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Abstract 
 
This thesis focuses on modeling and optimization of two-region urban pricing systems and analyzing and understand-
ing the effects of pricing on the network traffic flow. The motivation of this work is the fact that traffic congestion is 
growing fast in cities around the world especially in city centers, and hence the need for an effective and efficient travel 
demand management (TDM) policy. With the aim of advancing the current congestion pricing theory, this thesis pro-
poses and integrates different advanced pricing regimes with the concept of the Network Fundamental Diagram and a 
simulation-based dynamic traffic assignment (DTA) model, studies and compares different computationally efficient 
simulation optimization (SO) methods, and analyzes and understands the effects of different pricing regimes on the 
network traffic flow. 
 
This thesis demonstrates through computer simulations the effectiveness of a well-designed pricing system on improv-
ing the network performance. The major finding is that the distance only toll, which represents the state of the practice, 
naturally drives travelers into the shortest paths within the pricing zone (PZ) resulting in a more uneven distribution of 
congestion and hence, a larger hysteresis loop in the NFD and lower network flows especially during network recovery. 
This limitation is overcome by two more advanced pricing regimes, namely the joint distance and time toll (JDTT) and 
the joint distance and delay toll (JDDT), through the introduction of either a time or a delay toll component. Moreover, 
this thesis explicitly models and minimizes the heterogeneity of congestion distribution as part of the toll level problem 
(TLP). The toll area problem (TAP) is also investigated by means of network partitioning. 
 
To optimize different pricing regimes through computer simulations, this thesis develops two computationally efficient 
SO frameworks. The first framework employs a proportional-integral (PI) controller from control theory to solve a simple 
TLP featuring a low-dimensional decision vector, a set-point objective and only bound constraints. The second frame-
work employs regressing kriging (RK) from machine learning to solve a complex TLP that has either a high-dimensional 
decision vector, a complex objective, or a set of complex constraints. A comprehensive comparison between the two 
methods and two other widely used methods, namely simultaneous perturbation stochastic approximation (SPSA) and 
DIviding RECTangles (DIRECT), are performed. 
 
Overall, this thesis provides valuable insights into the study, design, and implementation of urban pricing systems and 
the effects of pricing on the network traffic flow. Results of this work not only help in developing effective pricing systems 
to mitigate urban traffic congestion, but also provide competitive solutions to other types of network design problems 
(NDPs). 
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ABSTRACT 

This thesis focuses on modeling and optimization of two-region urban pricing 

systems and analyzing and understanding the effects of pricing on the network traffic 

flow. The motivation of this work is the fact that traffic congestion is growing fast in 

cities around the world especially in city centers, and hence the need for an effective and 

efficient travel demand management (TDM) policy. With the aim of advancing the cur-

rent congestion pricing theory, this thesis proposes and integrates different advanced pric-

ing regimes with the Network Fundamental Diagram (NFD) and simulation-based dy-

namic traffic assignment (DTA), studies and compares different computationally efficient 

simulation-based optimization (SO or SBO) methods, and analyzes and understands the 

effects of different pricing regimes on the network traffic flow. 

This thesis demonstrates through computer simulations the effectiveness of a 

well-designed pricing system on improving the network performance. The major finding 

is that the distance only toll, which represents the state of the practice, naturally drives 

travelers into the shortest paths within the pricing zone (PZ) resulting in a more uneven 

distribution of congestion and hence, a larger hysteresis loop in the NFD and lower net-

work flows especially during network recovery. This limitation is overcome by two more 

advanced pricing regimes, namely the joint distance and time toll (JDTT) and the joint 

distance and delay toll (JDDT), through the introduction of a time and a delay toll com-

ponent, respectively. Moreover, this thesis explicitly models and minimizes the heteroge-

neity of congestion distribution as part of the toll level problem (TLP). The toll area prob-

lem (TAP) is also investigated by means of network partitioning. 

To optimize different pricing regimes through computer simulations, this thesis 

develops two computationally efficient SO frameworks. The first framework employs a 
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proportional-integral (PI) controller from control theory to solve a simple TLP featuring 

a low-dimensional decision vector, a set-point objective and only bound constraints. The 

second framework employs regressing kriging (RK) from machine learning to solve a 

complex TLP that has either a high-dimensional decision vector, a complex objective, or 

a set of complex constraints. A comprehensive comparison between the two methods and 

two other widely used methods, namely simultaneous perturbation stochastic approxima-

tion (SPSA) and DIviding RECTangles (DIRECT), are performed. 

Overall, this thesis provides valuable insights into the study, design, and imple-

mentation of urban pricing systems and the effects of pricing on the network traffic flow. 

Results of this work not only help in developing effective pricing systems to mitigate 

urban traffic congestion, but also provide competitive solutions to other types of network 

design problems (NDPs). 
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CHAPTER 1. INTRODUCTION 

With rapid population and employment growth, traffic congestion in major cities 

around the world is expected to worsen causing significant economic and productivity 

loss. For example, the congestion cost in Melbourne, Australia is projected to reach $10.2 

billion in 2030, an increase from $4.6 billion in 2015 (Bureau of Infrastructure, Transport 

and Regional Economics (BITRE), 2015). While reducing travelers’ comfort during their 

trips, congestion also undermines the livability of the city as the city space is largely 

occupied by cars producing substantial vehicle emissions that affect the environmental 

quality and public health. 

The congestion problem is not new, and has always been an active area of research. 

Building and expanding road infrastructure, as a traditional approach to reducing conges-

tion, is financially and environmentally unsustainable and, more importantly, both theory 

and practice have shown that it may result in a return to congestion due to the induced 

demand (Sheffi, 1985). Therefore, demand-oriented strategies or travel demand manage-

ment (TDM) policies have been widely advocated and implemented as promising solu-

tions to the congestion problem, one of which is congestion pricing. Unlike gating or 

perimeter control, congestion pricing originates from the economic theory and hence 

serves as an economic lever to influence traffic. The rationale behind the concept is to 

internalize road users’ travelling impacts on others which they are either unaware of or 

unwilling to consider, commonly known as externalities of trips (Yang and Huang, 2005).  

To date, congestion pricing has been successfully implemented in different parts 

of the world including Singapore, London, Stockholm, and Milan, and is being considered 

as an initiative in a few other metropolises as well. See Gu et al. (2018) for a recent review. 

However, along with the increasing interest in implementing congestion pricing comes 
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the inadequacy of theoretically sound optimization methods particularly for a large-scale 

network with sophisticated pricing regimes, a fact that perhaps explains in part why one 

could hardly find any documentation elaborating on how the existing pricing systems 

were determined in the first place as well as how they were and will be updated. Singa-

pore’s Electronic Road Pricing (ERP) system is an exception where the toll price is ad-

justed quarterly to achieve a speed target (Olszewski and Xie, 2005)1. While the classical 

theory on congestion pricing is well established, e.g. see Yang and Huang (2005) for a 

comprehensive overview of first- and second-best pricing, its application entails great 

details of the network in question including traffic data of each individual link and 

knowledge of the origin-destination (OD) demand. This demanding requirement prevents 

the so-called microscopic approach from being applied efficiently to a large-scale net-

work, thereby necessitating a macroscopic approach. 

Macroscopic traffic flow relations for an urban network were initially proposed 

by Godfrey (1969) followed by Daganzo (2007); Mahmassani et al. (1987); Olszewski et 

al. (1995). More recently, with the re-theorization of the Network Fundamental Diagram 

(NFD) or Macroscopic Fundamental Diagram (MFD) using field data from Yokohama, 

Japan (Geroliminis and Daganzo, 2008), a new branch of congestion pricing theory has 

been enabled that largely facilitates the design and implementation of a large-scale pricing 

system due to its macroscopic nature. 

This thesis focuses on advancing the newly established macroscopic approach by 

proposing and integrating more efficient and equitable pricing regimes with computation-

ally efficient simulation optimization (SO) methods. Through computer simulations, we 

have demonstrated the capabilities of the proposed pricing optimization frameworks in 

                                                 

1 More information can be found at the Land Transport Authority website: https://www.lta.gov.sg/con-

tent/ltaweb/en/roads-and-motoring/managing-traffic-and-congestion/electronic-road-pricing-erp.html. 
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driving the network to its optimal state as well as reducing the heterogeneity of congestion 

distribution. Results of this work not only help in developing effective pricing systems to 

mitigate urban traffic congestion, but also provide competitive solutions to other types of 

network design problems (NDPs). 

The rest of this chapter is organized as follows. Section 1.1 states the problem to 

be solved in this thesis. Section 1.2 describes the research objectives. Section 1.3 sum-

marizes the thesis contributions. Section 1.4 presents the thesis organization.  

1.1. Problem Statement 

Although congestion pricing theory has been established since the 1920s, the pric-

ing mechanisms researched are mainly limited to link- and cordon-based regimes. Recent 

technological advances have motivated further investigation into distance-based and joint 

regimes representing a more efficient and equitable means of congestion pricing. More 

importantly, congestion pricing theory to date has been largely constrained within the 

classical microscopic approach. To better understand the effects of pricing on traffic dy-

namics in a large-scale network, further research effort is needed to extend the recently 

established macroscopic approach. A detailed discussion of the research gaps in the liter-

ature is provided in CHAPTER 2. 

1.2. Research Objectives 

The main objective of this thesis is twofold: 

• To propose a methodological framework integrating different computa-

tionally efficient SO methods with the NFD for solving an expensive toll 

level problem (TLP) in a large-scale dynamic traffic network. 
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• To extend the existing congestion pricing theory to better understand the 

effects of pricing on various network traffic phenomena such as hysteresis, 

gridlock, and capacity drop. 

1.3. Thesis Contributions 

The main contributions of this thesis are summarized as follows: 

• A distance-based pricing regime is investigated to highlight its methodo-

logical limitation. 

• Two joint pricing regimes, namely the joint distance and time toll (JDTT) 

and the joint distance and delay toll (JDDT), are proposed to extend the 

distance-based alternative. 

• A comparison among different pricing regimes is made to characterize 

their respective performance. 

• A unified pricing optimization framework is proposed to solve the TLP in 

which different SO methods can fit. 

• Computationally efficient feedback control and response surface method 

(RSM) are examined in comparison with other SO methods including sim-

ultaneous perturbation stochastic approximation (SPSA) and DIviding 

RECTangles (DIRECT). 

• The effects of pricing on network traffic phenomena such as hysteresis, 

gridlock, and capacity drop are characterized. 

• Heterogeneity of congestion distribution is confirmed to be a key factor of 

hysteresis through computer simulations and hence considered in the op-

timization. 
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•  A network partitioning approach is proposed to solve the toll area problem 

(TAP). 

1.4. Thesis Organization 

The organization of this thesis is shown in Figure 1.1. 

 

Chapter 2 Literature Review

Practical Implementation Theoretical Modeling

Chapter 3 Theory and Methodology

Chapter 4 Feedback Control for Toll Level Optimization

Network Fundamental Diagram

(NFD)

Toll Level Problem

(TLP)

Toll Area Problem

(TAP)

Chapter 5 Surrogate-Based Toll Level Optimization 

Chapter 6 Comparing Different Simulation Optimization (SO) Methods

Chapter 7 Network Partitioning for Toll Area Identification

Chapter 8 Conclusion

 
 

Figure 1.1 Organization of this thesis
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CHAPTER 2. LITERATURE REVIEW  

This chapter provides a comprehensive overview of the literature on congestion 

pricing practice and theory. Section 2.1 discusses the state of the practice as well as its 

implications. Section 2.2 reviews previous studies on congestion pricing theory with the 

objective of providing a solid methodological background of the existing models and so-

lution algorithms. Section 2.3 concludes the chapter by summarizing the research gaps in 

the literature. The work of this chapter has been published: 

• Gu, Z., Liu, Z., Cheng, Q., Saberi, M., 2018. Congestion pricing practices 

and public acceptance: A review of evidence. Case Stud. Transp. Policy 

6(1), 94-101. 

• Saberi, M., Gu, Z., 2018. Transport Strategy refresh background paper: 

Transport Pricing. City of Melbourne (CoM), Melbourne, Australia. 

To facilitate the presentation, the variables used in this chapter are first summarized in 

Table 2.1. 

 

Table 2.1 Variables used in CHAPTER 2 

Notation Interpretation 

𝜏ℎ(𝑖) Toll rate for the ℎ-th tolling interval during iteration 𝑖 

𝐾ℎ(𝑖) Average network density within the ℎ-th tolling interval during iteration 𝑖 

𝑃P/𝑃I Proportional/integral gain parameter 

𝐾cr Critical network density 
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2.1. Congestion Pricing Practice 

Road infrastructure expansion is a traditional way of alleviating traffic congestion. 

Due to limited space in dense urban areas as well as the well-known Braess’s paradox 

(Sheffi, 1985), this is not a sustainable solution. Various TDM policies instead have been 

embraced by transportation scientists and practitioners among which congestion pricing 

seems to attract the most attention. Rather than a compulsory rule for travelers, e.g. traffic 

signal control, it is an economic lever used to influence traffic. In Sub-section 2.1.1, we 

discuss the definition, categorization, and implementation of congestion pricing. Impli-

cations of practice are elaborated in Sub-section 2.1.2. 

2.1.1. Definition, Categorization, and Implementation 

Congestion pricing is one form of road pricing with the main objective of manag-

ing demand and reducing congestion. It is therefore functionally different from other road 

pricing that is aimed at collecting revenue for infrastructure investment or improving en-

vironmental quality (May, 1992). With recent technological advances, e.g., see de Palma 

and Lindsey (2011) for a comprehensive overview, we classify congestion pricing re-

gimes into five basic categories. See Figure 2.1 for a graphical representation. 

• Link- or facility-based regime imposes a charge on specific roads or road 

segments. It is particularly suited for addressing isolated bottleneck or cor-

ridor congestion but not regional congestion, e.g. the usual congestion 

spreading across the central business district (CBD). 

• Zonal regime imposes a charge on vehicles entering, exiting, or traveling 

entirely within a bounded area, typically referred to as the pricing zone 

(PZ). The charge does not distinguish between a trip that reaches the 
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destination immediately upon entering the bounded area and a trip that 

traverses the whole area. 

• Cordon-based regime highly resembles the zonal regime with the only dif-

ference that vehicles traveling entirely within the bounded area are not 

charged. The regime can adopt a single cordon only or multiple concentric 

cordons with or without radial screen lines for controlling orbital move-

ments (Sumalee, 2007). 

• Distance-based regime is perhaps the state of the practice that determines 

the charge linearly or nonlinearly (Meng et al., 2012) based on vehicle 

kilometers traveled (VKT) read from the odometer or a telematics device. 

It is an explicit charge based on the amount of road usage as opposed to 

the implicit one-off zonal or cordon-based regime. 

• Time- or delay-based regime is another explicit charge based on the vehi-

cle’s total travel time spent in the network. The charge by itself might re-

sult in safety and environmental concerns by encouraging vehicles to drive 

more aggressively and use minor roads (May and Milne, 2000). 

Zonal and cordon-based regimes are recipes for regional congestion and hence 

can be jointly referred to as area-based pricing. During the past few decades, there has 

been an increasing interest from government authorities across the globe in implementing 

area-based pricing in the CBD where congestion tends to cause greater economic and 

productivity losses (Liu et al., 2013). Therefore, this is taken as the primary target in this 

thesis. Distance- and time-based regimes represent a more efficient and equitable means 

of congestion pricing that can be integrated with either link- or area-based regime. This 

is considered and highlighted in this thesis. 



Dynamic Congestion Pricing in Urban Networks with the Network Fundamental Diagram and Simulation-

Based Dynamic Traffic Assignment 

9 

 

Area-based congestion pricing was first introduced in Singapore in 1975 under 

the name area licensing scheme (ALS). It operated until 1998 when the ERP system came 

as an upgrade. Following Singapore’s success, several other attempts have been made in 

different parts of the world. Table 2.2 categorizes a few typical examples including both 

adopted and not adopted cases. A comprehensive discussion of each case is provided in 

Gu et al. (2018) and Saberi and Gu (2018). 

 

 
 

Figure 2.1 Classification of congestion pricing regimes (Saberi and Gu, 2018) 
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Table 2.2 Categorization of area-based congestion pricing practice around the world 

(Saberi and Gu, 2018) 

Result Zonal Cordon-based Distance-based 

Adopted Singapore (ALS) Singapore (ERP) Oregon, USA 

 London, UK Stockholm, Sweden  

  Milan, Italy (Ecopass and Area C)  

Not adopted New York, USA Hong Kong, China  

  Edinburgh, UK  

  Greater Manchester, UK  

 

2.1.2. Implications 

Congestion pricing has been studied extensively since the seminal work by Pigou 

(1920) and Knight (1924). Concerns about practical implementation prevail in contrast 

with theory that is in favor of it. Evidence suggests that technical and financial problems 

no longer remain the biggest obstacles but public acceptance. A few decent discussions 

on this topic include Hensher and Li (2013); Noordegraaf et al. (2014); Sørensen et al. 

(2014); Zheng et al. (2014). A dig into the literature reveals four influencing factors on 

public acceptance towards congestion pricing and hence on the transition from theory to 

practice, namely privacy, complexity, equity, and uncertainty (Gu et al., 2018) which are 

further summarized in Table 2.3 for each case included in Table 2.2. 
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Table 2.3 Summary of the four influencing factors for each case included in Table 2.2, 

modified based on Gu et al. (2018)1 

 Privacy Equity Complexity Uncertainty 

    Effectiveness2 Revenue allocation 

Singapore √ √ √  √ 

London √ √ × √ √ 

New York  × √  √ 

Stockholm  √ √ √ √ 

Milan  √ √  √ 

Hong Kong × ×  × √ 

Edinburgh  × × × √ 

Greater Manchester   ×  √ 

Oregon √ √ √ √ √ 

Note: 1 √ = addressed, × = improperly handled, blank = inconclusive; 2 Here, effectiveness refers to how 

effective congestion pricing will be in achieving its objectives prior to permanent implementation, which 

can be rendered by a practical trial or theoretical modeling 
 

The Privacy concern results from the communications technologies associated 

with congestion pricing that might record personal information. It is one of the major 

reasons why the proposed charge was not adopted on a permanent basis in Hong Kong 

(Hau, 1990). Singapore’s ERP system, the London Congestion Charge, and the opt-in 

user-pays system in Oregon are all designed with considerations to address the privacy 

concern (Santos, 2005; Whitty, 2007). Addressing the privacy concern is relatively sim-

ple. For example, a telematics device can be configured not to transmit data when a vehi-

cle is only a few kilometers away from its origin or destination, a practice that was previ-

ously adopted in the congestion pricing trial in Melbourne, Australia (Transurban, 2016). 

The equity concern usually refers to the distributional effect of congestion pricing 

in that it might impose greater travel burden on low-income families and people with 

mobility impairments, thereby limiting their travel options. See Gu et al. (2018) for fur-

ther elaboration. The emphasis here, however, is that the equity concern also arises from 
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a modeling perspective. Specifically, zonal and cordon-based regimes are far less equita-

ble than distance- and time-based regimes because the charge is one-off and independent 

of the actual amount of road usage. The London Congestion Charge, for example, is a 

once-a-day charge that allows an unlimited number of passages through the PZ. Accord-

ing to Francke and Kaniok (2013), the distance-based regime coupled with a fixed kilo-

meter rate was in general most preferred over the other conceivable alternatives. However, 

while a fixed rate is certainly easy to understand, it lacks both efficiency and equity as 

compared with a time-of-day rate currently adopted in Singapore and Stockholm. 

Congestion pricing can be relatively simple or highly complex. Previous interna-

tional experience reveals that a simple charge particularly at the initial stage is of great 

importance, and that the ease of understanding turns out to be critical for gaining public 

acceptance (Hensher and Li, 2013). In Edinburgh and Greater Manchester, part of the 

argument for the failure of congestion pricing was the complexity of the two pricing cor-

dons. A lesson learned is that a gradually evolving charge is preferred over a “big bang” 

type of pricing reform. 

The uncertainty concern surrounds the effectiveness of congestion pricing and its 

revenue allocation (De Borger and Proost, 2012). How the generated revenue will be al-

located is perhaps relatively easy to address. Evidence suggests that the public is more 

supportive if revenue is meant to improve public transport (De Borger and Proost, 2012; 

Farrell and Saleh, 2005). The emphasis here is on the effectiveness of congestion pricing 

as people with inadequate information would be 2.14 times more negative than those 

well-informed, holding all other factors constant (Odeck and Kjerkreit, 2010). As a means 

of reducing risk-averse behavior (Christin et al., 2002), prior knowledge of how effective 

congestion pricing will be can be offered through a practical trial or theoretical modeling. 

However, to the best of our knowledge, the London Congestion Charge is perhaps the 
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only case that involves rigorous modeling while all the other cases are not well-docu-

mented and hence inconclusive in this regard. It highlights a research need from a practi-

cal point of view to develop large-scale modeling techniques for congestion pricing. 

2.2. Congestion Pricing Theory 

The overall toll design problem (TDP) of area-based pricing consists of the TLP 

and the TAP (Ekström et al., 2012). Assuming the PZ is exogenously given, i.e. without 

explicitly solving the TAP, a dominant research effort to date has been made to address 

the TLP only considering pricing regimes including but not limited to (i) zonal (Simoni 

et al., 2015; Ye et al., 2015), cordon-based (Liu et al., 2013; Zheng et al., 2016; Zheng et 

al., 2012), and distance-based (Daganzo and Lehe, 2015; Liu et al., 2017; Meng et al., 

2012). A variant entry-exit based pricing regime can be found in Meng and Wang (2008); 

Yang et al. (2004)._ENREF_110 Yang et al. (2002) is one of the very few studies on 

solving the TDP, i.e. on solving the TLP and the TAP simultaneously. A deep dig into 

both subjects are provided in the following Sub-sections 2.2.1 and 2.2.2, respectively. 

2.2.1. Toll Level Problem (TLP) 

Theory on addressing the TLP originates from economic theory dating back to the 

1920s. Following the acknowledged seminal work by Pigou (1920) and Knight (1924) on 

MCP, Walters (1961) and Li (2002) further applied MCP to the highways in the USA and 

the ERP system in Singapore, respectively. In essence, MCP equates to the difference 

between the marginal social cost and the marginal private cost so as to internalize the 

congestion externality. This is illustrated in Figure 2.2 as the vertical line connecting 

points g and h. It turns out that MCP is analytically consistent with the well-known Pigou-

vian tax. 
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Figure 2.2 Graphical representation of MCP (Yang and Huang, 2005) 

 

Mathematically speaking, the total travel cost associated with a flow 𝑞, 𝑇𝐶(𝑞), is 

𝑞𝐴𝐶(𝑞). The marginal social cost, 𝑀𝐶(𝑞), is expressed as 

 

 
𝑀𝐶(𝑞) =

d𝑇𝐶(𝑞)

d𝑞
=

d(𝑞𝐴𝐶(𝑞))

d𝑞
= 𝐴𝐶(𝑞) + 𝑞

d𝐴𝐶(𝑞)

d𝑞
 (2.1) 

 

where the term 𝑞
d𝐴𝐶(𝑞)

d𝑞
 represents the amount of toll that should be imposed to make an 

efficient use of the facility. Yang et al. (2004) extended and applied MCP to a general 

traffic network and found that if every link in the network is tolled based on MCP, the 

network is driven from user equilibrium (UE) to system optimum. Here system optimum 

refers to the minimization of the total travel cost in the case of fixed demand or the max-

imization of the social cost in the case of elastic demand. This is the theory of first-best 

pricing. Analytically speaking, first-best pricing problems can be formulated as nonlinear 

optimization problems and solved using one of the available methods, e.g. the Frank-

Wolfe method. 

