneously at 0.10 seconds. 14

Lastly, simulation-based approach prediction by the MaSEPTiDE model and the EB 15

MaSEPTiDE model requires more time, at 34.86 and 38.91 seconds respectively.

Table C.1.1: The computation times required by the key procedures used in the
models we have proposed, grouped according to the final popularity values observed
and censored at T = 2 hours. The results in cells containing two values are obtained
from the solve-the-equation and simulation-based approaches respectively. The APE
values have also been included for reference.

Very short
cascades

Time (seconds)
APE (%)Parameter

Prediction Total
estimation

Sample 1

MaSEPTiDE 0.70
0.72 1.42 5.34
34.86 35.56 4.96

EB Poisson 0.07 0.10 0.18 4.35

EB MaSEPTiDE 0.64
1.56 2.20 1.82
38.91 39.54 1.77

Sample 2

MaSEPTiDE 0.43
0.62 1.06 16.17
8.91 9.34 16.09

EB Poisson 0.09 0.09 0.18 12.79

EB MaSEPTiDE 0.56
1.63 2.19 2.11
101.34 101.90 2.12

Sample 3

MaSEPTiDE 0.76
0.51 1.27 20.93
16.70 17.46 20.18

EB Poisson 0.08 0.08 0.16 11.59

EB MaSEPTiDE 0.66
1.71 2.36 1.45
36.41 37.06 1.35

16
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Short
cascades

Time (seconds)
APE (%)Parameter

Prediction Total
estimation

Sample 1

MaSEPTiDE 1.74
0.94 2.68 4.87
0.96 2.70 4.85

EB Poisson 0.08 0.09 0.18 4.63

EB MaSEPTiDE 1.19
1.72 2.91 0.93
49.88 51.07 0.39

Sample 2

MaSEPTiDE 1.02
0.56 1.58 15.53
11.24 12.25 15.26

EB Poisson 0.07 0.08 0.15 15.21

EB MaSEPTiDE 0.94
1.59 2.53 7.77
88.71 89.65 8.02

Sample 3

MaSEPTiDE 0.78
0.51 1.28 22.65
17.24 18.01 21.86

EB Poisson 0.09 0.10 0.19 8.21

EB MaSEPTiDE 0.52
1.50 2.03 5.46
48.44 48.96 3.99

Middle-length
cascades

Time (seconds)
APE (%)Parameter

Prediction Total
estimation

Sample 1

MaSEPTiDE 3.70
0.50 4.20 5.77
3.27 6.97 5.89

EB Poisson 0.09 0.10 0.19 4.11

EB MaSEPTiDE 3.47
1.65 5.12 3.54
99.18 102.65 3.59

Sample 2

MaSEPTiDE 1.03
0.50 1.53 14.56
16.77 17.80 15.91

EB Poisson 0.07 0.09 0.16 14.35

EB MaSEPTiDE 0.78
1.76 2.54 11.28
39.62 40.41 10.97

Sample 3

MaSEPTiDE 2.47
0.58 3.04 21.91
18.53 21.00 21.81

EB Poisson 0.11 0.09 0.21 20.20

EB MaSEPTiDE 1.78
1.59 3.37 10.59
38.72 40.50 10.56
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Long
cascades