Despite apparently perfect theoretical basis, practical implementation of first-best 

pricing has hardly achieved any progress simply because tolling every link in the network 
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results in a high operating cost and poor public acceptance. Therefore, various second-

best pricing problems have been proposed focusing on part of the network only. Mathe-

matically speaking, all the second-best pricing problems can be treated as mathematical 

programming with equilibrium constraints (MPEC), a particular case of bilevel optimi-

zation. The upper level forms the objective function to be minimized or maximized based 

on the problem at hand while the lower level models travelers’ collective route choice 

behavior in the network. 

In summary, all the second-best pricing problems differ in three aspects: 

• What is the objective? 

• What is the pricing regime? 

• What is the assumption on the route choice behavior? 

The objective of second-best pricing problems can be multiple including but not limited 

to (i) total travel time minimization (Chen et al., 2014), (ii) network speed regularization 

(Liu et al., 2013), (iii) total revenue maximization (Chen et al., 2016), (iv) network travel 

time reliability maximization (Chen et al., 2018), and (v) network flow maximization 

(Zheng et al., 2016). Each of these objectives corresponds to a unique way by which the 

network is evaluated and hence, different researchers and practitioners may have different 

preferences. The assumption on the route choice behavior is typically UE including its 

stochastic and dynamic counterparts or non-equilibrium stochastic flow. Alternatively, 

we can categorize the assumption into static traffic assignment (STA) and dynamic traffic 

assignment (DTA). While a few studies adopted STA (Liu and McDonald, 1999; Liu et 

al., 2013; Liu et al., 2014; Meng et al., 2012; Verhoef, 2002; Yang and Zhang, 2003; 

Zhang and Yang, 2004), there is a growing interest in implementing DTA whereby traffic 

conditions, especially congestion propagation, are allowed to vary over different time in-

tervals (Chen et al., 2016; Chung et al., 2012; de Palma et al., 2005; Lawphongpanich and 
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Yin, 2012; Liu et al., 2017; Tan et al., 2015). This certainly facilitates investigation into 

the more appealing dynamic congestion pricing. 

All the aforementioned studies belong to the “traditional” second-best pricing par-

adigm. With recent advances on the theory and applications of the NFD, promising re-

search efforts have been made to extend and modernize this tradition by integrating the 

NFD with MPEC, thereby providing valuable insights into the effects of pricing on net-

work traffic dynamics and phenomena. While Geroliminis and Levinson (2009) and 

Daganzo and Lehe (2015) incorporated the NFD into a bottleneck model for modeling 

the capacity drop phenomenon, respectively, the first fundamental study on combining 

the NFD with second-best pricing in a large-scale dynamic traffic network was only re-

cently conducted by Zheng et al. (2012) where a discrete integral (I-type) feedback con-

troller was applied within an agent-based simulation environment: 

 

 
𝜏ℎ(𝑖) = {

𝜏ℎ(𝑖 − 1) + 𝑃I(𝐾̅ℎ(𝑖) − 𝐾cr), 𝑖 > 1

𝑃I(𝐾̅ℎ(𝑖) − 𝐾cr),                                𝑖 = 1
 (2.2) 

 

where 𝜏ℎ(𝑖) is the adjusted toll rate for the ℎ-th tolling interval during iteration 𝑖, 𝐾̅ℎ(𝑖) 

is the average network density within the ℎ-th tolling interval during iteration 𝑖, 𝑃I > 0 is 

an integral gain parameter to be estimated, and 𝐾cr is the critical network density identi-

fied from the NFD. When 𝑖 = 1, the simulation is run without pricing as the base scenario. 

In short, the NFD was used to describe congestion at the network level based on which 

the toll rate was iteratively adjusted such that the NFD of the PZ did not enter the con-

gested regime. See Figure 2.3 for a graphical interpretation. 
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Figure 2.3 NFD-based pricing control logic (Zheng et al., 2012) 

 

This NFD-based pricing control logic turns out to be axiomatic forming the meth-

odological basis for a few subsequent studies (Gu et al., 2018; Zheng et al., 2016). The I-

type controller was later extended to a proportional-integral (PI) counterpart in Zheng et 

al. (2016) whereby travelers’ adaptation to pricing was considered and modeled: 

 

 𝜏ℎ(𝑖)

= {
𝜏ℎ(𝑖 − 1) + 𝑃P(𝐾̅ℎ(𝑖) − 𝐾̅ℎ(𝑖 − 1)) + 𝑃I(𝐾̅ℎ(𝑖) − 𝐾cr), 𝑖 > 1

𝑃I(𝐾ℎ(𝑖) − 𝐾cr),                                                                                𝑖 = 1
 

(2.3) 

 

where 𝑃P > 0 is an additional proportional gain parameter to be estimated. A comparison 

between the two feedback controllers was made and the simulation results confirmed that 

the latter outperformed the former. A similar feedback structure for NFD-based pricing 

was also proposed in Simoni et al. (2015), although without using a typical feedback 

controller. Instead, the NFD as well as the generalized 3D-NFD was integrated with MCP 

for deriving the toll adjustment rule that leads to the optimum. Note that, in the presence 

of a black-box simulation without explicit mathematical modeling, integrating the NFD 

with a feedback controller requires trial-and-error to estimate the controller gain parame-

ters. In contrast, when the system can be described fully mathematically as a set of 
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equations (e.g., a multi-reservoir NFD-based system), a control engineering method can 

be employed to obtain presumably better controller gain parameters (Keyvan-Ekbatani et 

al., 2016). 

To solve a second-best pricing problem, one can indeed devise an exact solution 

algorithm (Liu et al., 2014) or even use the somewhat “stupid” brute force method. How-

ever, given the usual non-convexity, non-linearity, and non-closed form characteristics of 

the objective function rendered by DTA, a heuristic algorithm is more employed (Verhoef, 

2002). The biggest obstacle, unfortunately, is its computational complexity particularly 

in the presence of a large-scale dynamic traffic network, i.e. its scalability. Therefore, to 

solve such a problem featuring a computationally expensive objective function, a high-

dimensional decision vector comprising multiple decision variables, and simulation (if 

used) noise, a “smart” enough method is needed to guide the search for the optimum in a 

computationally efficient manner. 

A stochastic traffic simulator, if used, introduces a source of numerical noise 

through different random seed numbers. Meanwhile, many deterministic computer exper-

iments involve another type of numerical noise that refers to the random deviations from 

the expected smooth response (Forrester et al., 2006). The key message is that stochastic 

traffic simulation tends to further increase the computation complexity of the problem at 

hand and limit our options for candidate solutions. Indeed, one could hardly devise an 

analytical method in the presence of a black-box simulation due to the lack of an explicit 

mathematical model of the system under consideration. For the same reason, exact gradi-

ent methods are no longer applicable but stochastic approximation methods might be con-

sidered as an alternative, e.g. SPSA (Spall, 1992). 

Given the above demanding requirements for solving an expensive second-best 

pricing problem, a family of algorithms termed simulation-based optimization (SO or 
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SBO) have recently been investigated and advocated as a computationally efficient 

method (Amaran et al., 2016; Osorio and Bierlaire, 2013; Osorio and Chong, 2015). 

While SO has already been applied to a variety of fields, its application to toll level opti-

mization is quite recent. Specifically, existing SO methods for solving the TLP can be 

classified into two broad categories: 

• Feedback control (Simoni et al., 2015; Zheng et al., 2016; Zheng et al., 

2012) 

• Surrogate-based optimization (Chen et al., 2016; Chen et al., 2014; Chen 

et al., 2018; Chow and Regan, 2014; Ekström et al., 2016; He et al., 2017) 

We have already discussed a few studies on integrating the NFD with feedback control 

which, to some extent, resembles the trial-and-error method (Yang et al., 2004). While 

enjoying desirable properties such as fast and global convergence and robustness (Zheng 

et al., 2012), feedback control has its own methodological constraint. This is elaborated 

in CHAPTER 4 and CHAPTER 6, respectively. Surrogate-based optimization, also 

known as RSM or metamodeling, is a totally different alternative method aiming to con-

struct a mathematical model of a simulation model. It focuses on learning and approxi-

mating the simulation input-output mapping using a limited number of function evalua-

tions (Amaran et al., 2016). See Figure 2.4 for a graphical interpretation. 

 

 
 

Figure 2.4 A costly function and the associated surrogate models using 25 and 100 sample 

points, respectively (Ekström et al., 2016) 
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While surrogate models can be built in local regions to sequentially guide the 

search for the optimum, global surrogate models from space-filling design of experiments 

(DOE) are more appealing given their capability to find the global optimum (Forrester et 

al., 2008; Jones et al., 1998). Several successful attempts have been made to date to apply 

surrogate-based optimization for solving expensive second-best pricing problems consid-

ering different objectives and functional forms of the response surface. For example, 

Chow and Regan (2014) chose the radial basis function to construct the surrogate model 

and solved a constrained multi-objective toll optimization problem. However, a compre-

hensive comparison between different surrogate models revealed that (regressing) kriging 

with expected improvement (EI) sampling is the best performing surrogate model (Chen 

et al., 2014; Ekström et al., 2016), which has therefore been further investigated in Chen 

et al. (2016); Chen et al. (2018); He et al. (2017). Kriging, also known as Gaussian process 

regression or Bayesian optimization, originates from geostatistics and has become popu-

lar in designing and analyzing computer experiments (Sacks et al., 1989). Coupled with 

EI sampling, it first constructs using an initial set of sample points a somewhat coarse 

response surface assuming a Gaussian process, and then refine the response surface in an 

iterative manner by adding additional infill sample points. The method is therefore capa-

ble of balancing between global exploration and local exploitation (Forrester et al., 2008). 

2.2.2. Toll Area Problem (TAP) 

Unlike the TLP which has been researched quite extensively, studies on the TAP 

are relatively limited. As we have previously touched upon, most studies on the TDP 

assumed an exogenously given PZ, thereby reducing the original problem to the TLP only. 

As part of the overall TDP, further investigation into the TAP is desirable. 

To explicitly solve the TAP, a few studies employed a somewhat engineering-

oriented judgmental approach. A review of various judgmental criteria can be found in 
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May et al. (2002). Since the judgmental approach heavily relies on the topology of the 

city under consideration, the resultant PZ is largely experience-based rather than being a 

product out of explicit mathematical modeling. In this context, it might even be true that 

the solution to the TLP is sub-optimal (May et al., 2002; Sumalee, 2004). To address this 

concern, a location index based method was proposed for simultaneously determining the 

optimal toll locations and levels (May et al., 2002). The judgmental approach was con-

sidered only as a supplementary tool to obtain the candidate set of toll locations. Despite 

having some methodological limitations, e.g. being unable to deselect links, the “LO-

CATE” method was shown to outperform the judgmental approach in terms of the social 

welfare achieved, and was later integrated with the genetic algorithm (GA) to create an 

improved “GALOCATE” heuristic method (May et al., 2002; Shepherd and Sumalee, 

2004)_ENREF_36. An exact solution algorithm for simultaneously determining the opti-

mal toll locations and levels was only recently proposed by Ekström et al. (2014); 

Ekström et al. (2012)_ENREF_2. The biggest problem, however, is that both the heuristic 

and exact methods failed to explicitly consider the closed format of a PZ. That is, the 

connectivity and compactness of the optimal toll locations were not necessarily guaran-

teed. 

The very first study that explicitly took into account the closed format of a PZ 

belongs to Yang et al. (2002). While the traffic network was viewed as a directed graph, 

the concept of cutset in graph theory was applied to mathematically represent a closed 

PZ. This mathematical formulation was later considered as an additional constraint in the 

TDP solved by the GA. In a similar fashion, Sumalee (2004) proposed a graph theory 

based branch-tree framework to mathematically define a closed PZ. The framework was 

integrated with the GA resulting in a GA-AS method for solving the TAP. Subsequent 

studies on comparing the GA-AS method with the judgmental approach revealed that a 
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mathematically derived PZ produced much greater welfare benefits than the judgmental 

counterpart (Shepherd et al., 2007; Sumalee, 2007; Sumalee et al., 2005). 

The above GA-based methods require a predefined initial PZ to generate a set of 

extended or contracted candidate PZs among which the optimum is to be identified. Oth-

erwise there can be an enormous number of candidate PZs particularly in a large-scale 

network which renders the problem intractable. Inspired by recent studies on segmenting 

a heterogeneous network into multiple spatially connected and homogeneous reservoirs 

using link density, speed, or travel time data (Ji and Geroliminis, 2012; Lopez et al., 2017; 

Saeedmanesh and Geroliminis, 2016, 2017), a possible solution to the TAP is to apply 

network partitioning, also known as contiguity-constrained clustering. Network partition-

ing has the capability of capturing and categorizing the spatial distribution of congestion 

in the network which is therefore promising for solving the TAP, because a sensible PZ 

should encapsulate as many as possible the main pockets of congestion. However, the 

applicability of the existing network partitioning methods is quite limited in that the re-

sultant partitioned network is typically a multi-reservoir system only suited for defining 

multiple disjoint PZs. In a big city where several congested sub-networks co-exist, a co-

ordinated multi-area pricing system is conceivable but still needs further investigation. 

For many of the existing real-world pricing implementations (see Section 2.1), the net-

work is modeled as a single-cordon two-region system. In such a two-region network, 

network partitioning has unfortunately not been investigated in depth to realize its full 

potential. Unlike the existing GA-based methods which are completely optimization-

driven, network partitioning incorporates optimization into a data-driven perspective. The 

method also provides an interface with the existing GA-based methods into which the 

identified PZ can be fed as the initial PZ for further refinement. It is therefore a promising 
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method for solving the TAP particularly in a large-scale network, being both theoretically 

contributing and of practical significance. 

2.3. Chapter Remarks 

This chapter provides a comprehensive review of the literature on congestion pric-

ing practice and theory. The overview on practice reveals a theoretical imperative to in-

vestigate more efficient and equitable pricing regimes and to develop a set of methods for 

large-scale pricing modeling and optimization. Among all the discussed practical imple-

mentations in Section 2.1, the London Congestion Charge seems to be the only case in-

volving rigorous modeling to determine the initial toll rate. The ERP system in Singapore 

is perhaps the only case that currently has a clear logic for toll rate adjustment. 

The overview on theory covers the state of the art on both the TLP and the TAP. 

While research on the TLP is well established, the question of large-scale pricing coupling 

advanced pricing regimes (see Section 3.2) with a macroscopic perspective (see Section 

3.1) remains wide open. This thesis tries to answer this question through different com-

putationally efficient SO methods (see Sections 3.3 and 3.4). Studies on the TAP, how-

ever, are relatively limited. The existing GA-based methods provide a solution but is de-

pendent on the initialization of the PZ. This is addressed in this thesis through network 

partitioning (see Section 3.5).
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CHAPTER 3. THEORY AND METHODOLOGY 

This chapter elaborates on the theory and methodology behind the proposed work. 

Section 3.1 describes the theory of the NFD as well as how it can be used for toll optimi-

zation. Section 3.2 formulates what we call joint tolls as a more efficient and equitable 

pricing regime. Sections 3.3 and 3.4 present two computationally efficient SO methods, 

respectively, for solving the TLP. Section 3.5 proposes a network partitioning method for 

solving the TAP. Section 3.6 concludes the chapter. 

3.1. Network Fundamental Diagram (NFD) 

To facilitate the presentation, the variables used in this section are first summa-

rized in Table 3.1. 

Table 3.1 Variables used in Section 3.1 

Notation Interpretation 

𝐾 Average network density 

𝑄 Average network flow 

𝑘𝑖 Average density of link 𝑖 

𝑞𝑖 Average flow of link 𝑖 

𝑙𝑖/𝑙𝑎 Length of link 𝑖/ 𝑎 

𝑛𝑖 Number of lanes of link 𝑖 

𝛾 Spatial spread of density 

𝛿 Deviation from spread 

 

The NFD is a macroscopic traffic flow relation for an urban area linking space-

mean flow, density, and speed. Specifically, when the somewhat scattered speed-density 

relationships of individual links in the network are aggregated, the scatter nearly disap-

pear with points lying neatly along a smooth inverse U-shaped curve (Geroliminis and 
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Daganzo, 2008). While the NFD can be accurately estimated based on Edie’s definitions 

of traffic flow variables (Edie, 1963), e.g. using vehicle trajectory data (Saberi et al., 

2014), it can also be approximated perhaps a bit more easily as distance-weighted aver-

ages using fixed detector data (Mahmassani et al., 1984): 

 

 
𝐾 =

∑ 𝑘𝑖𝑙𝑖𝑛𝑖𝑖

∑ 𝑙𝑖𝑛𝑖𝑖
 (3.1) 

 
𝑄 =

∑ 𝑞𝑖𝑙𝑖𝑛𝑖𝑖

∑ 𝑙𝑖𝑛𝑖𝑖
 (3.2) 

 

where 𝐾 and 𝑄 are the average network density and flow, respectively, 𝑘𝑖 and 𝑞𝑖 are the 

average density and flow of link 𝑖, respectively, and 𝑙𝑖 and 𝑛𝑖 are the length and the num-

ber of lanes of link 𝑖, respectively. See Figure 3.1 for a graphical representation. Note that 

in a simulation environment, we have exact knowledge of each wanted traffic flow vari-

able for each link in the network. Hence the resultant NFD is ideal as opposed to an op-

erational NFD that is estimated based on imperfect measurements (Keyvan-Ekbatani et 

al., 2012). 

 

 
 

Figure 3.1 Estimated NFDs of the Melbourne CBD from simulation data 
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The NFD has two desirable properties (Geroliminis and Daganzo, 2008): 

• There is a robust linear relation between the network flow and the trip com-

pletion rate. 

• The shape of the NFD is a property of the network itself including infrastruc-

ture and control, and is not very sensitive to different demand patterns. 

The first property implies that a detailed knowledge of how the OD demand varies is not 

necessarily required for NFD-based modeling and optimization. The second property im-

plies that, since the trip completion rate can hardly be measured in reality, the network 

flow, which is more observable through different types of sensors, can be used instead to 

measure accessibility, a very important network characteristic.  

Since the heterogeneity of congestion distribution is a key determinant of the 

shape and scatter of the NFD (Buisson and Ladier, 2009; Geroliminis and Sun, 2011; 

Mahmassani et al., 2013; Mazloumian et al., 2010; Saberi and Mahmassani, 2012, 2013), 

we introduce the spatial spread of density, 𝛾, representing how congestion is distributed 

within an area. By definition (Knoop and Hoogendoorn, 2013), it is estimated as the 

square root of the distance-weighted variance of all link densities: 

 

 

𝛾 = √
∑ 𝑙𝑖𝑛𝑖(𝑘𝑖 − 𝐾)2

𝑖

∑ 𝑙𝑖𝑛𝑖𝑖
 (3.3) 

 

The spatial spread of density naturally increases with a growing accumulation. That is, an 

increase in vehicles entering the area inevitably generates a higher spatial spread of den-

sity later in time as these vehicles continue their trips within the area. Given the correla-

tion between the spatial spread of density and the accumulation, the level of heterogeneity 

of congestion distribution is better interpreted as positive deviations from the natural 
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increment represented by the lower envelope in the spread-accumulation relationship 

(Simoni et al., 2015). By fitting a polynomial function, 𝛾(𝐾), to the lower envelope, the 

deviation from spread, 𝛿, is obtained: 

 

 𝛿 = 𝛾 − 𝛾(𝐾) (3.4) 

 

 
 

Figure 3.2 Spread-accumulation relationship of the Melbourne CBD from simulation data 

as well as the fitted lower envelope to represent the deviation from spread 

 

When using the NFD for network control and management, the objective is typi-

cally to keep the network operating around the critical network density so as to maximize 

the rate at which trips are served (Daganzo, 2007). When the network becomes congested 

or gridlocked, i.e., the network density increases beyond the critical threshold, the net-

work flow or the trip completion rate significantly drops causing undesirable network 

unproductivity. Meanwhile, given that a more heterogeneous distribution of congestion 

equates to an increased hysteresis loop in the NFD causing network unproductivity as 

well, another objective worthy of consideration is to reduce the heterogeneity of conges-

tion distribution (Ramezani et al., 2015). When implementing different network control 

and management strategies, some studies assumed that the NFD does not change signifi-

cantly. However, it should be noted that this assumption does not necessarily hold, 
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especially in the presence of adaptive traffic signals that are found to increase the maxi-

mum network flow as well as the critical network density (Keyvan-Ekbatani et al., 2016; 

Zhang et al., 2013). However, since this thesis deals with congestion pricing problems 

without considering adaptive traffic signals, we still assume an unchanged or slightly 

changed NFD after pricing. Further post-check will be performed to ensure the validity 

of this assumption. 

3.2. Joint Tolls 

To facilitate the presentation, the variables used in this section are first summa-

rized in Table 3.2. 

 

Table 3.2 Variables used in Section 3.2 

Notation Interpretation 

𝑁 /𝑁p/𝑁np Set of nodes in the entire sub-network/PZ/peripheral sub-network 

𝐴/𝐴p/𝐴np Set of directed links in the entire sub-network/PZ/peripheral sub-network 

𝑊 
Set of OD pairs where 𝑂 ⊂ 𝑁 is the set of origins and 𝐷 ⊂ 𝑁 is the set of destinations, 

i.e. 𝑊 = {(𝑜, 𝑑)|𝑜 ∈ 𝑂, 𝑑 ∈ 𝐷} 

𝑅𝑜𝑑 Set of paths between an OD pair (𝑜, 𝑑) ∈ 𝑊 

𝑚 Total number of tolling intervals 

𝑡𝑎(ℎ) Average travel time on link 𝑎 ∈ 𝐴 during the ℎ-th tolling interval 

𝛿𝑎,𝑟
𝑜𝑑  𝛿𝑎,𝑟

𝑜𝑑 = 1 if path 𝑟 ∈ 𝑅𝑜𝑑 includes link 𝑎, otherwise 𝛿𝑎,𝑟
𝑜𝑑 = 0 

𝜐ℎ/𝜂ℎ/𝜉ℎ Distance/time/delay toll rate 

𝑡𝑎
f  Free-flow travel time on link 𝑎 

 

Zonal and cordon-based pricing regimes are inefficient and inequitable. Unlike a 

usage-based charge, this type of pay-per-entry fee does not consider the amount of road 

usage in the PZ and hence is not linked to one’s actual contribution to congestion. It is 

unreasonable to apply the same amount of toll to a trip that reaches the destination 
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immediately upon entering the PZ and to a trip that traverses the whole area. In this con-

text, distance-based pricing is a much better option and indeed the state of the practice. 

Apart from the latest opt-in distance-based pricing system, OReGo, in Oregon, USA2, 

Singapore’s ERP system is planned to upgrade from 2020 onward to be distance-based3. 

A limitation of the distance only toll, however, is that it naturally drives travelers 

into the shortest paths within the PZ (Liu et al., 2014) resulting in a heterogeneous distri-

bution of congestion and hence a large hysteresis loop in the NFD. This is investigated 

and highlighted in CHAPTER 4. But, we can do better with the help of various emerging 

pricing technologies (de Palma and Lindsey, 2011). Note that a few advanced pricing 

concepts and schemes have been proposed recently such as New York City’s Move NY 

Plan which aims to charge taxis based on both distance and time4, and the joint distance- 

and cordon-based pricing trial in Melbourne, Australia (Transurban, 2016). 

To overcome the limitation of the distance only toll, we propose and study two 

joint tolls, namely the JDTT and the JDDT. The JDTT is assumed linearly proportional 

to both the distance traveled and the time spent within the PZ. As such, travelers would 

no longer accumulate themselves into the shortest paths within the PZ provided that the 

travel times on these paths increase substantially. The JDDT works in a similar fashion 

but slightly improves the equity of the JDTT. Specifically, since the time toll component 

as part of the JDTT tends to overcharge travelers on a longer link that typically requires 

more travel time despite being uncongested, the JDDT considers instead a delay toll com-

ponent that charges travelers in proportion to their experienced travel delays. 

                                                 

2 See http://www.myorego.org/. 
3 See https://www.lta.gov.sg/apps/news/default.aspx?scr=yes&keyword=ERP2. 
4 See https://nyc.streetsblog.org/2015/02/17/the-complete-guide-to-the-final-move-ny-plan/. 

http://www.myorego.org/
https://www.lta.gov.sg/apps/news/default.aspx?scr=yes&keyword=ERP2
https://nyc.streetsblog.org/2015/02/17/the-complete-guide-to-the-final-move-ny-plan/
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Let 𝐺 = (𝑁, 𝐴) denote a network where 𝑁 is the set of nodes and 𝐴 is the set of 

directed links. With a predefined pricing cordon, network 𝐺 is partitioned into a PZ de-

noted by 𝐺p = (𝑁p, 𝐴p) and a peripheral sub-network denoted by 𝐺np = (𝑁np, 𝐴np). Let 

𝑙𝑟
𝑜𝑑(ℎ) and 𝑡𝑟

𝑜𝑑(ℎ) denote respectively the distance traveled and the time spent within the 

PZ for path 𝑟 ∈ 𝑅𝑜𝑑 during the ℎ-th tolling interval: 

 

 𝑙𝑟
𝑜𝑑(ℎ) = ∑ 𝛿𝑎,𝑟

𝑜𝑑

𝑎∈𝐴p

𝑙𝑎  (3.5) 

 𝑡𝑟
𝑜𝑑(ℎ) = ∑ 𝛿𝑎,𝑟

𝑜𝑑

𝑎∈𝐴p

𝑡𝑎(ℎ) (3.6) 

  

where 𝑟 ∈ 𝑅𝑜𝑑, (𝑜, 𝑑) ∈ 𝑊, ℎ ∈ (1,2, … ,𝑚). Given the linearity assumption, the distance, 

time, and delay toll components for path 𝑟 ∈ 𝑅𝑜𝑑 during the ℎ-th tolling interval are cal-

culated as follows: 

 

 𝐷𝐼𝑟
𝑜𝑑(ℎ) = 𝜐ℎ ∑ 𝛿𝑎,𝑟

𝑜𝑑

𝑎∈𝐴p

𝑙𝑎 (3.7) 

 𝑇𝐼𝑟
𝑜𝑑(ℎ) = 𝜂ℎ ∑ 𝛿𝑎,𝑟

𝑜𝑑𝑡𝑎(ℎ)

𝑎∈𝐴p

 (3.8) 

 𝐷𝐸𝑟
𝑜𝑑(ℎ) = 𝜉ℎ ∑ 𝛿𝑎,𝑟

𝑜𝑑(𝑡𝑎(ℎ) − 𝑡𝑎
f )

𝑎∈𝐴p

 (3.9) 

 

where 𝜐ℎ, 𝜂ℎ, 𝜉ℎ ≥ 0 are the distance, time, and delay toll rates, respectively, and 𝑡𝑎
f  is the 

free-flow travel time on link 𝑎 ∈ 𝐴p. The generalized travel cost function for path 𝑟 ∈

𝑅𝑜𝑑 during the ℎ-th tolling interval is therefore expressed as 
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𝐶𝑟

𝑜𝑑(ℎ) = ∑ 𝛿𝑎,𝑟
𝑜𝑑𝑡𝑎(ℎ)

𝑎∈𝐴

+
𝐷𝐼𝑟

𝑜𝑑(ℎ) + 𝑇𝐼𝑟
𝑜𝑑(ℎ) + 𝐷𝐸𝑟

𝑜𝑑(ℎ)

𝑉𝑇𝑇
 (3.10) 

 

where VTT is travelers’ average value of travel time. Clearly different choices of 

𝜐ℎ, 𝜂ℎ, 𝜉ℎ lead to different pricing regimes. For example, when 𝜐ℎ > 0, 𝜂ℎ = 𝜉ℎ = 0, we 

have the distance toll only; when 𝜐ℎ, 𝜂ℎ > 0, 𝜉ℎ = 0, we have the JDTT; when 𝜐ℎ, 𝜉ℎ >

0, 𝜂ℎ = 0, we have the JDDT. In our simulation model (see APPENDIX A) used in the 

subsequent chapters, Equation (3.10) is integrated with the C-logit stochastic route choice 

model (Cascetta et al., 1996) for path assignment. 

3.3. Feedback Control 

To facilitate the presentation, the variables used in this section are first summa-

rized in Table 3.3. 

 

Table 3.3 Variables used in Section 3.3 

Notation Interpretation 

𝑃P
𝜐/𝑃p

𝜂
/𝑃P

𝜉
 Proportional gain parameter for 𝜐ℎ/𝜂ℎ/𝜉ℎ 

𝑃I
𝜐/𝑃I

𝜂
/𝑃I

𝜉
 Integral gain parameters for 𝜐ℎ/𝜂ℎ/𝜉ℎ 

𝐾ℎ
max(𝑖) Maximum network density within the ℎ-th tolling interval during iteration 𝑖 

𝜌𝜐/𝜌𝜂 Scaling parameter for 𝜐ℎ/𝜂ℎ 

𝑃P , 𝑃I Nominal proportional and integral gain parameters 

𝑖∗ Iteration in which the steady-state error comes close to zero 

𝜔1/𝜔2 Weight coefficient 

𝑣𝑎(ℎ) Average speed on link 𝑎 

 

The PI controller as a classical feedback control strategy has been widely used for 

traffic control and management purposes. A well-known example is the ALINEA ramp 
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metering (Papageorgiou et al., 1991). When applied to congestion pricing, the PI control-

ler can work both in real time (Yin and Lou, 2009) and in a day-to-day fashion (Zheng et 

al., 2016). The difference between the two is twofold: 

• Using a small time step, the real-time PI controller produces a frequently 

changing toll rate over time whereas the day-to-day counterpart produces 

different static toll rates for different tolling intervals. 

• The real-time PI controller does not require an iterative solution frame-

work since the input to the controller for the current time interval always 

comes from the previous interval. Differently, the day-to-day PI controller 

needs iterations. For a time interval of interest during the current iteration, 

the input to the day-to-day PI controller always comes from the same in-

terval but in the previous iteration. 

Since we use the NFD to describe congestion at the network level, the PI controller is a 

handy entry point to solving the TLP because the critical network density identified from 

the NFD naturally becomes the set point in the PI controller. Given its fast and global 

convergence and robustness properties (Zheng et al., 2012), the PI controller can effec-

tively achieve our control objective. We emphasize that the convergence property is only 

valid for the day-to-day PI controller. The output of the real-time PI controller always 

varies because of the changing real-time input measurements. Note that when the objec-

tive changes to, for example, minimizing the total travel time, the PI controller can hardly 

be applied due to the lack of a set point. Another limitation is its inability to consider 

complex constraints. In Sub-sections 3.3.1 and 3.3.2, we propose a simultaneous and a 

sequential feedback control approach, respectively. 

3.3.1. Simultaneous Feedback Control Approach 
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Under the distance only toll scenario, the distance toll rate, 𝜐ℎ, is the only control 

input to the network. As such, we can readily apply Equation (2.3) to iteratively adjust 𝜐ℎ 

until the control objective is met. Differently, under the JDTT scenario, there is an addi-

tional control input to the network other than 𝜐ℎ, namely the time toll rate, 𝜂ℎ. Therefore, 

we propose the following simultaneous approach based on the PI controller for iteratively 

adjusting the JDTT. When 𝑖 > 1, the discrete PI controller for the JDTT is expressed in 

the following matrix form: 

 

 
[
𝜐ℎ(𝑖)

𝜂ℎ(𝑖)
] = [

𝜐ℎ(𝑖 − 1)

𝜂ℎ(𝑖 − 1)
] + [

𝑃P
𝜐 𝑃I

𝜐

𝑃p
𝜂

𝑃I
𝜂] [

𝐾ℎ
max(𝑖) − 𝐾ℎ

max(𝑖 − 1)

𝐾ℎ
max(𝑖) − 𝐾cr

] (3.11) 

 

where 𝑃P
𝜐, 𝑃I

𝜐 > 0 (𝑃p
𝜂
, 𝑃I

𝜂
> 0) are the proportional and integral gain parameters for 𝜐ℎ 

(𝜂ℎ), respectively. Here we use 𝐾ℎ
max(𝑖), the maximum network density within the ℎ-th 

tolling interval during iteration 𝑖, in place of 𝐾̅ℎ(𝑖) so that the PI controller is more ag-

gressive. Since there are four parameters to be estimated, directly applying trial-and-error 

can lead to different combinations of parameters and hence different optimal steady-state 

toll rates. These toll rates are all considered optimal given that the control objective is 

achieved. To ensure a unique optimum, we need to balance between 𝜐ℎ and 𝜂ℎ. 

 Knowing that the PI controller is robust to moderate parameter changes, we as-

sume that the rank of [
𝑃P

𝜐 𝑃I
𝜐

𝑃p
𝜂

𝑃I
𝜂] is one and hence [

𝑃P
𝜐 𝑃I

𝜐

𝑃p
𝜂

𝑃I
𝜂] = [

𝜌𝜐 0
0 𝜌𝜂

] [
𝑃P 𝑃I

𝑃P 𝑃I
] where 

𝜌𝜐, 𝜌𝜂 > 0 are the scaling parameters to be determined, respectively, and 𝑃P, 𝑃I > 0 are 

the nominal proportional and integral gain parameters, respectively. By denoting [
𝜐ℎ(𝑖)

𝜂ℎ(𝑖)
] 



Dynamic Congestion Pricing in Urban Networks with the Network Fundamental Diagram and Simulation-

Based Dynamic Traffic Assignment 

34 

 

as 𝝉ℎ(𝑖) , [
𝜌𝜐 0
0 𝜌𝜂

]  as 𝝆 , [
𝑃P 𝑃I

𝑃P 𝑃I
]  as 𝑷 , and [

𝐾ℎ
max(𝑖) − 𝐾ℎ

max(𝑖 − 1)

𝐾ℎ
max(𝑖) − 𝐾cr

]  as [
𝐸ℎ

P(𝑖)

𝐸ℎ
I (𝑖)

]  or 

simply 𝑬ℎ(𝑖), Equation (3.11) can be rewritten in a compact form: 

 

 𝝉ℎ(𝑖) = 𝝉ℎ(𝑖 − 1) + 𝝆𝑷𝑬ℎ(𝑖) (3.12) 

 

When 𝑖 = 1, 𝝉ℎ(1) = 𝝆𝑷𝑬ℎ(1) = [
𝜌𝜐 0
0 𝜌𝜂

] [
𝑃P 𝑃I

𝑃P 𝑃I
] [

0
𝐸ℎ

I (1)] = [
𝜌𝜐𝑃I𝐸ℎ

I (1)

𝜌𝜂𝑃I𝐸ℎ
I (1)

]. 

 

Proposition 3.1 The ratio between the optimal steady-state toll rates is equal to the ratio 

between the scaling parameters. 

 

Proof. Let 𝑖∗ denote the iteration in which the steady-state error comes close to zero. We 

expand Equation (3.12) recursively as follows: 

 

 

𝝉ℎ(𝑖∗) = 𝝉ℎ(𝑖∗ − 1) + 𝝆𝑷𝑬ℎ(𝑖∗) = 𝝉ℎ(𝑖∗ − 2) + ∑ 𝝆𝑷𝑬ℎ(𝑖)

𝑖∗

𝑖=𝑖∗−1

= ⋯ = 𝝉ℎ(1) + ∑𝝆𝑷𝑬ℎ(𝑖)

𝑖∗

𝑖=2

 

(3.13) 

 

Given that 
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∑𝝆𝑷𝑬ℎ(𝑖)

𝑖∗

𝑖=2

= ∑[
𝜌𝜐 0
0 𝜌𝜂

] [
𝑃P 𝑃I

𝑃P 𝑃I
] [

𝐸ℎ
P(𝑖)

𝐸ℎ
I (𝑖)

]

𝑖∗

𝑖=2

=

[
 
 
 
 
 
 
𝜌𝜐 (∑𝑃P𝐸ℎ

P(𝑖) + 𝑃I𝐸ℎ
I (𝑖)

𝑖∗

𝑖=2

)

𝜌𝜂 (∑𝑃P𝐸ℎ
P(𝑖) + 𝑃I𝐸ℎ

I (𝑖)

𝑖∗

𝑖=2

)

]
 
 
 
 
 
 

 

(3.14) 

 

Equation (3.13) can be rewritten as follows implying 
𝜐ℎ(𝑖∗)

𝜂ℎ(𝑖∗)
=

𝜌𝜐

𝜌𝜂
: 

 

 

𝝉ℎ(𝑖∗) = [
𝜐ℎ(𝑖∗)

𝜂ℎ(𝑖∗)
] =

[
 
 
 
 
 
 
𝜌𝜐 (𝑃I𝐸ℎ

I (1) + ∑𝑃P𝐸ℎ
P(𝑖) + 𝑃I𝐸ℎ

I (𝑖)

𝑖∗

𝑖=2

)

𝜌𝜂 (𝑃I𝐸ℎ
I (1) + ∑𝑃P𝐸ℎ

P(𝑖) + 𝑃I𝐸ℎ
I (𝑖)

𝑖∗

𝑖=2

)

]
 
 
 
 
 
 

 (3.15) 

 

Proposition 3.1 supports our previous argument that different pairs of the scaling 

parameters can lead to different optimal steady-state toll rates. In this context, we need to 

specify the relative weight between the two toll components. Given the link-additive 

property, we rescale our analysis from the path level to the link level. The generalized 

travel cost function for link 𝑎 ∈ 𝐴p during the ℎ-th tolling interval is expressed as 

 

 𝑐𝑎(ℎ) = 𝑡𝑎(ℎ) + 𝑑𝑖𝑎(ℎ) + 𝑡𝑖𝑎(ℎ) (3.16) 

 

where 𝑑𝑖𝑎(ℎ) = 𝜐ℎ𝑙𝑎 and 𝑡𝑖𝑎(ℎ) = 𝜂ℎ𝑡𝑎(ℎ) are the incurred distance and time tolls. As-

suming the relative weight between the optimal steady-state toll components for link 𝑎 ∈
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𝐴p  during the ℎ-th tolling interval is 𝜔1 > 0, i.e. 
𝑑𝑖𝑎

∗ (ℎ)

𝑡𝑖𝑎
∗ (ℎ)

= 𝜔1 , the following equality 

should hold: 

 

 𝜐ℎ(𝑖∗)

𝜂ℎ(𝑖∗)
=

𝜌𝜐

𝜌𝜂
=

𝜔1𝑡𝑎(ℎ)

𝑙𝑎
 (3.17) 

 

However, since 𝑡𝑎(ℎ) varies over time, 
𝜌𝜐

𝜌𝜂
≠

𝜔1𝑡𝑎(ℎ)

𝑙𝑎
. Therefore, instead of focusing on an 

individual link, we take and assume the average of 
𝑑𝑖𝑎

∗ (ℎ)

𝑡𝑖𝑎
∗ (ℎ)

 over all links and tolling inter-

vals to be 𝜔1: 

 

 
∑ ∑

𝑑𝑖𝑎
∗(ℎ)

𝑡𝑖𝑎∗(ℎ) 𝑎∈𝐴p

𝑚
ℎ=1

𝑚𝑁p
= 𝜔1 

(3.18) 

 

This is an intuitive network-level analogue to the invalid link-level assumption. Since 

𝑑𝑖𝑎
∗ (ℎ)

𝑡𝑖𝑎
∗ (ℎ)

=
𝜐ℎ(𝑖∗)𝑙𝑎

𝜂ℎ(𝑖∗)𝑡𝑎(ℎ)
=

𝜌𝜐𝑙𝑎

𝜌𝜂𝑡𝑎(ℎ)
=

𝜌𝜐𝑣𝑎(ℎ)

𝜌𝜂
 where 𝑣𝑎(ℎ) is the average speed on link 𝑎 ∈ 𝐴p 

during the ℎ-th tolling interval, Equation (3.18) can be rewritten as 

 

 𝜌𝜐

𝜌𝜂
=

𝜔1𝑚𝑁p

∑ ∑ 𝑣𝑎(ℎ) 𝑎∈𝐴p
𝑚
ℎ=1

=
𝜔1𝑚

∑ 𝑣̅(ℎ)𝑚
ℎ=1

=
𝜔1

𝑣̿
 (3.19) 

 

where 𝑣̅(ℎ) =
1

𝑁p
∑ 𝑣𝑎(ℎ) 𝑎∈𝐴p

 is the average speed in the PZ during the ℎ-th tolling in-

terval and 𝑣̿ =
1

𝑚
∑ 𝑣̅(ℎ)𝑚

ℎ=1  is the average of 𝑣̅(ℎ) over all tolling intervals. Given that 

𝑃P  and 𝑃I  are adjustable, we set 𝜌𝜐 = 1 and end up with 𝜌𝜂 =
𝑣̿

𝜔1
. Although 𝑣̿  is not 
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computable as prior knowledge of 𝜐ℎ(𝑖∗) and 𝜂ℎ(𝑖∗) is required, different tolls may result 

in similar network speeds because the control logic is always to keep the maximum or the 

average network density within the tolling period around the critical threshold identified 

from the NFD. We therefore approximate 𝑣̿ using speeds obtained under the optimal cor-

don toll scenario, denoted by 𝑣̃. Without loss of generality, we set 𝜔1 = 1. Validity of the 

approximation and a sensitivity analysis on 𝜔1 are provided in CHAPTER 4. 

3.3.2. Sequential Feedback Control Approach 

Same as the JDTT, the JDDT also has an additional control input to the network 

other than 𝜐ℎ, namely the delay toll rate, 𝜉ℎ. However, we cannot readily apply the sim-

ultaneous approach because 𝑡𝑎(ℎ)  is replaced by 𝑡𝑎(ℎ) − 𝑡𝑎
f  implying that 𝑣𝑎(ℎ)  in 

Equation (3.19) no longer exists and the NFD-enabled approximation no longer holds. 

Therefore, we propose the following sequential approach based on the PI controller for 

iteratively adjusting the JDDT. 

Analogous to the introduction of 𝜔1 when dealing with the JDTT, we introduce 

another weight coefficient, 𝜔2 > 0, to break down the simultaneous TLP to be solved in 

a sequential manner. Specifically, at the first step, we set 𝜉ℎ = 0 and apply Equation (2.3) 

to obtain the optimal steady-state distance toll rate 𝜐ℎ(𝑖∗). This is virtually the optimal 

solution to the distance only toll problem. At the second step, given 𝜐(𝑖∗) and 𝜔2, we fix 

𝜐ℎ = 𝜔2𝜐ℎ(𝑖∗) and obtain the optimal steady-state delay toll rate 𝜉ℎ(𝑖∗) as follow: 

 

 𝜉ℎ(𝑖)

= {
𝜉ℎ(𝑖 − 1) + 𝑃P

𝜉
(𝐾ℎ

max(𝑖) − 𝐾ℎ
max(𝑖 − 1)) + 𝑃I

𝜉(𝐾ℎ
max(𝑖) − 𝐾cr), 𝑖 > 1

𝑃I
𝜉(𝐾ℎ

max(𝑖) − 𝐾cr),                                                                                  𝑖 = 1
 

(3.20) 
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where 𝑃P
𝜉
, 𝑃I

𝜉
> 0 are the proportional and integral gain parameters for 𝜉ℎ, respectively. 

Without loss of generality, we set 𝜔2 = 0.5. A sensitivity analysis on 𝜔2 is provided in 

CHAPTER 4. 

3.4. Surrogate-Based Optimization 

To facilitate the presentation, the variables used in this section are first summa-

rized in Table 3.4. 

 

Table 3.4 Variables used in Section 3.4 

Notation Interpretation 

𝜇 Unknown constant mean of the response surface 

𝜎2 Process variance 

𝛉 Vector of scaling coefficients 

𝜆 Regularization constant 

𝑦min Best observed objective function value so far 

𝑐max Constraint threshold 

 

While the PI controller is an intuitive and easy-to-implement method, there are 

several methodological disadvantages that prevent it from being adopted in a wider range 

of applications. As one of the demanding requirements for applying the method, the ob-

jective function needs to focus on and minimize the error from a set point simply because 

of the nature of the PI controller – it aims to drive a system towards a user-defined optimal 

state represented by a set point. The method also requires that the TLP under considera-

tion involve simple bound constraints only but not complex constraints, a prerequisite 

that can be easily violated. Therefore, to solve an expensive TLP in its general formula-

tion, we resort to the surrogate-based optimization approach. In what follows, we focus, 

respectively, on the four key components in the surrogate-based SO framework consisting 
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of DOE in Sub-section 3.4.1, regressing kriging (RK) in Sub-section 3.4.2, EI sampling 

in Sub-section 3.4.3, and model validation in Sub-section 3.4.4. 

3.4.1. Design of Experiments (DOE) 

Since DOE aims to provide an initial set of sample points to construct the starting 

surrogate model, the space-filling property is desirable as the resultant sample points are 

spread as uniformly as possible over the entire feasible domain. Latin Hypercube Sam-

pling (LHS) is a space-filling DOE whereby each problem dimension is stratified into an 

equal number of intervals from which points are uniformly sampled. As such, there is no 

overlap in LHS when mapping the multi-dimensional sample points into each dimension. 

To achieve the maximum uniformity or space-fillingness of an LHS plan, one can apply 

maximin LHS to maximize the minimum distance between all the sample points by gen-

erating and evaluating a set of candidate plans (Forrester et al., 2008). The size of the 

initial set of sample points is chosen to be 2(2𝑚 + 1) where 2𝑚 is the problem dimen-

sion, i.e. the size of the complete toll decision vector. According to Ekström et al. (2016), 

at least 2𝑚 + 1 sample points are required to construct the starting surrogate model. A 

few additional sample points can also be considered as part of the initial plan such as the 

corner and center points of the design space. 