Time (seconds)
APE (%)Parameter

Prediction Total
estimation

Sample 1

MaSEPTiDE 4.42
0.54 4.96 16.56
16.84 21.26 15.55

EB Poisson 0.14 0.11 0.25 4.48

EB MaSEPTiDE 4.89
1.86 6.75 2.75
37.63 42.52 2.20

Sample 2

MaSEPTiDE 2.94
0.52 3.45 20.68
17.03 19.96 19.91

EB Poisson 0.12 0.09 0.21 6.71

EB MaSEPTiDE 2.42
1.71 4.12 1.06
45.70 48.12 0.23

Sample 3

MaSEPTiDE 7.86
0.50 8.36 19.93
8.08 15.94 15.61

EB Poisson 0.14 0.09 0.23 4.67

EB MaSEPTiDE 4.70
1.46 6.16 4.94
42.01 46.71 3.81

Very long
cascades

Time (seconds)
APE (%)Parameter

Prediction Total
estimation

Sample 1

MaSEPTiDE 63.14
0.66 63.80 32.99
8.10 71.24 26.35

EB Poisson 0.28 0.09 0.37 11.96

EB MaSEPTiDE 44.87
1.53 46.40 4.69
19.49 64.36 5.02

Sample 2

MaSEPTiDE 13.55
0.58 14.13 6.98
19.54 33.09 7.12

EB Poisson 0.19 0.08 0.27 6.15

EB MaSEPTiDE 8.93
1.47 10.39 2.60
45.28 54.21 2.75

Sample 3

MaSEPTiDE 65.23
0.53 65.76 38.03
8.02 73.25 31.59

EB Poisson 0.30 0.09 0.40 26.11

EB MaSEPTiDE 14.75
1.50 16.25 17.99
41.57 56.31 18.96
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While obtaining the parameter estimates and prediction values for efficient meth-1

ods like the EB Poisson model using a local computer is convenient, models like the2

MaSEPTiDE model and the EB MaSEPTiDE model require the use of high per-3

formance computational clusters2 to obtain the results swiftly. In particular, cas-4

cades of similar sizes can be grouped together to optimize the use of computational5

resources demanded. Network file transfer applications like PuTTY with various net-6

work protocol support, and clients like FileZilla are useful in running the codes7

and transferring files to and from the server with ease. For the whole test data set8

we have considered, assuming that a job consists of around 100 retweet cascades,9

running the jobs at six hours should suffice to yield the full results for the majority10

of the cascades, but a more conservative run time, say 12 hours, warrants a better11

completion rate.12

By the APE values in each subtable of Table C.1.1, the EB Poisson model seems13

superior compared to the MaSEPTiDE model, and the EB MaSEPTiDE model is14

considerably more accurate in tweet popularity prediction than the original MaSEP-15

TiDE model, a conclusion similar to that drawn based on the complete data set.16

The APEs based on the conditional expectations from the solve-the-equation and17

simulation-based approaches for the MaSEPTiDE model and the EB MaSEPTiDE18

model appear to be consistent with each other, as the predicted final popularity19

values using both approaches should be roughly equivalent.20

C.2 Simulation Replications21

We have mentioned that for the MaSEPTiDE model, predictions based on the22

simulation-based approach with sufficiently many replications should be consistent23

with those based on the solve-the-equation approach with adequate number of knots.24

To demonstrate this, we shall use the same samples of retweet cascades in Table B.2.125

consisting of varying final popularity values, and include the relevant results in Ta-26

ble C.2.1.27

For the prediction tasks demonstrated in Table C.2.1 we note that the objective28

is to obtain the predicted popularity value from T to T̃ , or (N(T̃ ) − N(T ))pred.29

This said, the columns in the table from left to right correspond respectively to the30

predicted value based on the solve-the-equation approach, the acceleration factor31

S used to inflate the simulated event numbers, the predicted values based on the32

simulation-based approach with and without the acceleration factor at both 50 and33

100 replications, and finally the variance of simulated event numbers. The corre-34

sponding APEs have also been shown in Table B.2.1, to facilitate the evaluation of35

2we have run our jobs using the Katana computational cluster under the settings of one node
and one core per node, with 4GB of memory requested
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Table C.2.1: Prediction results based on sample cascades of varying lengths at
T = 2 hours. The column from left to right shows the prediction based on the
solve-the-equation (STE) approach, the acceleration factor S, the mean number
of events based on the simulation-based approach at 50 and 100 replications with
and without the factor S, and finally the variance of the simulated event numbers.
The simulation-based approach at 50 or 100 replications seems sufficient to yield a
prediction consistent with that obtained using the solve-the-equation approach.