3.4.2. Regressing Kriging (RK) 

In a stochastic process approach, the output of a deterministic computer experi-

ment is modeled as a realization of a stochastic process. The ordinary kriging model is a 

stochastic process model that assumes an unknown constant mean, 𝜇, of the response 

surface, 𝑦(𝐱), and a zero-mean second-order stationary Gaussian process, 𝑍: 

 

 𝑦(𝐱) = 𝜇 + 𝑍(𝐱), E[𝑍(𝐱)] = 0 (3.21) 
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where 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑘]
T is the decision vector. The covariance function of 𝑍 between 

any two points, 𝐱(𝑖) and 𝐱(𝑗), is defined as 

 

 Cov[𝑍(𝐱(𝑖)), 𝑍(𝐱(𝑗))] = 𝜎2𝜓(𝐱(𝑖), 𝐱(𝑗)) (3.22) 

 

where 𝜎2 is the process variance and 𝜓(⋅) is the Gaussian correlation function depending 

on the distance between 𝐱(𝑖) and 𝐱(𝑗) only: 

 

 𝜓(𝐱(𝑖), 𝐱(𝑗)) = exp(−∑𝜃𝑙

𝑘

𝑙=1

(𝑥𝑙
(𝑖) − 𝑥𝑙

(𝑗)
)
2

) , 𝜃𝑙 ≥ 0 (3.23) 

 

where 𝛉 = [𝜃1, 𝜃2, … , 𝜃𝑘]T is a vector of scaling coefficients that allows for varying im-

pacts of each dimension on the correlation function. The correlation matrix, 𝚿, is con-

structed with the (𝑖, 𝑗)-th element being 𝜓(𝐱(𝑖), 𝐱(𝑗)). 

The ordinary kriging model is an interpolation method that constructs the response 

surface by passing through all the sample points. When computer experiments display 

numerical noise, i.e., the output tend to have a random scatter about a smooth trend rather 

than lying on it, the interpolating kriging model may exhibit overfitting without being 

able to tolerate data fluctuations (Forrester et al., 2006). The solution is to allow the 

kriging model not to interpolate but to regress the sample points, which is achieved by 

adding a regularization constant, 𝜆, to the diagonal of the correlation matrix. That is, 𝐑 =

𝚿 + 𝜆𝐈 where 𝐑 is known as the regressing correlation matrix and 𝐈 is an identity matrix 

of the same dimension. The resultant model is commonly known as RK or kriging regres-

sion (Chen et al., 2014; Forrester et al., 2006; He et al., 2017). 
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Given the assumption of a Gaussian process, the likelihood function of 𝑛 obser-

vations, 𝐲 = [𝑦1, 𝑦2, … , 𝑦𝑛]T, is expressed as 

 

 𝐿(𝐲|𝜇, 𝜎2, 𝜆, 𝛉) =
1

(2𝜋)
𝑛
2(𝜎2)

𝑛
2|𝐑|

1
2

exp(−
(𝐲 − 𝟏𝜇)T𝐑−1(𝐲 − 𝟏𝜇)

2𝜎2
) (3.24) 

 

where 𝟏 is a unit column of size 𝑛 and |⋅| is the determinant operator. The unknown pa-

rameters, 𝜇, 𝜎2, 𝜆, and 𝛉, can be estimated by maximizing the logarithm of 𝐿: 

 

 

max
𝜇,𝜎2,𝜆,𝛉

log(𝐿) =−
𝑛

2
log(𝜎2) −

1

2
log(|𝐑|) −

(𝐲 − 𝟏𝜇)T𝐑−1(𝐲 − 𝟏𝜇)

2𝜎2

−
𝑛

2
log(2𝜋) 

(3.25) 

 

where the constant term, 
𝑛

2
log(2𝜋), can be ignored. By setting the first-order derivatives 

to zero with respect to 𝜇 and 𝜎2, respectively, we obtain the maximum likelihood esti-

mates (MLEs): 

 

 𝜇̂ =
𝟏T𝐑−1𝐲

𝟏T𝐑−1𝟏
 (3.26) 

 𝜎̂2 =
(𝐲 − 𝟏𝜇̂)T𝐑−1(𝐲 − 𝟏𝜇̂)

𝑛
 (3.27) 

 

Substituting the MLEs into log(𝐿) results in what is called the concentrated log-likeli-

hood function which is to be maximized with respect to 𝜆 and 𝛉: 
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 clog(𝐿) = −
𝑛

2
log(𝜎̂2) −

1

2
log(|𝐑|) (3.28) 

 

The kriging predictor for a new point, 𝐱∗, is determined by calculating and maximizing 

the augmented log-likelihood function (Forrester et al., 2006): 

 

 𝑦̂(𝐱∗) = 𝜇̂ + 𝛙T𝐑−𝟏(𝐲 − 𝟏𝜇̂) (3.29) 

 

where 𝛙 = [𝜓(𝐱∗, 𝐱(1)), 𝜓(𝐱∗, 𝐱(2)), … , 𝜓(𝐱∗, 𝐱(𝑛))]
T

is the correlation vector between 

𝐱∗ and all the sample points. The associated prediction error is 

 

 𝑠̂2(𝐱∗) = 𝜎̂2(1 + 𝜆̂ − 𝛙T𝐑−𝟏𝛙) (3.30) 

 

3.4.3. Expected Improvement (EI) Sampling 

When kriging is used to approximate the simulation input-output mapping, addi-

tional infill sample points are required to enhance the constructed response surface. In 

general, there are two categories of infill strategies (Ekström et al., 2016): 

• One-stage infill strategies which search for infill sample points according 

to a certain merit function, e.g. maximizing the minimum distance be-

tween all the sample points, without using information about the con-

structed response surface 

• Two-stage infill strategies which search for infill sample points by utiliz-

ing the constructed response surface 

We choose a two-stage infill strategy given its self-learning mechanism – the new re-

sponse surface is iteratively augmented based on its predecessor. Specifically, we apply 
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a global optimal infill strategy known as EI sampling as opposed to a suboptimal infill 

strategy that balances poorly between exploring unvisited regions and exploiting visited 

regions (Chen et al., 2014). While trying to locate infill sample points that lead to low 

predictor values for a minimization problem, EI sampling also considers uncertainty 

about the constructed response surface as reflected by the prediction error. In regions with 

few sample points, although the current prediction may not be promising, the error is 

likely to be high suggesting a good opportunity to improve the current best solution by 

adding infill sample points. Therefore, as a global search method, EI sampling can bal-

ance well between local exploitation and global exploration (Forrester et al., 2008). 

 

Unconstrained EI Sampling 

Unconstrained EI sampling only considers maximizing the EI of the objective 

when adding infill sample points. Let 𝑦min denote the best observed objective function 

value so far. The improvement at a new infill sample point, 𝐱∗, is defined as 𝐼(𝐱∗) =

max (𝑦min − 𝑦(𝐱∗), 0). Knowing that 𝑦(𝐱∗)~𝑁(𝑦̂(𝐱∗), 𝑠̂2(𝐱∗)), the EI at this point reads 

E[𝐼(𝐱∗)] = E[max(ymin − y(𝐱∗), 0)]. When 𝑠̂2(𝐱∗) = 0, E[𝐼(𝐱∗)] = 0; when 𝑠̂2(𝐱∗) >

0, 

 

 E[𝐼(𝐱∗)] =
1

√2𝜋𝑠̂2(𝐱∗)
∫ (𝑦min − 𝑢)

𝑦min

−∞

exp(−
(𝑢 − 𝑦̂(𝐱∗))

2

2𝑠̂2(𝐱∗)
)𝑑𝑢 (3.31) 

 

When using ordinary kriging, both the prediction error and the EI stay at zero for 

all the existing sample points. It is therefore impossible to add an infill sample point that 

has already been sampled. However, when using RK, 𝑠̂2(𝐱∗) = 0 does not hold at an ex-

isting sample point resulting in the possibility of maximizing E[𝐼(𝐱∗)] at a previously 
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sampled point. To prevent RK from getting trapped at an existing sample point, Forrester 

et al. (2006) proposed a reinterpolation MLE of 𝜎2: 

 

 𝜎̂ri
2 =

(𝐲 − 𝟏𝜇̂)T𝐑−1𝚿𝐑−1(𝐲 − 𝟏𝜇̂)

𝑛
 (3.32) 

 

The associated reinterpolation prediction error hence reads 𝑠̂ri
2(𝐱∗) = 𝜎̂ri

2(1 − 𝛙T𝐑−𝟏𝛙). 

Now, 𝑠̂ri
2(𝐱∗) = 0 holds for all the existing sample points for which E[𝐼ri(𝐱

∗)] = 0. When 

𝑠̂ri
2(𝐱∗) > 0 and assuming 𝑦(𝐱∗)~𝑁 (𝑦̂(𝐱∗), 𝑠̂ri

2(𝐱∗)), 

 

 E[𝐼ri(𝐱
∗)] =

1

√2𝜋𝑠̂ri
2(𝐱∗)

∫ (𝑦𝑚𝑖𝑛 − 𝑢)
𝑦min

−∞

exp(−
(𝑢 − 𝑦̂(𝐱∗))

2

2𝑠̂ri
2(𝐱∗)

)𝑑𝑢 (3.33) 

 

Constrained EI Sampling 

While maximizing the EI of the objective, constrained EI sampling further con-

siders the impact of the constraint on adding infill sample points. Let 𝑐(𝐱) denote the 

response surface of the constraint to be lower than a certain threshold, 𝑐max. The con-

strained improvement at a new infill sample point, 𝐱∗, is defined as 

 

 𝐶𝐼(𝐱∗) = {
𝐼(𝐱∗), 𝑐(𝐱∗) ≤ 𝑐max

0,                𝑐(𝐱∗) > 𝑐max
 (3.34) 

 

If the constraint is violated at 𝐱∗, i.e. 𝑐(𝐱∗) > 𝑐max, 𝐶𝐼(𝐱∗) is zero even if 𝑦min − 𝑦(𝐱∗) 

is large. Same as 𝑦(𝐱∗) , 𝑐(𝐱∗)~𝑁(𝑐̂(𝐱∗), 𝑠̂c
2(𝐱∗))  where 𝑐̂(𝐱∗)  and 𝑠̂c

2(𝐱∗)  are the 

kriging predictor and the prediction error of the constraint at 𝐱∗. The constrained EI there-

fore reads E[𝐶𝐼(𝐱∗)] = E[𝐼(𝐱∗)]P[𝑐(𝐱∗) ≤ 𝑐max]  where P[𝑐(𝐱∗) ≤ 𝑐max]  is the 
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probability of not violating the constraint. The constrained EI is large only if the EI of the 

objective and the probability of not violating the constraint are both large. With reinter-

polation, we end up with E[𝐶𝐼ri(𝐱
∗)] = E[𝐼ri(𝐱

∗)]Pri[𝑐(𝐱
∗) ≤ 𝑐max] where 

 

 Pri[𝑐(𝐱
∗) ≤ 𝑐max] =

1

√2𝜋𝑠̂cri
2 (𝐱∗)

∫ exp(−
(𝑢 − 𝑐̂(𝐱∗))

2

2𝑠̂cri
2 (𝐱∗)

)𝑑𝑢
𝑐max

−∞

 (3.35) 

 

3.4.4. Model Validation 

To validate the accuracy of the constructed surrogate model, one option is to select 

a few additional sample points to form a test set based on which the observed and pre-

dicted objective function values are compared. The training set obviously includes the 

initial sample points and those added as infill sample points. This option, however, is not 

desirable particularly when concern about the extra computational effort prevails. A better 

option which has been adopted in a few relevant studies (Chen et al., 2014; Ekström et 

al., 2016) is to leave out one observation and predict it based on the remaining observa-

tions. This procedure is commonly known as the leave-one-out cross validation (CV) 

which requires no additional sample points to validate the accuracy of the model. 

With a total of 𝑛 observations, the leave-one-out CV is repeated 𝑛 times. Each 

time it produces a cross-validated prediction, 𝑦̂−𝑖(𝐱
(𝑖)), for the corresponding observa-

tion, 𝑦(𝐱(𝑖)), where 𝑖 ∈ (1,2, … , 𝑛). While common measures of effectiveness (MOEs) 

can be calculated to reflect the prediction accuracy, they are inappropriate for evaluating 

the surrogate model as the prediction at any point is a normally distributed random vari-

able rather than a scalar (Chen et al., 2014). Knowing that, along with the cross-validated 

prediction, we also obtain a cross-validated standard error, 𝑠̂−𝑖(𝐱
(𝑖)), we can calculate the 
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99.7% confidence interval for each 𝑦(𝐱(𝑖)) using the prediction plus or minus three stand-

ard errors (Jones et al., 1998). Alternatively, we can calculate 
𝑦(𝐱(𝑖))−𝑦̂−𝑖(𝐱

(𝑖))

𝑠̂−𝑖(𝐱
(𝑖))

  to obtain a 

standardized cross-validated residual, the value of which should be roughly lying within 

[−3,3] for an accurate surrogate model. Unfortunately, there is no clean proof of conver-

gence for the surrogate model. A practical technique is to track the convergence history. 

3.5. Network Partitioning 

To facilitate the presentation, the variables used in this section are first summa-

rized in Table 3.5. 

 

Table 3.5 Variables used in Section 3.5 

Notation Interpretation 

𝑆K
𝑖 /𝑆D

𝑖  Density/Distance similarity measure of link 𝑖 

𝑆K̅/𝑆D̅ Average density/distance similarity measure of the PZ 

𝑝K/𝑝D Density/distance scaling parameter 

𝑆̃K/𝑆̃D Density/distance threshold 

𝑑𝑖,𝑗  Shortest path distance between links 𝑖 and 𝑗 

𝑑max,𝑗∗ Maximum shortest path distance between link 𝑗∗ and any other link 

𝜃 Weight coefficient 

𝐇 Clustering assignment matrix 

𝐖 Composite similarity matrix 

𝐖K/𝐖D Density/distance similarity matrix 

𝜖 Small perturbation on 𝜃 

𝐸Y/𝐸N Set of links with and without density data 

 

Under the assumption that the network has only one congested city center and that 

the PZ is single-layered, we aim to solve the TAP by partitioning the network into two 
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regions using link density data. The TAP to be solved is essentially a multi-objective 

optimization problem with conflicting objectives: (i) homogeneity, (ii) connectivity, and 

(iii) compactness. When more links with high densities are included in the partitioned PZ, 

homogeneity naturally increases but connectivity and compactness decrease. We empha-

size that connectivity and compactness are two different concepts in graph theory. A con-

nected graph implies that each pair of nodes can be reached through at least one sequence 

of edges, while a compact graph is one in which nodes and edges are closely arranged in 

space. Nevertheless, we consider connectivity and compactness as a single objective by 

introducing a distance similarity measure that can fulfil both requirements simultaneously. 

The trade-off between this composite objective and homogeneity is modeled and solved 

by introducing and optimizing a weight coefficient. 

The proposed network partitioning framework consists of four major steps. Sub-

section 3.5.1 defines similarity measures and the similarity matrix. Sub-section 3.5.2 in-

troduces symmetric nonnegative matrix factorization (SymNMF) for network partition-

ing. Sub-section 3.5.3 proposes a heuristic hierarchical search algorithm (HSA) for iden-

tifying the most significant solutions from the Pareto front. Sub-section 3.5.4 extends the 

methodology to consider missing data. 

3.5.1. Similarity Measures and the Similarity Matrix 

Network partitioning requires defining a similarity measure between each pair of 

links in the network. Since the objective is to obtain a cluster of links covering the con-

gested city center considering homogeneity as well as connectivity and compactness, we 

define two similarity measures for each link 𝑖 in the network, i.e. a density similarity 

measure, 𝑆K
𝑖 , and a distance similarity measure, 𝑆D

𝑖 . Let 𝑆K̅ and 𝑆D̅ denote the average val-

ues of 𝑆K
𝑖  and 𝑆D

𝑖  over all links in the partitioned PZ, respectively. A larger 𝑆K̅ implies 

better homogeneity while a larger 𝑆D̅  implies better connectivity and compactness. 
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Assuming a density threshold, 𝑆̃K, beyond which a link is considered congested, 𝑆K
𝑖  is 

calculated as 

 

 𝑆K
𝑖 = {

1,                            𝑘𝑖 ≥ 𝑆̃K

(
𝑘𝑖

𝑆̃K

)

𝑝K

, 0 ≤ 𝑘𝑖 < 𝑆̃K

 (3.36) 

 

where 𝑝K > 0 is a density scaling parameter. Equation (3.36) has similar functionality to 

the Gaussian probability distribution function used in Ji and Geroliminis (2012), but it 

provides more flexibility through the use of 𝑝K. Equation (3.36) shows that (i) 𝑆K
𝑖 ∈ [0,1], 

(ii) 𝑆K
𝑖  is monotonically increasing when 0 ≤ 𝑘𝑖 < 𝑆̃K, and (iii) a larger 𝑝K results in a 

lower increase rate and hence a higher penalty for dissimilarity. 

To calculate 𝑆D
𝑖 , we model each link 𝑖 in the network as a node 𝑖′ and build its 

neighboring relations by means of spatial connections. This connection network is viewed 

as an undirected graph, 𝐺′, where each node 𝑖′ corresponds to link 𝑖 in the original net-

work. A two-way road segment is represented as a single node despite having two parallel 

links. Let 𝑑𝑖,𝑗 denote the spatial distance between links 𝑖 and 𝑗 in the network, which is 

defined as the length of the shortest path between nodes 𝑖′ and 𝑗′ in graph 𝐺′ and calcu-

lated based on the adjacency matrix and Dijkstra’s algorithm. The adjacency matrix, 𝐀𝑖′,𝑗′ , 

is a symmetric matrix representing the neighboring relations between all pairs of nodes 𝑖′ 

and 𝑗′ in graph 𝐺′. 𝐴𝑖′,𝑗′ = 1 implies that nodes 𝑖′ and 𝑗′ are adjacent and vice versa. The 

shortest path between nodes 𝑖′ and 𝑗′ is the minimum number of edges to traverse from 

one to the other. To guarantee a spatially connected and compact PZ partitioned from the 

original network, we randomly choose a congested link, 𝑗∗, located at the city center as 

the source node in graph 𝐺′ and apply Dijkstra’s algorithm to build a shortest path tree 
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from the source node to all the other nodes. By setting a distance threshold, 𝑆̃D, as an 

indicator for spatial coverage, 𝑆D
𝑖  is calculated as 

 

 𝑆D
𝑖 = {

1,                                              0 ≤ 𝑑𝑖,𝑗∗ ≤ 𝑆̃D

(
𝑑max,𝑗∗ − 𝑑𝑖,𝑗∗

𝑑max,𝑗∗ − 𝑆̃D

)

𝑝D

,                      𝑑𝑖,𝑗∗ > 𝑆̃D

 (3.37) 

 

where 𝑑max,𝑗∗ is the maximum shortest path distance between link 𝑗∗ and any other link 

in the network, 𝑑𝑖,𝑗∗  is the shortest path distance between link 𝑗∗ and link 𝑖, and 𝑝D > 0 

is a distance scaling parameter. Equation (3.37) shows that (i) 𝑆D
𝑖 ∈ [0,1], (ii) 𝑆D

𝑖  is mon-

otonically decreasing when 𝑑𝑖,𝑗∗ > 𝑆̃D, and (iii) a larger 𝑝D results in a higher decrease 

rate and hence a higher penalty for dissimilarity. 

When network partitioning is performed with 𝑆D
𝑖  as the only input similarity 

measure, the extracted cluster consists of links that are closely located within or around 

the area specified by 𝑆̃D, suggesting that compactness is explicitly guaranteed. 

 

Proposition 3.2 The introduction of 𝑆𝐷
𝑖  implicitly guarantees the connectivity of links in 

the extracted cluster. 

 

Proof. Without loss of generality, let us assume that there is an isolated link, 𝑙, in the 

extracted cluster while all the other links are connected. Using Dijkstra’s algorithm to 

build the shortest path tree, the shortest path distance between links 𝑗∗ and 𝑙 should al-

ways be larger than that between link 𝑗∗ and any middle link, 𝑖, along this shortest path: 

 

 𝑑𝑙,𝑗∗ > 𝑑𝑖,𝑗∗ , ∀𝑖 ∈ 𝑟(𝑙, 𝑗∗), 𝑖 ≠ 𝑙, 𝑖 ≠ 𝑗∗ (3.38) 
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where 𝑟(𝑙, 𝑗∗) is the shortest path between links 𝑗∗ and 𝑙. According to Equation (3.37), 

the following inequality holds: 

 

 𝑆D
𝑙 ≤ 𝑆D

𝑖 , ∀𝑖 ∈ 𝑟(𝑙, 𝑗∗), 𝑖 ≠ 𝑙, 𝑖 ≠ 𝑗∗ (3.39) 

  

Therefore, the assumption of an isolated link does not hold. Since 𝑆D
𝑖  is larger than or 

equal to that of the isolated link which is already included in the extracted cluster, any 

middle link should also belong to the extracted cluster. That is, if any link belongs to the 

extracted cluster, it cannot exist by itself suggesting that links in the extracted cluster are 

always connected. 

 

The introduction of 𝑆D
𝑖  can fulfil both connectivity and compactness requirements 

which are therefore considered as a single objective. Here, connectivity is implicitly con-

sidered by incorporating spatial information into a similarity measure (Ji and Geroliminis, 

2012; Saeedmanesh and Geroliminis, 2016), rather than being explicitly modeled as a set 

of constraints in an optimization problem (Saeedmanesh and Geroliminis, 2017). Based 

on Equations (3.36) and (3.37), we define a composite similarity measure, 𝑆𝑖, for each 

link 𝑖 in the network as a weighted average of 𝑆K
𝑖  and 𝑆D

𝑖 : 

 

 𝑆𝑖 = 𝜃𝑆K
𝑖 + (1 − 𝜃)𝑆D

𝑖  (3.40) 

 

where 𝜃 ∈ [0,1] is a weight coefficient. Equation (3.40) shows that (i) 𝑆𝑖 ∈ [0,1], (ii) 𝑆𝑖 

represents a 𝜃-dependent trade-off between 𝑆K
𝑖  and 𝑆D

𝑖 , and (iii) a link with a larger 𝑆𝑖 is 

more likely to be included in the partitioned PZ. 
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Let 𝐖 denote the composite similarity matrix where each element, 𝑊𝑖,𝑗, measures 

the similarity between links 𝑖 and 𝑗 in the network. Based on Equation (3.40), 𝑊𝑖,𝑗 is cal-

culated as 

 

 𝑊𝑖,𝑗 = 1 − |𝑆𝑖 − 𝑆𝑗| (3.41) 

 

When 𝑆𝑖 − 𝑆𝑗 → 0, links 𝑖 and 𝑗 are considered similar to each other and hence 𝑊𝑖,𝑗 → 1; 

when |𝑆𝑖 − 𝑆𝑗|  increases, i.e. 𝑆𝑖 − 𝑆𝑗 → ±1 , dissimilarity between links 𝑖  and 𝑗  in-

creases and hence 𝑊𝑖,𝑗 decreases, i.e. 𝑊𝑖,𝑗 → 0. The similarity matrix is a simple yet pow-

erful representation of the network that can be used for clustering purposes. 

3.5.2. Symmetric Nonnegative Matrix Factorization (SymNMF) 

To cluster and analyze data, spectral clustering has been proposed in graph theory 

to group objects into different clusters using a similarity matrix. It focuses on the pairwise 

similarity measure between each pair of objects rather than looking directly at data and 

makes no assumption about the form of the cluster (Saeedmanesh and Geroliminis, 2016). 

However, given that the performance of spectral clustering is highly dependent on the 

eigenvalues of the Laplacian matrix (Kuang et al., 2015; Ng et al., 2002), we employ 

another robust clustering method termed symmetric nonnegative matrix factorization 

(SymNMF) for network partitioning. As an extended formulation for graph clustering 

based on NMF, SymNMF provides a nonnegative low-rank approximation of a similarity 

matrix. Studies (Kuang et al., 2012; Kuang et al., 2015) have shown that SymNMF (i) 

outperforms other methods such as k-means, spectral clustering, and NMF for graph clus-

tering, and (ii) can capture the clustering structure embedded in the graph representation 

more naturally. SymNMF as a clustering method has been widely applied in a variety of 
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fields including image and document clustering (He et al., 2011), community detection 

(Zhang et al., 2013), and transportation network partitioning (Saeedmanesh and 

Geroliminis, 2016). 

The objectives of various graph clustering methods are inherently consistent 

which can be reduced to a trace maximization form (Kulis et al., 2009): 

 

 maxTr(𝐇T𝐖𝐇) , 𝐇T𝐇 = 𝐈,𝐇 ≥ 0 (3.42) 

 

where 𝐇 ∈ ℝ𝑛×𝑘  (normally 𝑛 ≫ 𝑘) is a clustering assignment matrix, 𝐖 ∈ ℝ𝑛×𝑛  is a 

similarity matrix, and Tr(⋅) is the matrix trace operator. Each column in 𝐇 represents a 

cluster and hence 𝑘 is the number of clusters. Each row in 𝐇 shows the membership of 

each of the 𝑛 objects to the 𝑘 clusters. Equation (3.42) is mathematically equivalent to 

the following minimization problem (Kuang et al., 2015): 

 

 min‖𝐖 − 𝐇𝐇T‖𝐹
2 , 𝐇T𝐇 = 𝐈,𝐇 ≥ 0 (3.43) 

 

where ‖⋅‖𝐹 is the Frobenius norm. Since the constraints on 𝐇 make the problem NP-hard, 

both spectral clustering and SymNMF seek to relax one of the constraints to make the 

problem tractable – spectral clustering retains 𝐇T𝐇 = 𝐈 while SymNMF retains 𝐇 ≥ 0. 

The physical meaning of 𝐇T𝐇 = 𝐈 in spectral clustering is that each object only belongs 

to a single cluster. Although each object can belong to multiple clusters through different 

membership values in SymNMF, Ding et al. (2005) showed that 𝐇 ≥ 0 leads to 𝐇T𝐇 ≈

𝐈. 
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To obtain high intra-similarity and low inter-similarity, SymNMF aims to find a 

nonnegative low-rank matrix 𝐇 ∈ ℝ+
𝑛×𝑘 approximating the given nonnegative symmetric 

similarity matrix 𝐖 ∈ ℝ+
𝑛×𝑛 by minimizing the Frobenius norm: 

 

 min
𝐇≥0

‖𝐖 − 𝐇𝐇T‖𝐹
2  (3.44) 

 

Since Problem (3.44) minimizes a fourth-order non-convex objective function with re-

spect to the elements of 𝐇, multiple local minima may exist depending on the initializa-

tion of 𝐇. Therefore, one can generate different random seed numbers for initializing 𝐇 

to help locate the global minimum. Integrating random sampling with a local search al-

gorithm formulates a multi-start global optimization approach (Rinnooy Kan and Timmer, 

1989). 

3.5.3. Hierarchical Search Algorithm (HSA) 

The input to SymNMF is the composite similarity matrix, 𝐖, calculated from the 

composite similarity measure, 𝑆𝑖. Since 𝑆𝑖 is defined as a weighted average of the density 

and distance similarity measures, 𝑆K
𝑖  and 𝑆D

𝑖 , the weight coefficient, 𝜃, naturally plays a 

decisive role: a larger 𝜃 puts more weight on 𝑆K
𝑖  resulting in an increased 𝑆K̅ and a de-

creased 𝑆D̅, and vice versa. To achieve the most desirable network partitioning result, the 

optimal 𝜃 is required. Here, “optimal” does not necessarily mean that any solution dom-

inates the others. It only refers to a sensible trade-off between the two conflicting objec-

tives. 

 

Proposition 3.3. The optimal clustering assignment matrix, 𝐇∗, remains similar for ∀𝜃 ∈

[𝜃 − 𝜖, 𝜃 + 𝜖] where 0 < 𝜖 ≤ min(𝜃, 1 − 𝜃) is a small perturbation on 𝜃. 
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Proof. Let 𝐖K and 𝐖D denote respectively the density and distance similarity matrices. 

The composite similarity matrix, 𝐖, is expressed as 

 

 𝐖 =  𝜃𝐖K + (1 − 𝜃)𝐖D (3.45) 

 

With a small perturbation, 0 < 𝜖 ≪ 1, on 𝜃, the perturbed composite similarity matrix, 

𝐖𝜖, is expressed as 

 

 𝐖𝜖 = (𝜃 ± 𝜎)𝐖K + (1 − 𝜃 ∓ 𝜎)𝐖D = 𝐖 ± 𝜎(𝐖K − 𝐖D) ≈ 𝐖 (3.46) 

 

Given 𝐖𝜖 ≈ 𝐖, the optimal clustering assignment matrix, 𝐇∗, remains similar. 

 

Example. Let us assume that there are three objects to be partitioned into two clusters, 

i.e. 𝑛 = 3 and 𝑘 = 2. The density and distance similarity matrices, 𝐖K and 𝐖D, are as 

follows: 

 

 
𝐖K = [

1 0.8 0.2
0.8 1 0.2
0.2 0.2 1

] , 𝐖D = [
1 0.2 0.2

0.2 1 0.8
0.2 0.8 1

] (3.47) 

 

The composite similarity matrix, 𝐖, is calculated as 

 

 
𝐖 = 𝜃𝐖K + (1 − 𝜃)𝐖D = (

1 0.6𝜃 + 0.2 0.2
0.6𝜃 + 0.2 1 0.8 − 0.6𝜃

0.2 0.8 − 0.6𝜃 1
) (3.48) 
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When 𝜃 = 1 , 𝐖(𝜃 = 1) = 𝐖K = [
1 0.8 0.2

0.8 1 0.2
0.2 0.2 1

] . Since the similarity measure be-

tween the first two objects, 0.8, is significantly larger than that between the last two ob-

jects, 0.2, the optimal clustering assignment is evident: the first two objects belong to a 

cluster and the third object forms the other cluster by itself. Assuming that 𝜃 reduces by 

0.1, i.e. 𝜀 = 0.1 , the perturbed composite similarity matrix 𝐖(𝜃 = 0.9) =

[
1 0.74 0.2

0.74 1 0.26
0.2 0.26 1

] ≈ 𝐖(𝜃 = 1). Therefore, the optimal clustering assignment matrix, 

𝐇∗, remains similar and the optimal clustering assignment does not change. In fact, for 

∀𝜃 ∈ [0.9,1], the optimal clustering assignment remains unchanged. Although the opti-

mal clustering assignment does not vary continuously as 𝜃 changes, we do not know a 

priori how large 𝜀 can be as it is endogenously determined by 𝐖(𝜃). 

 

Based on Proposition 3.3, we propose a heuristic HSA to identify the significant 

solutions from the Pareto front which obviously includes an infinite number of Pareto 

efficient solutions. Here, a Pareto efficient solution is considered significant if it changes 

the optimal clustering assignment and achieves a large improvement in the overall simi-

larity between links in the partitioned PZ. To this end, we adopt the concept of “knee” 

(Chaudhari et al., 2010) which, by definition, refers to the solutions from the Pareto front 

whereby a small improvement (deterioration) in one objective leads to a large deteriora-

tion (improvement) in at least one other objective. It may happen that a significant solu-

tion is not from the Pareto front, but this can be easily resolved by checking all the iden-

tified significant solutions and removing those that are not Pareto efficient. 

3.5.4. Extending the Methodology to Consider Missing Data 
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To apply the proposed solution framework, we assume to have perfect information 

about traffic conditions in the network, which, however, does not necessarily hold in 

practice. In a real-world traffic network, it is common that some links do not have density 

data for some periods of time. This may happen when no sensors are installed or sensors, 

although installed, malfunction and cannot provide accurate measurements. We therefore 

extend the methodology to further consider missing data. 

Given that congestion is spatially correlated in adjacent links with obvious direc-

tionality and transmissibility (Wang et al., 2017), we try to estimate link densities that are 

unknown based on the available densities of their upstream and downstream adjacent 

links of the same direction (Saeedmanesh and Geroliminis, 2016). Let 𝐸Y ≠ ∅ and 𝐸N ≠

∅ denote respectively the sets of links in the network with and without density data. Let 

𝐸𝑖 denote the set of upstream and downstream adjacent links of link 𝑖 ∈ 𝐸N with known 

densities, i.e. 𝐸𝑖 = {𝑗|𝐴𝑖′,𝑗′ = 1, 𝑗 ∈ 𝐸Y, 𝑗 and 𝑖 are of the same direction} . If 𝐸𝑖 = ∅ , 

we do nothing and the density of link 𝑖 remains unknown; otherwise we estimate the den-

sity of link 𝑖 as the average of all the available densities of its upstream and downstream 

adjacent links, and move link 𝑖 from 𝐸N to 𝐸Y: 

 

 
𝑘𝑖 =

1

|𝐸𝑖|
∑ 𝑘𝑗

𝑗∈𝐸𝑖

 (3.49) 

 

where |⋅| is the set cardinality operator. The estimation continues in an iterative manner 

until 𝐸N = ∅. While Equation (3.49) provides an estimate of any missing link density, we 

emphasize that this does not necessarily represent the state of the art for traffic state esti-

mation. Given that our focus is on network partitioning, we refer to Antoniou et al. (2013); 

Nantes et al. (2016); Seo et al. (2015); Tyagi et al. (2012) for perhaps more advanced 
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methods enabled by multi-source traffic data. However, we show in CHAPTER 7 that the 

extended framework performs well even with a low penetration rate. 

3.6. Chapter Remarks 

This chapter provides an in-depth description of the theory and methodology of-

fered by this thesis. In Section 3.1, we briefly revisit the NFD and discuss how it can be 

used for pricing control and optimization. In Section 3.2, we propose two joint tolls, 

namely the JDTT and the JDDT, to extend the distance only toll that tends to drive trav-

elers into the shortest paths within the PZ despite being congested. To solve the TLP, we 

propose two computationally efficient SO frameworks consisting of feedback control in 

Section 3.3 and surrogate-based optimization in Section 3.4. The feedback control ap-

proach is particularly suited for solving a simple TLP featuring a set-point objective and 

bound constraints only, whereas the surrogate-based optimization approach is more gen-

eral and can be applied to solve any complex TLP, i.e. a TLP with either a complex ob-

jective or complex constraints. To solve the TAP, we propose a network partitioning ap-

proach in Section 3.5.



Dynamic Congestion Pricing in Urban Networks with the Network Fundamental Diagram and Simulation-

Based Dynamic Traffic Assignment 

58 

 

CHAPTER 4. FEEDBACK CONTROL FOR TOLL LEVEL 

OPTIMIZATION 

This chapter provides a numerical study on the feedback control approach for 

solving the TLP corresponding to Section 3.3. To evaluate and compare the performance 

of different tolls, we use a recently developed large-scale simulation-based DTA model 

of Melbourne, Australia deployed in AIMSUN with time-dependent demand for the 6-10 

AM peak period. Travelers are assumed to have access to real-time information for re-

routing and their route choice is calculated and updated every 5 minutes. VTT is assumed 

to be $15/h (Legaspi and Douglas, 2015). Further details of the model can be found in 

APPENDIX A. 

The rest of this chapter is organized as follows. Section 4.1 presents the feedback-

control enabled SO framework as the solution algorithm. Sections 4.2, 4.3, and 4.4 pre-

sent the numerical results for the distance only toll, the JDTT, and the JDDT, respectively. 

A comprehensive comparison between the JDTT and the JDDT is performed in Section 

4.5. In Sections 4.6, we investigate the effect of simulation stochasticity while in Section 

4.7, we elaborate on the applicability of the feedback control approach. Section 4.8 con-

cludes the chapter. The work of this chapter has been published: 

• Gu, Z., Shafiei, S., Liu, Z., Saberi, M., 2018. Optimal distance- and time-

dependent area-based pricing with the Network Fundamental Diagram. 

Transp. Res. Part C 95, 1-28. 

To facilitate the presentation, the variables used in this chapter are first summarized in 

Table 4.1. 
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Table 4.1 Variables used in CHAPTER 4 

Notation Interpretation 

𝑚 Number of tolling intervals 

τℎ Toll rate for the ℎ-th tolling interval 

τmin/τmax Lower/upper bound on the toll rate 

𝐾ℎ
max Maximum network density during the ℎ-th tolling interval 

𝐾cr Critical network density 

𝑁max Maximum number of iterations allowed 

𝑃P/𝑃I Proportional/integral gain parameter 

ω1/ ω2 Weight coefficient 

 

4.1. Feedback-Control Enabled Simulation Optimization (SO) Frame-

work 

Consider the following simple single-objective TLP: 

 

 
min

𝛕1,𝛕2,…,𝛕𝑚

E [
1

𝑚
∑|𝐾ℎ

max − 𝐾cr|

𝑚

ℎ=1

] (4.1) 

s.t. 

 𝐾ℎ
max = 𝐷𝑇𝐴(𝛕1, 𝛕2, … , 𝛕𝑚), ℎ = 1,2, … ,𝑚 (4.2) 

 𝛕min ≤ 𝛕ℎ ≤ 𝛕max, ℎ = 1,2, … ,𝑚 (4.3) 

 

where E[⋅] is the expectation operator, 𝐷𝑇𝐴(⋅) is the black-box function of the simulation 

model, and 𝛕min and 𝛕max are the lower and upper bounds on the toll rates, respectively. 

Given a stochastic traffic simulator using different random seed numbers, the objective 

function in Equation (4.1) aims to minimize the expected average of the absolute differ-

ence between 𝐾ℎ
max and 𝐾cr for the 𝑚 tolling intervals. As such, the network is pricing-
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controlled near the critical network density without entering the congested regime of the 

NFD. To calculate the expectation, one can readily apply fixed-number sample path op-

timization, also known as sample average approximation (Amaran et al., 2016). However, 

in the context of a computationally expensive objective function, the sample size is usu-

ally restricted to simply reduce the effect of noise rather than pursuing a complete noise 

filter. To handle simulation noise in a more computationally efficient manner, one can 

apply variable-number sample path optimization (He et al., 2017). While Constraint (4.3) 

specifies the toll feasible region, Constraint (4.2) maps the input toll rates to the simula-

tion density output which is fed back to the objective function. 

Figure 4.1 illustrates the feedback-control enabled SO framework for solving 

Problem (4.1-4.3). The detailed algorithmic steps are as follows: 

 

Step 1. Given a single-cordon two-region network, run the simulation without pric-

ing to get the base scenario NFD of the PZ. 

Step 2. Set 𝑖 = 1 and determine from the base scenario NFD 𝐾cr and the tolling pe-

riod when network densities exceed 𝐾cr. 

Step 3. Calculate the initial toll rates when 𝑖 = 1 using Equation (2.3) for the dis-

tance only toll, Equation (3.12) for the JDTT, and Equations (2.3) and (3.20) 

for the JDDT. 

Step 4. Set 𝑖 = 𝑖 + 1 and run the simulation with the newly calculated toll rates to 

get the updated NFD of the PZ. 

Step 5. If 𝑖 ≤ 𝑁max where 𝑁max is the maximum number of iterations allowed, cal-

culate the updated toll rates when 𝑖 > 1 using Equation (2.3) for the distance 

only toll, Equation (3.12) for the JDTT, and Equations (2.3) and (3.20) for 

the JDDT, and go back to Step 4; otherwise terminate the algorithm. 
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Figure 4.1 Closed-loop block diagram of the feedback-control enabled SO framework 

 

The proposed method can be applied to solve both static and time-dependent TLPs. 

The biggest advantage of time-dependent pricing is that travelers are not overcharged 

while the control objective is still met. That is, time-dependent pricing does not over-

control the network resulting in unnecessary network unproductivity. When applying the 

method to solve the time-dependent TLP, an independent PI controller is deployed in each 

tolling interval. Here, “independent” means that for the ℎ-th tolling interval, the input 

measurements to the PI controller come from this specific interval only without consid-

eration for the other intervals. The proposed method resembles but extends Zheng et al. 

(2016); Zheng et al. (2012) in terms of the pricing regimes investigated and how the PI 

controller is tailored and applied.  

If the distribution of congestion in the PZ exhibits strong heterogeneity, further 

network partitioning (Ji and Geroliminis, 2012; Saeedmanesh and Geroliminis, 2016, 

2017) can be considered. The resultant coordinated multi-area pricing scheme is a 
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challenging research question that remains open. The feedback control approach here tar-

gets a single PZ only and hence does not consider coordination among multiple PZs. 

4.2. Distance Only Toll 

We run the simulation without pricing to obtain the base NFD of the PZ based on 

which the critical network density, 𝐾cr, and the tolling period are determined. As shown 

in Figure 4.2(a) and (b), the maximum network flow without pricing occurs when the 

network density varies between 20 and 30 vpkmpl. We therefore set 𝐾cr = 25 vpkmpl 

and the resultant tolling period is 40 minutes between 8:35 and 9:15 AM. To compare 

with the distance only toll, we apply the feedback control approach to obtain an optimal 

cordon toll of about $1.9. The associated network performance is shown in Figure 4.2(a) 

and (b). The optimal cordon toll successfully keeps the network from entering the con-

gested regime of the NFD and reduces the size of the hysteresis loop. This is because a 

portion of travelers are priced off the PZ resulting in a lower level of congestion and hence 

a more homogenous distribution of congestion. Figure 4.2(c) presents a sensitivity anal-

ysis on the controller gain parameters to (i) verify the global convergence of the PI con-

troller, and (ii) provide general guidance on applying trial-and-error. Although different 

pairs of 𝑃P and 𝑃I are used, the optimal cordon toll is globally convergent. When 𝑃P =

0.05 and 𝑃I = 0.4, the oscillatory behavior of the PI controller is more significant making 

it difficult to pinpoint the optimum. Once the parameters are lowered, the oscillation 

weakens although at the cost of an increased number of iterations until convergence. 

Given this trade-off, a rule of thumb is to start with a slightly larger pair of 𝑃P and 𝑃I, and 

gradually decrease their values until a relatively smooth convergence pattern is achieved. 
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(a) (b) 

 

(c) 

 

Figure 4.2 Simulation results of the PZ under the non-tolling and the optimal cordon toll 

scenarios: (a) simulated NFDs, (b) density time series, (c) sensitivity analysis on the con-

troller gain parameters 

 

The cordon toll does not consider the distance traveled within the PZ. Travelers 

are equally charged regardless of their actual amount of road usage. The consequent in-

equity may create poor public acceptance. The distance only toll, however, calculates the 

toll price by the trip length within the PZ rather than being pay-per-entry. It therefore 

distinguishes between, for example, a traveler reaching the destination immediately upon 

crossing the cordon and one traversing the whole PZ, thereby creating a more efficient 

and equitable pricing system. As shown in Figure 4.3(b), the optimal distance only toll 

rate is about $1/km. Although the control objective is met, the resultant NFD in Figure 

4.3(a) exhibits a much larger hysteresis loop than under the non-tolling and the optimal 

cordon toll scenarios. When the network is unloading, i.e. recovering from congestion, 

the distribution of congestion tends to be more uneven as the congested areas clear more 
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slowly and are fragmented. This uneven distribution of congestion inevitably reduces the 

network flow during recovery resulting in a clockwise hysteresis loop in the NFD (Gayah 

and Daganzo, 2011). Given that travelers choose their routes with the least generalized 

travel costs, the distance only toll naturally drives them into the shortest paths within the 

PZ as a shorter trip length equates to a lower toll price. A dominant portion of travelers 

therefore travel on the same shortest paths and the distribution of congestion becomes 

more heterogeneous. 

Figure 4.3(d) shows that the distance only toll results in a much less total distance 

traveled within the PZ, as expected. Figure 4.3(e) and (f) show respectively the spread-

accumulation relationships and the time series of the deviation from spread to quantita-

tively analyze and compare the heterogeneity of congestion distribution. The fitted 

𝛾(𝐾) = −0.0003154𝐾3 + 0.01499𝐾2 + 1.127𝐾. Corresponding to the clockwise hys-

teresis loop in the NFD, an anticlockwise hysteresis loop forms in the spread-accumula-

tion relationship, the size of which also increases under the optimal distance only toll 

scenario. The spatial spread of density increases sharply after applying the distance only 

toll and then stays at a much higher level. This finding is consistent with Simoni et al. 

(2015) who argued that the decrease in the network flow is caused by clusters of conges-

tion rather than by the increase of travelers. 
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Figure 4.3 Simulation results of the PZ under the optimal distance only toll scenario: (a) 

simulated NFDs, (b) convergence of the distance toll rate, (c) density time series, (d) time 

series of the total distance traveled, (e) spread-accumulation relationships, and (f) time 

series of the deviation from spread 

 

4.3. Joint Distance and Time Toll (JDTT) 

The question to be answered is how we can improve the distance only toll such 

that the network exhibits less heterogeneous distribution of congestion and the resultant 

NFD has a smaller hysteresis loop. We show that travelers are driven into the shortest 
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paths within the PZ when charged with the distance only toll. Although the travel times 

on some shortest paths increase, most travelers do not change their routes as the utility 

from paying a lower toll price dominates the disutility from the increase in travel time. A 

straightforward solution is to charge travelers jointly based on the distance traveled and 

the time spent within the PZ. As such, travelers are more likely to distribute themselves 

into the second or third shortest path if the travel time on the shortest path rises consider-

ably. 