STE S
Mean × S Mean Variance
50 100 50 100 50 100

Very short
cascades

Sample 1 7.22 1 7.44 7.42 7.44 7.42 7.19 6.99
Sample 2 1.62 1 1.76 1.67 1.76 1.67 1.90 1.66
Sample 3 22.93 6 24.36 22.50 4.06 3.75 4.06 3.62

Short
cascades

Sample 1 0.11 1 0.16 0.12 0.16 0.12 0.22 0.15
Sample 2 1.96 1 2.28 2.18 2.28 2.18 2.12 1.87
Sample 3 32.63 8 34.72 32.08 4.34 4.01 5.45 4.49

Middle-length
cascades

Sample 1 0.63 1 0.50 0.52 0.50 0.52 0.50 0.51
Sample 2 39.54 10 43.00 40.80 4.30 4.08 4.01 3.08
Sample 3 3.42 1 3.54 3.55 3.54 3.55 3.72 3.52

Long
cascades

Sample 1 87.07 22 91.96 84.7 4.18 3.85 2.56 3.54
Sample 2 99.78 25 103.00 98.0 4.12 3.92 3.82 3.51
Sample 3 140.43 70 137.20 129.5 1.96 1.85 1.59 1.40

Very long
cascades

Sample 1 645.55 323 613.70 584.63 1.90 1.81 1.52 1.37
Sample 2 44.59 11 46.86 44.99 4.26 4.09 3.26 3.42
Sample 3 458.29 229 435.10 416.78 1.90 1.82 1.52 1.36

the prediction performances for the MaSEPTiDE model under such scenario. 1

It can be seen from Table C.2.1 that the difference between the predicted values 2

based on the solve-the-equation and simulation-based approaches becomes smaller 3

in general as the number of simulation replications increases. A closer scrutiny 4

further reveals that the variance and mean are very close to each other, and that 50 5

or 100 replications of the simulation are enough to guarantee a small relative error 6

for cascades of varying intensity levels. 7

C.3 Ablation Studies 8

The models we have proposed, namely the MaSEPTiDE model, the EB MaSEP- 9

TiDE model, and the EB Poisson model, consist of component functions contributing 10

to the predicted future popularity values, which directly affect the APEs. This said, 11

it is beneficial to investigate the relative effect exerted by the individual component 12

function from each of the model, a practice widely known as the ablation studies. 13

If we take the MaSEPTiDE model for example, the empirical contribution of each 14

component function in (4.1.3) can be inspected by letting p(·) = 1 or r(·) = 1. 15

We have mentioned in Section 4.4.2 that the solution of the functional equa- 16

tion used in the solve-the-equation approach to obtain the conditional expectation 17
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is not always easy to obtain, and that the numerical integration may occasionally1

fail. By the excitation function with components in (4.1.3) and at T = 2 hours,2

the percentage of retweet cascades failing to obtain a legitimate solution from the3

solve-the-equation approach is 0.37%. The percentage rises to 0.50% when p(·) is4

dropped from the excitation function, and a staggering 2.10% when r(·) is dropped.5

Overall, dropping the infectivity function p(·) tends to worsen the model prediction6

performance, but dropping the impact function r(·) may have different effects. This7

is demonstrated in Table C.3.1, where the classes of cascade lengths are identical8

to those shown in Table B.2.1. The percentage of retweet cascades failing to ob-9

tain a solution based on the solve-the-equation approach for each combination of10

component functions has also been included in each subtable.

Table C.3.1: The changes in prediction performances based on dropping the indi-
vidual component function, in accordance to the classes of retweet cascade lengths,
based on the complete test data. The percentages of retweet cascades failing to
return a solution based on the solve-the-equation approach have also been exhibited
in each subtable. The infectivity function p(·) contributes more to accurate tweet
popularity predictions.