Figure 4.4(b) shows that the optimal distance toll rate is about $0.35/km and the 

corresponding optimal time toll rate is $9/h. Despite having a different order of magnitude, 

the time toll rate exhibits the same convergence as the distance toll rate given their linear 

correlation, and hence we only show for the latter. As shown in Figure 4.4(a), (g), and 

(h), under the optimal JDTT scenario, the size of the hysteresis loop reduces and the de-

viation from spread stays at a lower level. Compared with the distance only toll, the JDTT 

increases the total distance traveled within the PZ, as expected, because travelers no 

longer accumulate themselves into the shortest paths. Figure 4.4(e) and (f) further com-

pare the average network speed and the average link queue length, respectively. There is 

a sudden jump in the speed profile at the beginning of the simulation as we load the net-

work without a warm-up period. After applying different optimal tolls, the time series 

show that the JDTT keeps the network speed at a higher level while reducing the link 

queue length to the greatest extent. The distance only toll, on the other hand, results in a 

lower and less stable network speed as well as an increased link queue length. 
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Figure 4.4 Simulation results of the PZ under the optimal JDTT scenario: (a) simulated 

NFDs, (b) convergence of the distance toll rate, (c) density time series, (d) time series of 

the total distance traveled, (e) speed time series, (f) queue time series, (g) spread-accu-

mulation relationships, and (h) time series of the deviation from spread 
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The reason why the distance only toll results in a network performance degrada-

tion is because the concentration of travelers into some shortest paths within the PZ gen-

erate more and bigger clusters of congested links. As shown in Figure 4.5, the distance 

only toll results in a more heterogeneous distribution of congestion particularly in the 

bottom left corner of the PZ and part of the connected peripheral network. The spatial 

differences are not significant at the beginning of the tolling period, i.e. 8:40 AM, but 

gradually become prominent later in time towards the end of the tolling period, i.e. 9:10 

AM. 

 

8:40 AM 8:55 AM 9:10 AM 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

 

Figure 4.5 Comparing the spatiotemporal evolution of link densities within the PZ during 

the tolling period under different tolling scenarios: (a-c) non-tolling, (d-f) distance only 

toll, (g-i) JDTT 
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Since we approximate 𝑣̿ using speeds obtained under the optimal cordon toll sce-

nario, we further calculate, under both the optimal JDTT and the optimal cordon toll sce-

narios, the average network speed over the tolling period and end up with 𝑣̿ =

32.37 km/h and 𝑣̃ = 32.17 km/h, thereby justifying the validity of the approximation. 

Note that if either of the toll rates hits the lower (upper) bound during an iteration, it is 

fixed at the minimum (maximum) during the subsequent iterations and only the other toll 

rate is to be adjusted. If the control objective is not met when both toll rates hit their 

respective upper bounds, it means that the current pricing set-up cannot drive the network 

to its optimal state, and that we can either simply raise the upper bounds or consider an 

additional TDM policy to create a mixed network control system. 

4.3.1. Sensitivity Analysis on the Weight Coefficient 

We perform a sensitivity analysis on ω1 to examine its effect on the pricing con-

trol results. Three different values of ω1 are tested, i.e. ω1 = 0.33, 1, 3. A larger value 

implies a more dominating role played by the distance toll component. Figure 4.6(b) and 

(c) show that, regardless of the value of ω1, we consistently achieve the global conver-

gence and the network is well controlled without entering the congested regime of the 

NFD. Figure 4.6(a) and (d) further show that both the size of the hysteresis loop and the 

deviation from spread increase when ω1 = 3. This is because when a large ω1 is used, 

the JDTT resembles the distance only toll which cannot well reduce the uneven distribu-

tion of congestion. Therefore, a small value of ω1 is advisable. 
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Figure 4.6 Sensitivity analysis on ω1: (a) simulated NFDs, (b) convergence of the dis-

tance toll rate, (c) density time series, and (d) time series of the deviation from spread 

 

4.3.2. Time-Dependency 

We further apply the feedback control approach to time-dependent JDTT by di-

viding the tolling period into two 20-min tolling intervals. Here, the duration is simply 

chosen based on experience and is by no means an optimization result. Intuitively, it 

should not be too small considering travelers’ adaption – travelers may hardly adapt to 

the rapidly changing toll rates and the network may become unstable. It should also not 

be too large considering the effectiveness of congestion management – different levels of 

congestion may not be well captured and distinguished. 

While Figure 4.7(a) and (c) show that the optimal time-dependent JDTT effec-

tively achieves the control objective, Figure 4.7(b) displays an interesting non-smooth 

convergence of the distance toll rate for the second tolling interval. This is because during 
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the first few iterations, the toll rates in both tolling intervals naturally increase to reduce 

the number of travelers entering the PZ. Due to the interplay between the two tolling 

intervals, an increase in the toll rate during the first interval inevitably leads to a less 

congested network during the second. Therefore, when the toll rate during the first inter-

val gets close to convergence, the toll rate for the second drops. 

The advantage of time-dependence is that travelers are not overcharged as the toll 

price varies according to the changing level of congestion. If the tolling period is long 

enough to capture different levels of congestion, this advantage is even more significant. 

Compared with the fixed JDTT, the time-dependent JDTT is less conservative by allow-

ing more travelers to enter the PZ while still achieving the control objective. This is re-

flected in Figure 4.7(e) where the time-dependent JDTT results in a larger number of 

vehicles entering the PZ during the tolling period, and the shaded area certainly represents 

the difference. Also, as shown in Figure 4.7(f), the time-dependent JDTT allows for a 

larger total distance traveled in the PZ.  
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Figure 4.7 Simulation results of the PZ under the optimal time-dependent JDTT: (a) sim-

ulated NFDs, (b) convergence of the distance toll rate, (c) density time series, (d) time 

series of the deviation from spread; (e) time series of the number of vehicles entering the 

PZ, and (f) time series of the total distance traveled 

 

4.4. Joint Distance and Delay Toll (JDDT) 

The time toll component of the JDTT tends to overcharge travelers as a longer 

link typically requires more travel time despite being uncongested. Hence the JDDT 

which charges travelers according to their travel delays is more sensible. As shown in 
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Figure 4.8(b), the optimal delay toll rate is about $9/h corresponding to the optimal dis-

tance toll rate of $0.5/km. While effectively achieving the control objective, the JDDT 

reduces the uneven distribution of congestion within the PZ resulting in a less distinct 

hysteresis loop in the NFD. This is reflected quantitatively in Figure 4.8(g) and (h), and 

qualitatively in Figure 4.9. Results so far suggest that the JDTT and the JDDT perform 

equally well in controlling the network. 
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Figure 4.8 Simulation results of the PZ under the optimal JDDT scenario: (a) simulated 

NFDs, (b) convergence of the delay toll rate, (c) density time series, (d) time series of the 

total distance traveled, (e) speed time series, (f) queue time series, (g) spread-accumula-

tion relationships, and (h) time series of the deviation from spread 
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8:40 AM 8:55 AM 9:10 AM 
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Figure 4.9 Comparing the spatiotemporal evolution of link densities within the PZ during 

the tolling period between (a-c) the distance only toll and (d-f) the JDDT 

 

4.4.1. Sensitivity Analysis on the Weight Coefficient 

We perform a sensitivity analysis on 𝜔2 to examine its effect on the pricing con-

trol results. Three different values of 𝜔2 are tested, i.e. 𝜔2 = 0.25, 0.5, 0.75. A larger 

value implies a more dominating role played by the distance toll component. Since the 

convergence of the distance toll component remains unchanged regardless of the value of 

𝜔2, we only present the convergence of the delay toll component in Figure 4.10(b). Figure 

4.10(a), (c), and (d) show that the network performance does not vary significantly as 𝜔2 

changes, and hence the pricing control results are not sensitive to different values of 𝜔2. 
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(a) (b) 

  

(c) (d) 

 

Figure 4.10 Sensitivity analysis on 𝜔2: (a) simulated NFDs, (b) convergence of the delay 

toll rate, (c) density time series, and (d) time series of the deviation from spread 

 

4.5. Performance Comparison 

Since the JDTT and the JDDT are optimized by the simultaneous and the sequen-

tial approaches, respectively, we further apply the sequential approach to the JDTT before 

performing the comparison. Figure 4.11 shows that the network performance is similar 

under the three tolling scenarios. Both the JDTT and the JDDT reduce the uneven distri-

bution of congestion within the PZ while achieving the control objective. The reason why 

the difference is not significant may be because very few links in the PZ have an extra-

long length. In a network where the link length varies considerably, the difference may 

be more remarkable. 
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(a) (b) 

  

(c) (d) 

  
(e) (f) 

 

Figure 4.11 Comparing the JDTT and the JDDT: (a) simulated NFDs, (b-d) density, speed, 

and queue time series, (e) spread-accumulation relationships, and (f) time series of the 

deviation from spread 

 

Table 4.2 shows a few selected network performance measures under different 

tolling scenarios. When considering the entire network, different tolls result in similar 

average travel times and speeds which are almost the same as those under the non-tolling 

scenario. The reason why the overall network performance does not change much is be-

cause the PZ only covers a relatively small area of the entire network, and hence the 
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effects of pricing are not significant by referring to the performance measures of the entire 

network. With a larger PZ, these effects shall become more remarkable. Nevertheless, 

with the current pricing set-up, we achieve a total travel time saving of more than 1,000 

hours during the 4-h AM peak period. 

When focusing on the PZ, the difference in the average travel time becomes ob-

vious. Since the average travel time in the PZ ranges between 3 and 4 minutes, an 11-14% 

average travel time saving is achieved for all the tolls excluding the distance only toll. 

The distance only toll only improves the average travel time in the PZ by 6%, which is 

equivalent to a 5-10% increase in the average travel time in the PZ compared with the 

other tolls. This observation is consistent with the fact that the average speeds in the PZ 

under all the other tolling scenarios are improved by 5-14% than under the non-tolling 

scenario, whereas the distance only toll reduces the average speed in the PZ. Also, as 

expected, the distance only toll generates the lowest average distance traveled in the PZ. 
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Table 4.2 Selected network performance measures under different tolling scenarios 

Network performance measures Non-tolling Tolling 

  Cordon Distance Time Delay 

Simulated vehicles (veh) Entire network 348,789 348,211 346,671 348,455 347,524 

PZ 53,749 53,096 52,673 53,145 53,232 

Total travel time (h) Entire network 94,295 94,290 92,383 93,370 93,829 

PZ 3,763 3,189 3,464 3,200 3,243 

Total distance traveled (km) Entire network 2,169,537 2,182,403 2,146,487 2,160,127 2,162,866 

PZ 42,909 41,382 38,814 40,240 40,691 

Average distance traveled (km/veh) Entire network 6.22 6.27 6.19 6.20 6.22 

PZ 0.80 0.78 0.74 0.76 0.76 

Average travel time (min/veh) Entire network 16.22 16.25 15.99 16.08 16.20 

PZ 4.20 3.60 3.95 3.61 3.66 

Average speed (km/h) Entire network 23.01 23.15 23.23 23.14 23.05 

PZ 11.40 12.98 11.20 12.58 12.55 

 

Network performance measures Tolling 

 
JDTT 
(simultaneous) 

JDTT 
(sequential) 

JDDT 
(sequential) 

Simulated vehicles (veh) Entire network 348,546 348,201 348,082 

PZ 53,121 52,633 53,549 

Total travel time (h) Entire network 95,024 94,788 93,784 

PZ 3,216 3,286 3,245 

Total distance traveled (km) Entire network 2,185,630 2,175,822 2,165,691 

PZ 39,930 39,438 40,226 

Average distance traveled (km/veh) Entire network 6.27 6.25 6.22 

PZ 0.75 0.75 0.75 

Average travel time (min/veh) Entire network 16.36 16.33 16.17 

PZ 3.63 3.75 3.64 

Average speed (km/h) Entire network 23.00 22.95 23.09 

PZ 12.42 12.00 12.40 
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4.6. Simulation Stochasticity 

Results so far suggest that different tolls can effectively achieve the control ob-

jective. The resultant network performance, however, shows a major difference in the size 

of the hysteresis loop in the NFD. Since the hysteresis loop is an effect of uneven distri-

bution of congestion, the deviation from spread is naturally a key criterion for quantita-

tively evaluating and comparing different tolls. 

Given simulation stochasticity, we apply the feedback control approach to differ-

ent tolls using ten different random seed numbers. While Figure 4.12 shows that all the 

tolls successfully keep the network from entering the congested regime of the NFD, Fig-

ure 4.13(a) reveals that all the other tolls outperform the distance only toll because of the 

less distinct hysteresis loop. This is also reflected in Figure 4.13(b) showing the distribu-

tions of the maximum deviation from spread under different tolling scenarios. As ex-

pected, the distance only toll generates the highest deviation from spread while all the 

other tolls perform almost similarly. While from a traffic control perspective, all the tolls 

are effective in reducing congestion in the PZ, from a network science perspective, the 

JDTT and the JDDT are more desirable than the distance only toll given their capability 

of reducing the uneven distribution of congestion and hence of better maintaining the 

network stability. While both the time only toll and the delay only toll perform equally 

well as the JDTT and the JDDT, they are not recommended mainly due to the safety and 

environmental concerns – they tend to encourage travelers to drive more aggressively and 

to use minor roads (May and Milne, 2000). 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

 

Figure 4.12 Averaged simulated NFDs with ten different random seed numbers under 

different tolling scenarios: (a) distance only toll, (b) time only toll, (c) delay only toll, (d) 

JDTT (simultaneous), (e) JDTT (sequential), and (f) JDDT (sequential) 
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(a) (b) 

 

Figure 4.13 Comparing the simulation results of the PZ during the tolling period under 

different tolling scenarios: (a) averaged simulated NFDs, (b) distributions of the maxi-

mum deviation from spread 

 

4.7. Global Convergence Guaranteed? 

Throughout the analysis, we have repeatedly seen the global convergence of the 

feedback control. The question is whether it holds under all traffic scenarios. The answer 

is no. The feedback control is applicable with guaranteed convergence only if a prerequi-

site is satisfied – the periphery of the PZ should have enough capacity to accommodate 

the re-routed traffic. If the periphery becomes highly congested or gridlocked, it is likely 

that the pricing control fails. 

We use the cordon toll to demonstrate the prerequisite and repeatedly apply the 

feedback control approach with incrementally increasing demand from 100% to 135% to 

manually create unreal congestion. When demand increases, the network becomes more 

congested and the peak-spreading phenomenon becomes more significant. Accordingly, 

the toll price increases and the tolling period extends. As shown in Figure 4.14, the pricing 

control manages to keep the network from entering the congested regime of the NFD even 

when demand is relatively high. However, attention should be paid to Figure 4.14(d) 

where a network reloading process first appears in the PZ reflected by the shape of the 

NFD. With a further increase in demand, the periphery of the PZ gets closer to gridlock 
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and hence, travelers are driven back into the PZ, although they must pay. As such, the 

network reloading process becomes more prominent. Under this traffic scenario, applying 

the feedback control largely worsens the traffic conditions outside the PZ. The highly 

congested periphery forces travelers to re-enter the PZ and the pricing control can no 

longer achieve the control objective. This is essentially a paradox where the toll price 

keeps rising but travelers still enter the PZ. If the prerequisite is violated, the feedback 

control does not necessarily result in a convergent solution. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

 

Figure 4.14 Simulated NFDs of the PZ and the periphery with incrementally increasing 

demand 
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To show that the distance only toll, the JDTT, and the JDDT do not result in de-

graded traffic conditions outside the PZ, we further present in Figure 4.15 the simulated 

NFDs of the periphery. 

 

 

(a) 

  
(b) (c) 

  

(d) (e) 

 

Figure 4.15 Simulated NFDs of the PZ and the periphery under different tolling scenarios: 

(a) layout of the periphery, (b) distance only toll, (c) JDTT (simultaneous), (d) JDTT 

(sequential), and (e) JDDT (sequential) 
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Depending on the network topology and the OD demand, the applicability of the 

feedback control does vary for different networks. In general, the prerequisite can be sat-

isfied in a real-world traffic network for two reasons: 

• City ring roads are often available around the urban center for detour traf-

fic which provide enough capacity, e.g. the M1, M2, and M3 highways 

surrounding the city center of Melbourne. 

• The OD demand needs to climb to a level that is seldom realistic for nor-

mal daily traffic, e.g. a 15% increase at least for Melbourne. 

4.8. Chapter Remarks 

This chapter presents detailed numerical results for the feedback control approach 

as an effective and efficient method for solving a simple TLP. Four key conclusions are 

summarized as follows: 

• The distance only toll, by its nature, drives travelers into the shortest paths 

within the PZ, thereby increasing the heterogeneous distribution of con-

gestion and hence the size of the hysteresis loop in the NFD. 

• The JDTT and the JDDT can reduce the heterogeneity of congestion dis-

tribution while achieving the control objective. 

• The feedback control approach requires that the periphery of the PZ have 

enough capacity to accommodate the re-routed traffic. Otherwise the pric-

ing control may fail without reaching a globally convergent solution. 

• The feedback control approach is particularly suited for solving a simple 

TLP featuring a set-point objective and bound constraints only.
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CHAPTER 5. SURROGATE-BASED TOLL LEVEL OPTI-

MIZATION 

This chapter provides a numerical study on the surrogate-based optimization ap-

proach for solving the TLP corresponding to Section 3.4. The pricing regime considered 

is the most efficient and equitable JDDT. As with CHAPTER 4, we use the simulation-

based DTA model of Melbourne, Australia to evaluate the performance of different toll 

levels, and to find the optimum. 30% of travelers are assumed to have access to real-time 

information and their route choice is calculated and updated every 15 minutes. 

The rest of this chapter is organized as follows. Section 5.1 presents the surrogate-

based SO framework as the solution algorithm. Section 5.2 briefly discusses the base 

scenario for comparison purposes. Sections 5.3 and 5.4 present the numerical results for 

the single- and bi-objective toll optimization, respectively. A comprehensive comparison 

between the two is performed in Section 5.5. Section 5.6 concludes the chapter. The work 

of this chapter has been published: 

• Gu, Z., Waller, S.T., Saberi, M., 2018. Surrogate-based toll optimization 

in a large-scale heterogeneously congested network. Comput.-Aided Civ. 

Inf. Eng., 1-16. 

To facilitate the presentation, the variables used in this chapter are first summarized in 

Table 5.1. 

 

 

 

Table 5.1 Variables used in CHAPTER 5 



Dynamic Congestion Pricing in Urban Networks with the Network Fundamental Diagram and Simulation-

Based Dynamic Traffic Assignment 

88 

 

Notation Interpretation 

𝑚 Number of tolling intervals 

τℎ Toll rate for the ℎ-th tolling interval 

τmin/τmax Lower/upper bound on the toll rate 

𝐾ℎ Average network density during the ℎ-th tolling interval 

𝐾cr Critical network density 

𝑁max Maximum number of iterations allowed 

𝜐ℎ/𝜉ℎ Distance/delay toll rate 

𝛼/𝛽 Toll pattern smoothing parameter for 𝜐ℎ/𝜉ℎ 

𝛿ℎ̅ Average deviation from spread during the ℎ-th tolling interval 

𝛿max Upper bound on the deviation from spread 

 

5.1. Surrogate-Based Simulation Optimization (SO) Framework 

Consider the following complex single-objective TLP: 

 

 min
𝛕1,𝛕2,…,𝛕𝑚

E [
1

𝑚
∑|𝐾̅ℎ − 𝐾cr|

𝑚

ℎ=1

] (5.1) 

s.t. 

 |𝜐ℎ − 𝜐ℎ+1| ≤ 𝛼, ℎ = 1,2, … ,𝑚 − 1 (5.2) 

 |𝜉ℎ − 𝜉ℎ+1| ≤ 𝛽, ℎ = 1,2, … ,𝑚 − 1 (5.3) 

 𝐾̅ℎ = 𝐷𝑇𝐴(𝛕1, 𝛕2, … , 𝛕𝑚), ℎ = 1,2, … ,𝑚 (5.4) 

 𝛕min ≤ 𝛕ℎ ≤ 𝛕max, ℎ = 1,2, … ,𝑚 (5.5) 

 

where 𝛼 and 𝛽 are the toll pattern smoothing parameters for 𝜐ℎ and 𝜉ℎ, respectively. The 

complete toll decision vector is 𝛕 = [𝜐1, 𝜐2, … , 𝜐𝑚, 𝜉1, 𝜉2, … , 𝜉𝑚]T. Note that 𝐾̅ℎ is used in 

the objective function in place of 𝐾ℎ
max so that the optimal toll rates are less aggressive. 
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Problem (5.1-5.5) is similar to Problem (4.1-4.3) but with two additional constraints, 

namely Constraints (5.2) and (5.3), which renders the PI controller inapplicable. These 

are what we call the toll pattern smoothing constraints, or smoothing control constraints 

(Geroliminis et al., 2013), used to ensure that the optimal toll rates do not fluctuate unduly 

between adjacent tolling intervals, and that we obtain a smooth optimal toll pattern. It is 

practically infeasible to introduce a radically changing pricing system considering travel-

ers’ adaptivity and system stability. To solve Problem (5.1-5.5), the surrogate model to 

be built is essentially trying to learn and approximate 𝐷𝑇𝐴(⋅), the black-box function of 

the simulation model, so that optimization can be performed based on the approximated 

response surface. 

Consider further the following complex bi-objective TLP: 

 

 min
𝛕1,𝛕2,…,𝛕𝑚

E [
1

𝑚
∑|𝐾̅ℎ − 𝐾cr|

𝑚

ℎ=1

] (5.6) 

 min
𝛕1,𝛕2,…,𝛕𝑚

E [
1

𝑚
∑ 𝛿ℎ̅

𝑚

ℎ=1

] (5.7) 

s.t. 

 |𝜐ℎ − 𝜐ℎ+1| ≤ 𝛼, ℎ = 1,2, … ,𝑚 − 1 (5.8) 

 |𝜉ℎ − 𝜉ℎ+1| ≤ 𝛽, ℎ = 1,2, … ,𝑚 − 1 (5.9) 

 𝐾̅ℎ = 𝐷𝑇𝐴(𝛕1, 𝛕2, … , 𝛕𝑚), ℎ = 1,2, … ,𝑚 (5.10) 

 𝛕min ≤ 𝛕ℎ ≤ 𝛕max, ℎ = 1,2, … ,𝑚 (5.11) 

 

where 𝛿ℎ̅ is the average deviation from spread of the PZ during the ℎ-th tolling interval 

calculated through Equation (3.4). We assume and fit a third-order polynomial function, 

𝛾(𝐾) = 𝑎𝐾3 + 𝑏𝐾2 + 𝑐𝐾, to the lower envelope of the spread-accumulation relationship 
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where 𝑎, 𝑏, and 𝑐 are the coefficients to be estimated. Note that the lower envelope of the 

spread-accumulation relationship corresponds to the upper envelope of the NFD because 

for the same density, the least heterogeneity of congestion distribution contributes to the 

highest flow. Note also that the fitted 𝛾(𝐾) here only serves as a mathematical approxi-

mation and hence does not necessarily represent the best functional form. Compared with 

Problem (5.1-5.5), Problem (5.6-5.11) considers an additional objective to minimize the 

heterogeneity of congestion distribution in the PZ for the 𝑚 tolling intervals, thereby 

achieving further network productivity. This, to some extent, represents an approach 

when dealing with large-scale heterogeneous networks (Simoni et al., 2015), as an alter-

native to network partitioning (Ji and Geroliminis, 2012; Saeedmanesh and Geroliminis, 

2016, 2017). Such an objective was previously used to develop a hierarchical perimeter 

control scheme (Ramezani et al., 2015). We do emphasize that while both clustering-

based network partitioning and homogeneity control are effective in reducing heteroge-

neity, heterogeneity per se is an inherent nature of traffic networks that cannot completely 

disappear (Ramezani et al., 2015). 

The unique feature of Problem (5.6-5.11) is that we know a priori that both ob-

jective functions have a lower bound of zero, although being too ideal to achieve. While 

we can still solve Problem (5.6-5.11) as it is, we can alternatively utilize this unique fea-

ture by keeping Equation (5.6) as the single main objective, same as Problem (4.1-4.3), 

and reformulating Equation (5.7) as an additional constraint. The original bi-objective 

TLP is therefore transformed into the following single-objective equivalent: 

 

 min
𝛕1,𝛕2,…,𝛕𝑚

E [
1

𝑚
∑|𝐾̅ℎ − 𝐾cr|

𝑚

ℎ=1

] (5.12) 

s.t. 
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 E [
1

𝑚
∑ 𝛿ℎ̅

𝑚

ℎ=1

] ≤ 𝛿max (5.13) 

 |𝜐ℎ − 𝜐ℎ+1| ≤ 𝛼, ℎ = 1,2, … ,𝑚 − 1 (5.14) 

 |𝜉ℎ − 𝜉ℎ+1| ≤ 𝛽, ℎ = 1,2, … ,𝑚 − 1 (5.15) 

 𝐾̅ℎ = 𝐷𝑇𝐴(𝛕1, 𝛕2, … , 𝛕𝑚), ℎ = 1,2, … ,𝑚 (5.16) 

 𝛕min ≤ 𝛕ℎ ≤ 𝛕max, ℎ = 1,2, … ,𝑚 (5.17) 

 

where 𝛿max is a constraint limit to ensure that the heterogeneity of congestion distribution 

is below a certain threshold. While we can alternatively keep Equation (5.7) as the objec-

tive and reformulate Equation (5.6) as the constraint, Problem (5.12-5.17) is stated in a 

more consistent fashion with Problem (5.1-5.5) and hence pursued. By transforming 

Problem (5.6-5.11) into Problem (5.12-5.17), we are able to further demonstrate the ca-

pability of surrogate-based optimization in dealing with complex constraints. 

The surrogate-based SO framework is illustrated in Figure 5.1. To construct the 

starting surrogate model, a few initial sample points need to be generated through space-

filling DOE, for each of which a network simulation is performed to evaluate the objec-

tive function. The constructed surrogate model is further subject to adding infill sample 

points via EI sampling until model validation is passed. For most practical applications 

with strict computational considerations, there is a maximum number of iterations al-

lowed which is usually reached first before a good convergence is achieved (Amaran et 

al., 2016). 
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Design of experiments: initial sample points

Network simulation: objective function evaluations

Construct the surrogate model: regressing kriging

Model validation: 

convergence achieved?

Yes

Add infill sample points: expected 

improvement sampling

No

Model validation: 

accuracy achieved?

Yes

No

Surrogate-based optimum

 
 

Figure 5.1 Flowchart representation of the surrogate-based SO framework 

 

5.2. Base Scenario 

We run the simulation without pricing and show the density time series and NFDs 

of the PZ in Figure 5.2(a) and (b), respectively. Results suggest that we set 𝐾cr =

25 vpkmpl which leads to a 2-h tolling period between 8 and 10 AM. To demonstrate the 

capability of surrogate-based optimization in dealing with high-dimensional problems, 

we use a 15-min duration and partition the entire tolling period into 8 small tolling inter-

vals. Hence a total of 16 toll decision variables are to be optimized. Accordingly, in the 

maximin LHS plan, the total number of the initial sample points is 37. When applying 
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surrogate-based optimization, we allow a maximum of 100 iterations, i.e., the total num-

ber of sample points is 100 with 63 infill sample points. Without loss of generality, 𝛕min 

and 𝛕max are set at [0,0, … ,0,0,0, … ,0]T and [1,1, … ,1,15,15,… ,15]T, respectively, and 

𝛼  and 𝛽  are set at 
1

3
(1 − 0) ≈ 0.33  and 

1

3
(15 − 0) = 5 , respectively. Figure 5.2(c) 

shows the fitted 𝛾(𝐾) = −0.0002032𝐾3 + 0.004432𝐾2 + 1.587𝐾. 

 

 

(a) 

  

(b) (c) 

 

Figure 5.2 Simulation results of the PZ under the non-tolling scenario: (a) density time 

series, (b) simulated NFDs, and (c) spread-accumulation relationships 

 

5.3. Solving the Single-Objective Optimization  

Figure 5.3(a) validates the accuracy of the constructed surrogate model with 100 

sample points. The model accuracy is sufficiently achieved with 98 standardized cross-

validated residuals lying within [−3,3] . One outlier corresponds to the non-tolling 
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scenario with 𝛕 = 𝛕min = [0,0, … ,0,0,0,… ,0]T. Since the non-tolling network produces 

the highest objective function value, the surrogate model makes little effort exploring the 

region surrounding the non-tolling sample point where the prediction becomes poor, as 

expected. Figure 5.3(b) illustrates the history of the EI metric. Although, due to the heu-

ristic nature of the method, intermittent peaks representing possible significant improve-

ments in the objective function value are observed, the overall trend of the change as 

represented by the average curve (averaged every four consecutive points) displays a rel-

atively smooth convergence towards zero. This implies that, at the end of the optimization, 

the surrogate model is unable to locate a new solution that significantly improves the 

current best solution and hence, we can terminate the algorithm with confidence. 

 

  

(a) (b) 

 

Figure 5.3 Solving the single-objective TLP: (a) validating the accuracy of the con-

structed surrogate model, and (b) convergence of the EI metric 

 

The solution to the single-objective TLP is shown in Figure 5.4(a). The changes 

in the distance and delay toll rates between adjacent tolling intervals are clearly bounded 

by the toll pattern smoothing constraints, respectively. Figure 5.4(b) shows the simulated 

averaged NFD of the PZ after applying the optimal toll rates. As expected, the congested 

regime of the NFD that appears and remains until the end of the simulation under the non-

tolling scenario no longer exists and is substituted by a combination of a (near-)capacity 
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regime and a clockwise hysteresis loop. This finding is consistent with our previous find-

ing in CHAPTER 4. 

An interesting observation out of the comparison is that, compared with the non-

tolling NFD, the tolling NFD undergoes a capacity drop immediately after the implemen-

tation of pricing, which, in part, contributes to the hysteresis loop in the NFD. This ca-

pacity drop results from the reduced inflow or demand to the PZ due to the presence of 

pricing. An extreme and obviously unrealistic scenario is that we implement an excep-

tionally high toll price whereby no one would enter the PZ. With such demand dropping 

sharply to zero, the hysteresis loop in the NFD is amplified most significantly 

(Mahmassani et al., 2013). A complete elimination of the capacity drop is too ideal and 

perhaps only possible with an extremely smooth toll pattern starting from zero, i.e. a very 

slow-varying toll. Figure 5.4(c-e) show, respectively, the density, speed, and queue time 

series of the PZ under the optimal tolling scenario in comparison with those under the 

non-tolling scenario. It is evident and consistent across different replications that pricing 

has brought significant performance improvement to the PZ represented by the area in 

between the two curves. 
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(a) (b) 

  

(c) (d) 

 

(e) 

 

Figure 5.4 (a) Solution to the single-objective TLP and its simulation results of the PZ in 

comparison with those under the non-tolling scenario: (b) averaged NFD, (c-e) density, 

speed, and queue time series. The solid lines represent the after-pricing scenario while 

the dashed lines represent the before-pricing scenario 

 

5.3.1. Sensitivity Analysis on the Toll Pattern Smoothing Parameters 

To investigate the effect of toll pattern smoothing parameters, 𝛼 and 𝛽, on the 

pricing control results, we perform a sensitivity analysis with two additional pairs of 
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parameters: (i) 𝛼 =
1

5
(1 − 0) = 0.2, 𝛽 =

1

5
(15 − 0) = 3 , and (ii) 𝛼 =

1

2
(1 − 0) =

0.5, 𝛽 =
1

2
(15 − 0) = 7.5. 

Mathematically speaking, a larger pair of 𝛼 and 𝛽 imposes less constraint on the 

optimization and hence would achieve a lower optimal objective function value, and vice 

versa. This is indeed confirmed by the optimization results. The optimal objective func-

tion value is 4.3887 for 𝛼 = 0.2, 𝛽 = 3, 4.1614 for 𝛼 = 0.33, 𝛽 = 5, and 4.0057 for 𝛼 =

0.5, 𝛽 = 7.5. With a larger pair of 𝛼 and 𝛽, the optimal toll pattern shown in Figure 5.5 

(c) is, as expected, less smooth than that in Figure 5.5(a). Accordingly, the NFD shown 

in Figure 5.5(d) exhibits more chaotic behavior compared with that in Figure 5.5(b) prob-

ably due to the radical changes in the toll rates. 

 

  

(a) (b) 

  

(c) (d) 

 

Figure 5.5 Solution to the single-objective TLP and its simulated averaged NFD of the 

PZ with (a) and (b) 𝛼 = 0.2, 𝛽 = 3, and (c) and (d) 𝛼 = 0.5, 𝛽 = 7.5 
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5.4. Solving the Bi-Objective Optimization 

When solving the bi-objective TLP, we set 𝛿max at 8 vpkmpl based on previous 

single-objective optimization results. Figure 5.6(a) validates the accuracy of the con-

structed surrogate model with 100 sample points. As with Figure 5.3(a), there are 98 well-

predicted sample points plus two outliers. One of the outliers still corresponds to the non-

tolling scenario with 𝛕 = 𝛕min = [0,0, … ,0,0,0, … ,0]T , while the other outlier corre-

sponds to the “full” tolling scenario with 𝛕 = 𝛕max = [1,1, … ,1,15,15,… ,15]T. The rea-

son is the same. 𝛕min undercharges drivers while 𝛕max overcharges drivers, both of which 

give rise to the highest objective function values and hence the lowest probability of find-

ing the minimum solution in their proximity. To solve the minimization problem, the 

surrogate model naturally spends most of its effort exploring other regions in the design 

space, thereby predicting poorly for 𝛕min and 𝛕max. Figure 5.6(b) shows the convergence 

of the probabilistic EI metric. While exhibiting a brief increasing trend at the beginning 

of the optimization, the pattern gradually and eventually converges to zero like Figure 

5.3(b). Note that the probabilistic EI values in Figure 5.6(b) are generally smaller than 

those in Figure 5.3(b) because the probability of satisfying the constraint is always less 

than or equal to one. 

 

 

 



Dynamic Congestion Pricing in Urban Networks with the Network Fundamental Diagram and Simulation-

Based Dynamic Traffic Assignment 

99 

 

  

(a) (b) 

 

Figure 5.6 Solving the bi-objective TLP: (a) validating the accuracy of the constructed 

surrogate model, and (b) convergence of the probabilistic EI metric 

 

Figure 5.7(a) shows the distribution of the 100 sample points based on their ob-

jective and constraint function values. Obviously, we are only interested in points lying 

below the constraint limit line represented by the blue filled circles. An interesting obser-

vation is that a Pareto front seems to appear suggesting a conflicting relation between the 

objective and the constraint. This observation, in part, supports our previous argument 

about the capacity drop. Specifically, while a higher toll price may decrease the objective 

function value, it may also increase the constraint function value by creating a more sig-

nificant drop in the inflow to the PZ. A further reduced inflow equates to a more notable 

capacity drop and hence, a larger hysteresis loop in the NFD or a higher level of deviation 

from spread. Under the non-tolling scenario, the deviation from spread is the lowest as 

the PZ goes all the way to almost gridlock with no network recovery, see Figure 5.2(a). 

The solution to the bi-objective TLP is shown in Figure 5.7(b) which corresponds to the 

corner point at the intersection of the Pareto front and the constraint limit line in Figure 

5.7(a). The solution to the single-objective TLP is also shown by the green cross which 

has a lower objective function value but a higher constraint function value, as expected. 

Figure 5.7(c-f) show, respectively, the simulated averaged NFD, density, speed, and 

queue time series of the PZ under the optimal tolling scenario. The tolling NFD 
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successfully maintains itself within the free-flow and at or near the capacity regimes with-

out entering the congested branch of the non-tolling NFD. Traffic conditions in the PZ 

experience significant improvement with much lower densities and queues, and larger 

speeds. 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

 

Figure 5.7 (a) Distribution of the 100 sample points based on their objective and constraint 

function values, (b) solution to the bi-objective TLP and its simulation results of the PZ 

in comparison with those under the non-tolling scenario: (c) averaged NFD, (d-f) density, 

speed, and queue time series. The solid lines represent the after-pricing scenario while 

the dashed lines represent the before-pricing scenario 
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5.5. Performance Comparison 

As shown in Figure 5.8(a), the NFD from the bi-objective optimization shifts more 

to the right because the heterogeneity constraint results in a lower toll price and hence a 

higher objective function value. Nevertheless, due to a lower constraint function value, 

higher flows are achieved during network loading which equates to a reduced capacity 

drop. During the transition period, although the NFD from the bi-objective optimization 

works at higher densities, it produces similar or even slightly higher flows. Assuming a 

trapezoidal network exit function, there is a range of densities centering around the critical 

network density within which the flow can maintain at or near capacity (Daganzo, 2007; 

Mahmassani et al., 2013). Another observation is that the NFD from the single-objective 

optimization exhibits a more significant local oscillatory loop. While the density remains 

almost constant, the flow undergoes a near-vertical jump along with a more heterogene-

ous distribution of congestion, see Figure 5.8(a) and (b). This was also reported in Simoni 

et al. (2015). During network recovery, both NFDs exhibit a sizable hysteresis loop am-

plified by the very low demand entering the PZ at the end of the simulation. Figure 5.8(b) 

shows that, although the bi-objective optimization leads to higher densities, it produces 

slightly and consistently higher flows throughout the tolling period due to a lower level 

of the deviation from spread. Figure 5.8(c) and (d) show that compared with the non-

tolling scenario, the two optimal TLP solutions reduce the average travel time in the PZ 

by an average of 29.5% and 21.6%, respectively. The bi-objective optimization achieves 

less travel time improvement in the PZ because it allows the density to evolve further 

beyond the critical network density. While one may immediately question the 7.9% loss 

of travel time improvement in the PZ, a comparison between the average travel time in 
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the entire network certainly provides the answer. Compared with the non-tolling scenario, 

the bi-objective optimization reduces the average travel time in the entire network by an 

average of 2.5%, which is 1.1% higher than that by the single-objective optimization. 

Therefore, the bi-objective optimization essentially manages to convert the 7.9% loss of 

travel time improvement in the PZ into the 1.1% gain of travel time improvement in the 

entire network. While producing less network-wide travel time improvement in the first 

two replications, the single-objective optimization slightly increases the average network 

travel time in the third replication probably due to overcharging the PZ and shifting con-

gestion to the peripheral network. Two questions remain to be answered: (i) why is the 

travel time improvement in the entire network much lower than that in the PZ? And (ii) 

is it worthwhile to achieve the 1.1% gain of travel time improvement in the entire network 

at the cost of the 7.9% loss of travel time improvement in the PZ? 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 5.8 Comparing the simulation results of the two optimal TLP solutions: (a) aver-

aged simulated NFDs of the PZ, (b) deviation, density, and flow time series of PZ, (c) 

average travel time in the PZ, (d) average travel time in the entire network, and (e) density, 

speed, and queue time series of the entire network 

 

The answer to the first question is quite straightforward which has already been 

provided in CHAPTER 4. The scale effect is a major reason given that the PZ only covers 
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a relatively small area of the entire network. It is therefore no surprise that the perfor-

mance of the entire network changes very little, see Figure 5.8(e), when pricing a rela-

tively small sub-network. The performance of the entire network may even reduce, e.g. 

in the third replication, due to the redistribution of detour vehicles around the PZ which 

is highly dependent on the network configuration and the structure and magnitude of the 

demand, and hence case-specific. Since the surrogate-based SO framework represents an 

uncoordinated approach to pricing system design as our focus is explicitly and entirely 

on optimizing the performance of the PZ, we need to check and ensure in an unsystematic 

manner that the optimal solution does not create unintended evident deterioration in the 

performance of the entire network. 

The answer to the second question is a quick yes, at least from the authors’ per-

spective. While acknowledging the fact that 1.1% is much lower and hence less seemingly 

appealing than 7.9%, we emphasize that the average travel time is normalized against the 

total distance traveled. Given that the total distance traveled in the entire network is over 

60 times of that in the PZ, the total travel time saving in the entire network offered by the 

1.1% is accordingly much higher than that in the PZ offered by the 7.9%. Indeed, we 

achieve, on average, a further network-wide total travel time saving of almost 700 hours 

during the 4-h AM peak period. From a global perspective, it is certainly worthwhile to 

achieve the 1.1% gain of travel time improvement in the entire network at the cost of the 

7.9% loss of travel time improvement in the PZ. 

5.6. Chapter Remarks 

This chapter presents detailed numerical results for the surrogate-based optimiza-

tion approach as a computationally efficient method for solving a complex TLP. Two key 

conclusions are summarized as follows: 
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• Considering and reducing the heterogeneity of congestion distribution as 

part of the TLP helps achieve a higher network flow. 

• Surrogate-based optimization is a more general approach that is particu-

larly suited for solving a complex TLP, i.e. a TLP with either a complex 

objective or complex constraints.
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CHAPTER 6. COMPARING DIFFERENT SIMULATION 

OPTIMIZATION (SO) METHODS 

This chapter provides an in-depth investigation into the performance of different 

SO methods on two benchmark TLPs and compares their solution quality and computa-

tional efficiency as key application considerations. A recent comprehensive overview of 

different SO methods can be found in Amaran et al. (2016). Given the problem at hand, 

we focus on continuous SO but not discrete SO. To the best of our knowledge, different 

continuous SO methods can be classified into seven broad categories: (i) random search 

or metaheuristics, (ii) RSM, (iii) stochastic approximation (SA), (iv) direct search, (v) 

estimation of distribution algorithms (EDAs), (vi) Lipschitzian optimization, and (vii) 

feedback control. Given an expensive TLP, random search and EDAs are left out because 

of their demanding requirement of enormous function evaluations. Direct search as a 

usual local optimizer is not considered either as we emphasize global optimization that is 

immune to getting trapped in a bad local optimum. 

We consider and compare the most representative and perhaps the best performing 

SO method for each of the four identified categories: (i) the PI controller method for 

feedback control (Section 3.3), (ii) RK for RSM (Section 3.4), (iii) SPSA for SA (Spall, 

1992), and (iv) DIRECT for Lipschitzian optimization (Jones et al., 1993). To account 

for simulation noise of a stochastic traffic simulator commonly rendered by different ran-

dom seed numbers, we can readily couple standard fixed- or “smarter” variable-number 

sample path optimization (Deng and Ferris, 2009) with the above methods. Do keep in 

mind that, as we previously touched upon, computer simulations often display what we 
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call numerical noise as well – the objective function evaluations tend to scatter about a 

smooth trend rather than lying on it (Forrester et al., 2006). 

The four SO methods are briefly summarized in Table 6.1. We will later elaborate, 

respectively, on SPSA and DIRECT in Sections 6.1 and 6.2, while further details of the 

PI controller method and RK can be found in Sections 3.3 and 3.4, respectively. Com-

pared with the other three methods, the PI controller method is highly demanding on the 

problem formulation – only set-point objective functions and box constraints can be con-

sidered. However, when the problem is indeed formulated in such a form, the PI controller 

method tends to converge much faster as we will show in Section 6.3. In Section 6.4, we 

will compare the performance of the other three methods on the complex TLP. In addition 

to the normal simulation or function evaluation cost and the decision vector adjustment 

or selection cost, each method has its own distinct overheads when applied of which one 

should be aware. DIRECT is perhaps the only exception that does not involve heavy 

overheads. The work of this chapter has been published and is currently under review: 

• Gu, Z., Saberi, M., 2019. Continuous simulation-based optimization of ex-

pensive black-box traffic systems: A comparative review of algorithms 

and application to toll pricing. Transp. Res. Part B, under review. 

 

Table 6.1 Summary of the four SO methods 

Method Mechanism 

Capabilities 

Overheads 
Objec-

tive 

Con-

straint 

PI con-

troller 

Applying trial-and-error to gradually reduce the 

error from the set point 

Set 

point 
Box 

Parameter tun-

ing 

RK 
Approximating the simulation input-output map-

ping by a mathematical construct 
Any Any 

Parameter es-

timation 

SPSA 
Using finite-difference approximation to enable 

gradient descent 
Any Any 

Parameter tun-

ing 

DIRECT 
Diving the parameter space into (hyper)rectangles 

by function evaluations 
Any Any Almost none 
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To facilitate the presentation, the variables used in this chapter are first summa-

rized in Table 6.2. 

 

Table 6.2 Variables used in CHAPTER 6 

Notation Interpretation 

𝑘 Problem dimension 

τ𝑖 Decision vector for the 𝑖-th iteration 

𝚫𝑖 Random perturbation vector for the 𝑖-th iteration 

𝑎, 𝑐, 𝛼, 𝛾, 𝐴  User-specified parameters for SPSA 

𝒄𝑗 Midpoint of the 𝑗-th hyperrectangle 

𝑑𝑗 Distance between 𝒄𝑗 and the hyperrectangle vertices 

𝜀, 𝐾 User-specified parameters for DIRECT 

ℋ Potentially optimal hyperrectangles 

𝒟𝒽 Set of dimensions with the longest side length for 𝒽 ∈ ℋ 

𝛿𝒽 One third of the longest side length for 𝒽 ∈ ℋ 

𝒄𝒽 Midpoint of 𝒽 ∈ ℋ 

𝒆𝑖 𝑖-th unit vector 

𝑚 Number of tolling intervals 

𝐾cr Critical network density 

𝑃P/𝑃I Proportional/integral gain parameter 

𝝐noise Error due to noise 

𝝐perturbation Error due to simultaneous perturbation 

 

6.1. Simultaneous Perturbation Stochastic Approximation (SPSA) 

SA is a widely used method in various engineering areas to solve a challenging 

optimization problem that does not have an analytical solution and/or is contaminated 

with noise. Usually, the solution to the optimization problem is a decision vector at which 
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the gradient of the objective function is zero. If information of the gradient is directly 

available, the problem can be solved using a gradient-based method, e.g. steepest descent. 

The biggest obstacle, however, is that in most practical applications especially where 

computer simulations are used, the gradient is like an inaccessible “black box” and one 

only has measurements of the objective function. In this context, SA comes into play 

which approximates the gradient using only objective function evaluations. 

The two-sided finite-difference stochastic approximation (FDSA), e.g. Kiefer and 

Wolfowitz (1952), is a well-known SA method. It works fine for small dimensional prob-

lems but poorly in terms of computational efficiency for problems featuring a high di-

mensional decision vector. This is because the number of objective function evaluations 

required per iteration is twice the number of the problem dimension. In contrast, random 

direction stochastic approximation (RDSA) or SPSA as a special case is a highly efficient 

simultaneous perturbation (SP) approximation to the gradient that requires only two ob-

jective function evaluations per iteration irrespective of the problem dimension (Spall, 

1992). This feature renders the method competitive in solving large-scale SO problems. 