Very short
cascades

APE (%)
NA (%)

Q1 Q2 Q3

p(τ)r(n)φ(t− τ) 5.54 15.41 35.96 0.10
r(n)φ(t− τ) 5.77 16.65 44.69 0.15
p(τ)φ(t− τ) 4.89 13.91 31.67 0.14

Short
cascades

APE (%)
NA (%)

Q1 Q2 Q3

p(τ)r(n)φ(t− τ) 6.98 18.18 38.27 0.06
r(n)φ(t− τ) 7.66 20.50 46.32 0.09
p(τ)φ(t− τ) 6.49 16.88 36.24 0.13

Middle-length
cascades

APE (%)
NA (%)

Q1 Q2 Q3

p(τ)r(n)φ(t− τ) 8.20 20.69 42.01 0.08
r(n)φ(t− τ) 8.71 22.52 49.36 0.09
p(τ)φ(t− τ) 7.50 19.16 40.84 0.23

Long
cascades

APE (%)
NA (%)

Q1 Q2 Q3

p(τ)r(n)φ(t− τ) 8.69 22.36 45.72 0.07
r(n)φ(t− τ) 10.23 25.22 53.41 0.12
p(τ)φ(t− τ) 8.62 21.56 47.42 0.38

Very long
cascades

APE (%)
NA (%)

Q1 Q2 Q3

p(τ)r(n)φ(t− τ) 10.64 26.18 49.86 0.06
r(n)φ(t− τ) 13.80 32.15 59.29 0.05
p(τ)φ(t− τ) 12.34 30.20 58.36 1.22
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While dropping p(·) appears to always worsen the prediction performances, drop- 1

ping r(·) seems to have variable effects depending on the lengths of the retweet cas- 2

cades in question. This is manifested in Table C.3.1, where dropping r(·) seems to 3

positively affect the prediction performances for all but very long cascades. However, 4

the number of unsolvable functional equations will markedly increase when this com- 5

ponent is absent from the excitation function, and so its inclusion is recommended. 6

As a remark, the component functions can be changed to different forms accordingly 7

for future models to suit to various needs. The effects are similar when changes are 8

applied on the EB MaSEPTiDE model, but each change can be arduous since it 9

involves the reconstruction of the prior distribution for the model parameters. 10

Another model that we have proposed, namely the EB Poisson model in (5.1.1), 11

consists of two main components where d(·) can be dropped to see how it affects the 12

overall prediction performance. As the circadian rhythms are more noticeable when 13

the tweets considered are first published, it is relatively more sensible to demonstrate 14

the effects at, say, time zero, as in Table C.3.2. Note that unlike the MaSEPTiDE

Table C.3.2: The changes in prediction performances based on dropping the compo-
nent function d(·), in accordance to the classes of retweet cascade lengths, based on
the complete test data. The function d(·) seems essential to make early popularity
predictions more reliable.

Very short
cascades

APE (%)
Q1 Q2 Q3

p(t)d(t) 6.84 15.88 50.43
p(t) 6.98 16.16 51.90

Short
cascades

APE (%)
Q1 Q2 Q3

p(t)d(t) 15.32 25.67 36.61
p(t) 15.38 25.72 36.71

Middle-length
cascades

APE (%)
Q1 Q2 Q3

p(t)d(t) 24.15 40.95 50.74
p(t) 24.10 40.70 50.65

Long
cascades

APE (%)
Q1 Q2 Q3

p(t)d(t) 37.30 56.60 67.21
p(t) 37.53 56.69 67.12

Very long
cascades

APE (%)
Q1 Q2 Q3

p(t)d(t) 64.75 76.75 84.44
p(t) 64.81 76.78 84.36

15
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model, the EB Poisson model is always able to produce a prediction. The APEs in1

Table C.3.2 reveal that dropping the function d(·) seems to only make popularity2

predictions slightly less accurate. Therefore, alternative forms of d(·) which incor-3

porate more informative calendar effects, for instance the trends observable during4

the weekends and weekdays, might make popularity predictions even more accurate.5
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