The essence of SPSA lies in how it approximates the gradient. Let us assume that, 

without loss of generality, the problem to be solved is formulated as a minimization prob-

lem with respect to a 𝑘-dimensional decision vector denoted by 𝛕𝑖 = [𝜏1, 𝜏2, … , 𝜏𝑘]
T 

where 𝑖 is the iteration counter. To approximate the gradient using SP, we generate a cor-

responding 𝑘-dimensional random perturbation vector denoted by 𝚫𝑖, each element of 

which, i.e. 𝛥𝑖𝑙 where 𝑙 ∈ (1,2, … , 𝑘), is independently generated by Monte Carlo from a 

zero-mean probability distribution satisfying the SPSA regularity conditions (Spall, 1992). 

In short, the common uniform and normal distributions are not qualified whereas a simple, 

valid, and perhaps the most widely advocated choice is the Bernoulli distribution with 0.5 
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probability for ±1. The SP approximation to the unknown true gradient, 𝐠̂𝑖(𝛕𝑖), is there-

fore calculated as follows: 

 

 𝐠̂𝑖(𝛕𝑖) =
𝑓(𝛕𝑖 + 𝑐𝑖𝚫𝑖) − 𝑓(𝛕𝑖 − 𝑐𝑖𝚫𝑖)

2𝑐𝑖
[
𝛥𝑖1

−1

⋮
𝛥𝑖𝑘

−1
] (6.1) 

 

where 𝑐𝑖 =
𝑐

(𝑖+1)𝛾
 is usually a small number for gradient approximation with user-speci-

fied parameters 𝑐 and 𝛾. A practically effective and theoretically valid value of 𝛾 is 0.101 

and 𝑐 should not be set close to zero given a highly noisy objective function (Spall, 1998). 

Note that one can opt to average several SP approximations to the gradient per iteration 

when the noise level of the objective function is very high so as to increase the stability 

of the method in the early iterations. 

With Equation (6.1), the SPSA-enabled SO framework is illustrated in Figure 6.1 

together with the following detailed algorithmic steps. 

 

Step 1. Parameter initialization. Set 𝑖 = 1 and choose 𝛕1 ∈ ℝ𝑘  as an initial guess 

for the decision vector. Set 𝑐𝑖 =
𝑐

(𝑖+1)𝛾
 and the step size 𝑎𝑖 =

𝑎

(𝐴+𝑖)𝛼
 where 𝑎, 

𝐴, and 𝛼 are user-specified parameters. A couple of guidelines for parameter 

selection (Spall, 1998) include (i) a practically effective and theoretically 

valid value of 𝛼 is 0.602, (ii) 𝐴 is usually set at 10% or less of the maximum 

number of expected or allowed iterations, and (iii) 𝑎 is typically chosen such 

that 
𝑎

(𝐴+1)𝛼
 times the magnitude of the elements of 𝐠̂1(𝛕1) approximately 

equates to the smallest desired change in the magnitude of the elements of 𝛕 

in the early iterations. 
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Step 2. Random perturbation. Generate a 𝑘-dimensional random perturbation vector, 

𝚫𝑖, where each element is independently sampled via Monte Carlo from a 

Bernoulli distribution with 0.5 probability for ±1. 

Step 3. Objective function evaluation. Run the simulation for both simultaneously 

perturbed decision vectors and evaluate their objective function values. 

Step 4. Gradient approximation. Calculate the SP approximation to the gradient us-

ing Equation (6.1). 

Step 5. Decision vector update. Apply the following standard SA formulation to up-

date the decision vector: 

 

 𝛕𝑖+1 = 𝛕𝑖 − 𝑎𝑖𝐠̂𝑖(𝛕𝑖) (6.2) 

 

Step 6. Stop test. Terminate the algorithm if there is little change in several succes-

sive gradient approximations or objective function evaluations, or the maxi-

mum number of iterations allowed is reached; otherwise set 𝑖 = 𝑖 + 1 and go 

back to Step 2. 
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Simultaneous perturbation via Monte Carlo

Objective function evaluation via simulation

Parameter initialization Simulation model

Gradient approximation

Decision vector update

Convergence check

Stop

Yes

No

Iteration counter += 1

 
 

Figure 6.1 Flowchart representation of the SPSA-enabled SO framework 

 

6.2. DIviding RECTangles (DIRECT) 

Lipschitzian optimization, e.g. Shubert (1972), has always been an attractive 

method for finding the global optimum or, more generally, multiple global optima if more 

than one exists to an optimization problem. The reason behind its popularity is threefold: 

• The method is deterministic without the need for multiple runs. 

• Very few parameters are to be specified except for the Lipschitz constant 

– a bound on the rate of change of the objective function, and hence little 

effort is needed for parameter tuning. 
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• The method can generate a lower bound on the optimal objective function 

value that enables the adoption of more meaningful stopping criteria. 

Nevertheless, Lipschitzian optimization also bears three disadvantages that prevent its 

further applications: 

• The Lipschitz constant to be specified may not be easily calculated or 

simply does not exist. 

• The method usually has a low speed of convergence. This is because the 

Lipschitz constant as an upper bound on the rate of change of the objective 

function is typically a large value that puts more emphasis on global ex-

ploration than on local exploitation. 

• The method needs to sample and evaluate every vertex of the partitioned 

hyperrectangle from the original search space. Therefore, the computa-

tional complexity significantly increases for solving a high-dimensional 

optimization problem. 

In view of the above limitations of the standard Lipschitzian optimization, Jones 

et al. (1993) proposed a new global optimization method termed DIRECT that eliminates 

the need for a user-specified Lipschitz constant. Equally contributive is that the method 

only samples and evaluates the midpoint of the partitioned hyperrectangle from the orig-

inal search space irrespective of the problem dimension, which largely reduces the num-

ber of required objective function evaluations and achieves computational efficiency. In 

a nutshell, DIRECT works by iteratively partitioning the search space into multiple hy-

perrectangles and identify what are called potentially optimal hyperrectangles for further 

partitioning. As such, the method has two core components consisting of hyperrectangle 

partitioning and potentially optimal hyperrectangle identification. 
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Step 1. Initialization. Normalize the search space into a unit hypercube whose mid-

point is denoted by 𝒄1. Run the simulation and evaluate the objective func-

tion value at 𝒄1 , denoted by 𝑓(𝒄1). Set the current best solution 𝑓min =

 𝑓(𝒄1) and the iteration counter 𝑡 = 1. 

Step 2. Potentially optimal hyperrectangle identification. Let us assume that the 

original search space is currently partitioned into 𝑚 hyperrectangles. We use  

𝒄𝑗  to denote the midpoint of the 𝑗-th hyperrectangle and 𝑑𝑗 to denote the dis-

tance between 𝒄𝑗  and the hyperrectangle vertices. A hyperrectangle, 𝑗∗, is po-

tentially optimal if the following two inequalities hold for some 𝐾̃ > 0 

where 𝜀 > 0 is a small constant: 

 

 𝑓(𝒄𝑗∗) − 𝐾̃𝑑𝑗∗ ≤ 𝑓(𝒄𝑗) − 𝐾̃𝑑𝑗 , 𝑗 ∈ (1,2,… ,𝑚) (6.3) 

 𝑓(𝒄𝑗∗) − 𝐾̃𝑑𝑗∗ ≤ 𝑓min − 𝜀|𝑓min| (6.4) 

 

Step 3. Hyperrectangle partitioning. Let ℋ denote the set of potentially optimal hy-

perrectangles identified from Step 2. For each 𝒽 ∈ ℋ, denote the set of di-

mensions with the longest side length by 𝒟𝒽 and set 𝛿𝒽 to one third of this 

length. Sample and evaluate the objective function values at points 𝒄𝒽 ±

𝛿𝒽𝒆𝑖 where 𝒄𝒽 is the midpoint of 𝒽 and 𝒆𝑖 is the 𝑖-th unit vector, 𝑖 ∈ 𝒟𝒽. 

Calculate 𝑤𝑖 = min (𝑓(𝒄𝒽 + 𝛿𝒽𝒆𝑖), 𝑓(𝒄𝒽 − 𝛿𝒽𝒆𝑖)), 𝑖 ∈ 𝒟𝒽, and partition 

𝒽 into thirds along each 𝑖 ∈ 𝒟𝒽  according to the ascending order of 𝑤𝑖  – 

starting with the dimension having the smallest 𝑤𝑖 and continuing to the di-

mension having the largest 𝑤𝑖. 
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Step 4. Stop test. Update 𝑓min. Terminate the algorithm if the maximum number of 

iterations allowed is reached; otherwise set 𝑡 = 𝑡 + 1 and go back to Step 2. 

 

Potentially optimal hyperrectangle 

identification

Hyperrectangle partitioning

Maximum number of 

iterations reached?

Stop

Yes

No

 Search space normalization

Iteration counter += 1

Midpoint initialization

Objective function evaluation via simulation 

and current best solution update

 
 

Figure 6.2 Flowchart representation of the DIRECT-enabled SO framework 

 

Note that if one plots (𝑑𝑗 , 𝑓(𝒄𝑗)) for all the hyperrectangles during an iteration, 

Equation (6.3) equates to finding the lower right convex hull of the dots, see Figure 6.3(a), 

while Equation (6.4) requires that the current best solution be exceeded by a nontrivial 

amount so as to avoid unnecessary local exploitation (Jones et al., 1993). Figure 6.3(b) 

shows a graphical representation of hyperrectangle partitioning in the two-dimensional 

space as a special case. 
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(a) (b) 

 

Figure 6.3 Graphical representation of (a) potentially optimal hyperrectangle identifica-

tion, and (b) hyperrectangle partitioning in the two-dimensional space, modified based on 

Deng and Ferris (2007) 

 

6.3. Solving the Simple Problem 

Problem (4.1-4.3) with 𝑚 = 2 and 𝐾cr = 15 vpkmpl is to be solved, respectively, 

by the four SO methods. Here, we consider the distance only toll and the tolling period 

covers the 8-9 AM peak period with two 30-min tolling intervals. 

6.3.1. Proportional-Integral (PI) controller 

As a deterministic method, the PI controller does not require multiple runs since 

there is no random component involved in searching for the optimum, although a bit effort 

is needed to tune the controller gain parameters. While a rule of thumb is provided in 

Section 4.2, we further show and compare Figure 6.4(a) and (b) to graphically interpret 

the effect of the gain parameters on the convergence. In Figure 6.4(a), we set 𝑃P = 0.02 

and 𝑃I = 0.005, and the resultant convergence appears smooth without showing signifi-

cant oscillatory behavior. In contrast, when we increase 𝑃P and 𝑃I to 0.1 and 0.03, respec-

tively, in Figure 6.4(b), the toll rates undergo radical changes between successive itera-

tions and hence, one can hardly tell what the convergent solution is especially for the 
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second tolling interval. Note that 30 function evaluations are enough to clearly demon-

strate the oscillatory behavior in Figure 6.4(b). While making a guess for the solution is 

still possible by referring to the center lines drawn through the fluctuations, the accuracy 

or solution quality of the guess is by no means guaranteed and turns out to be much poorer 

than that in Figure 6.4(a). The result certainly highlights the importance of the parameter 

tuning step in the PI controller method. 

 

  
(a) (b) 

 

Figure 6.4 Convergence of the toll rates by the PI controller using (a) 𝑃P = 0.02, 𝑃I =
0.005, and (b) 𝑃P = 0.1, 𝑃I = 0.03 

 

As shown in Figure 6.5(a), the average network densities of the PZ during both 

tolling intervals gradually reduce to and stabilize at about 15 vpkmpl (which is the critical 

network density as well as the pricing control threshold) as the number of function eval-

uations increases to 50. Accordingly, the objective function value corresponding to each 

function evaluation decreases as well to the ideal optimum of zero, although the generated 

decline curve appears quite non-smooth. The reason why this non-smoothness occurs is 

because of the existence of the numerical noise. We observe from Figure 6.4(a) that the 

toll rates quickly converge to their respective optimal values within about 10 function 

evaluations and only undergo minor changes afterwards. This is somewhat contradictory 

to the result in Figure 6.5(a) – the fluctuations in the objective function values prevail and 
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do not disappear at least for 30 function evaluations, which is also confirmed in Figure 

6.5(b) showing the convergence of the optimal objective function value. What all this 

suggests is that there are still significant changes in the objective function values between 

the 10th and 30th function evaluations while the toll rates vary little. Figure 6.5(c) provides 

a graphical support for our argument by showing the search path of the PI controller 

method. As expected, the search path quickly orients towards an optimal region which, 

however, contains a wide range of function values despite being relatively small. 

 

  
(a) (b) 

 
(c) 

 

Figure 6.5 (a) Densities and objective function values as the number of function evalua-

tions increases, (b) convergence of the optimal objective function value, and (c) search 

path of the PI controller method 

 

Given that we keep track of the current best solution throughout the iterations, the 

optimal toll rates by the PI controller method are 0.19 $/km for the first tolling interval 

and 0.93 $/km for the second. The corresponding optimal objective function value is 
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0.055. As shown in Figure 6.6(b), the NFD after the optimal toll rates are applied suc-

cessfully operates around the critical network density without entering the congested re-

gime that appears in the non-tolling NFD, see Figure 6.6(a). There is, however, a large 

hysteresis loop in the tolling NFD, as expected, and part of the reason lies in the distance 

only toll per se – drivers tend to accumulate themselves into the shortest paths within the 

PZ resulting in a more heterogeneous distribution of congestion and hence a larger hys-

teresis loop in the NFD. This is one of our major findings in CHAPTER 4 and the result 

here is consistent further supporting our argument. 

 

  
(a) (b) 

 

Figure 6.6 NFDs of the PZ before and after the optimal toll rates are applied 

 

6.3.2. Regressing Kriging (RK) 

RK is an SO method that does not need parameter tuning. Instead, it requires sev-

eral parameters to be estimated throughout the iterations via MLE so as to generate the 

optimal infill sample points for augmenting the response surface. Since the first step of 

RK is to generate an initial set of sample points through random sampling, and the GA is 

used to find both the MLEs of the parameters and the optimal infill sample points, we 

choose to perform multiple runs to take into account this effect of randomness. 

As a means of validating the convergence of RK, the probabilistic EI metric is 

calculated and maximized during each iteration to generate an optimal infill sample point 
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and hence, does not apply to the initial sample points that comprise the first 11 function 

evaluations. Figure 6.7 shows, for each different run, the expected decreasing trend in the 

probabilistic EI metric as the number of infill function evaluations increases. While the 

shape of the decline curve appears irregular and differs from run to run for the first few 

infill function evaluations, all the curves quickly drop and stabilize at almost zero sug-

gesting that the method is unable to find another sample point that significantly improves 

the current best solution, and that we can terminate the iterations with confidence. In 

general, with 11 initial function evaluations and 20 or less infill function evaluations (i.e. 

about 30 function evaluations in total), the method can be considered convergent by re-

ferring to the probabilistic EI metric.  
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1st run 

   
2nd run 3rd run 4th run 

   
5th run 6th run 7th run 

   
8th run 9th run 10th run 

 

Figure 6.7 Validating the convergence of RK using the probabilistic EI metric for multiple 

runs 

 

To validate the accuracy of RK, leave-one-out CV is performed for each different 

run and the results are shown in Figure 6.8. Clearly, all the constructed response surfaces 

work well – the points mapping predictions to observations lie neatly along the equal line 

and the standardized cross-validated residuals lie perfectly within [−3,3] – suggesting 
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that at this stage, they can be used to approximate 𝐷𝑇𝐴(⋅), the “black box” function of 

the simulation model in Equation (4.2), and make accurate predictions. 

 

 
1st run 

   
2nd run 3rd run 4th run 

   
5th run 6th run 7th run 

   
8th run 9th run 10th run 

 

Figure 6.8 Validating the accuracy of RK using the standardized cross-validated residuals 

for multiple runs 
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The constructed response surface for each run is shown in Figure 6.9 as a two-

dimensional heatmap together with the distribution of the 100 sample points. Two key 

observations are drawn below: 

• The sample points for each run are distributed widely across the entire 

search space manifesting the global exploration property of the method. 

As we will compare and show later, if one applies RK without using the 

reinterpolation technique discussed in Sub-section 3.4.3, the method is 

prone to local exploitation resulting in a highly biased response surface. 

• The constructed response surfaces for all runs exhibit a similar pattern fea-

turing a common narrow strip of global optimal region centering around 

an abscissa value (i.e. the toll rate for the first tolling interval) of 0.2 $/km. 

The method, despite having random sampling and random search compo-

nents, is therefore able to produce consistent results across multiple runs. 
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1st run 

   
2nd run 3rd run 4th run 

   
5th run 6th run 7th run 

   
8th run 9th run 10th run 

 

Figure 6.9 Constructed response surfaces for multiple runs represented as two-dimen-

sional heatmaps where the black dots are the sampled and evaluated points 

 

As expected, the optimal solutions from all runs lie within the identified narrow 

strip of global optimal region as shown in Figure 6.10(a). Although Figure 6.10(b) shows 

that the objective function does not converge to a same optimal value for multiple runs, 

the differences are relatively small and are partially attributed to the noisiness of the ob-

jective function per se. This is highlighted in Figure 6.11 where we construct the response 

surface by interpolation using 100 × 10 = 1,000 sample points from all runs. Clearly, 

with many more sample points, the interpolated response surface is much noisier than 
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those shown in Figure 6.9. One major reason, similar to our discussion on Figure 6.5(c), 

is the higher numerical noise embedded in this larger number of sample points. If one 

uses interpolation to construct the response surface just like what we did in Figure 6.11, 

the problem of overfitting is likely to occur because interpolating every single sample 

point is, unfortunately, equivalent to modeling the high numerical noise rather than filter-

ing it out. This certainly supports our discussion in Sub-section 3.4.2 – we need a regres-

sion method like RK rather than an interpolation method like ordinary Kriging when the 

objective function is highly noisy. Note from Figure 6.10(b) that the optimal objective 

function value reduces mostly within the first 30 or so function evaluations and afterwards, 

reduces only slightly or remains unchanged. This is consistent with our previous finding 

from Figure 6.7 that the probabilistic EI metric generally converges to zero within about 

30 function evaluations. 

 

  
(a) (b) 

 

Figure 6.10 (a) Distribution of the optimal solutions and (b) optimal objective function 

values when applying RK for multiple runs as the number of function evaluations in-

creases 
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(a) (b) 

 

Figure 6.11 (a) Three-dimensional and (b) two-dimensional representations of the inter-

polated response surface using 1,000 sample points from all runs 

 

Finally, let us discuss the importance of the reinterpolation technique and why we 

need it as part of RK. By comparing Figure 6.12(a) and (b), which show the constructed 

response surface if RK is applied without using the reinterpolation technique, with Figure 

6.9, one can immediately recognize the unduly strong local exploitation property due to 

the lack of reinterpolation as most sample points are gathered in a small area that is only 

part of the previously identified narrow strip of global optimal region. This further sup-

ports our discussion in Sub-section 3.4.3 that reinterpolation can help RK escape from a 

local optimal region and regain the global exploration property. While the method is still 

able to generate an optimal solution (one that is likely to be a local optimum), the con-

structed response surface is highly biased that predicts poorly for other parts of the search 

space. This is what we call underfitting due to the lack of global exploration. Figure 6.12(c) 

shows that the probabilistic EI metric without reinterpolation simply fluctuates without 

converging to the desirable zero, at least within the same 89 infill function evaluations. 

The cross-validated residuals as shown in Figure 6.12(d) go beyond [−3,3] for some pre-

dictions, as expected. If one wishes to predict further for a few other points especially 

outside the identified small area, the predictions are likely to be significantly different 

from the true values with associated cross-validated residuals lying out of the desirable 

[−3,3]. 
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(a) (b) 

  
(c) (d) 

 

Figure 6.12 Applying RK without using the reinterpolation technique: (a) and (b) three- 

and two-dimensional representations of the constructed response surface, (c) variations 

of the probabilistic EI metric, and (d) predictions and cross-validated residuals 

 

6.3.3. Simultaneous Perturbation Stochastic Approximation (SPSA) 

SPSA is a gradient approximation method that entails parameter tuning. One 

needs to be very careful when tuning the parameters especially in the presence of high 

numerical noise. As discussed in Section 6.1, there are in total five user-specified param-

eters – 𝑎, 𝑐, 𝛼, 𝛾, 𝐴 – along with their respective selection guidelines. In short, 𝛼 and 𝛾 can 

somewhat be treated as fixed parameters and set to 0.602 and 0.101, respectively (Spall, 

1998), while 𝐴 and 𝑎 can be determined without much difficulty given the problem at 

hand as well as users’ preferences. The parameter 𝑐 which controls the accuracy of gra-

dient approximation seems to require a bit more tuning effort. In general, 𝑐 should be set 

close to zero if the numerical noise in the objective function is low. In the presence of a 
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higher level of numerical noise, 𝑐 should be set farther from zero and a smaller 𝑎 is ad-

visable as well. 

Since SPSA replies on gradient approximation, it should be perceived indeed as a 

local optimizer. To obtain a global optimizer, one can inject Monte Carlo noise into the 

right-hand side of Equation (6.2) to provide the needed “bounce” for the search to jump 

out of the possible local optima and hence to avoid premature entrapment (Maryak and 

Chin, 2008). This is, however, not the only way to achieve global optimization. It turns 

out that the basic SPSA without injected Monte Carlo noise can often be treated as a 

global optimizer as well due to the simultaneous perturbation for gradient approximation 

(Maryak and Chin, 2008). Specifically, Equation (6.2) can be re-expressed as: 

 

 𝛕𝑖+1 = 𝛕𝑖 − 𝑎𝑖𝐠𝑖(𝛕𝑖) + 𝑎𝑖𝝐noise + 𝑎𝑖𝝐perturbation (6.5) 

 

where 𝐠𝑖(⋅) is the true gradient, 𝝐noise is the noise-incurred difference from 𝐠𝑖(⋅), and 

𝝐perturbation is the difference from 𝐠𝑖(⋅) arising from the simultaneous perturbation for 

gradient approximation. The term 𝑎𝑖𝝐perturbation offers similar statistical functionality to 

the injected Monte Carlo noise and hence, provides the basic SPSA with the needed 

“bounce” already for global optimization. Therefore, in this case, 𝑐 should not be set close 

to zero so as to enable the proper functioning of 𝑎𝑖𝝐perturbation as a noise injector and to 

achieve a global optimizer. Compared with SPSA with injected Monte Carlo noise, the 

basic SPSA has, in theory, a much faster rate of global convergence and fewer user-spec-

ified parameters, although the former exhibits broader applicability in general (Spall, 

2003). Note that one must specify an initial point when applying SPSA and hence, differ-

ent initializations can be considered. 
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Figure 6.13 shows the results of SPSA under six scenarios with different 𝑐’s and 

initial points 𝛕0 ’s, while all the other parameters stay the same, i.e. 𝛼 = 0.602, 𝛾 =

0.101 , 𝐴 = 5 , and 𝑎 = 0.1 . Clearly, when (and only when) 𝑐 = 0.025  and 𝛕0 =

[0.75,0.75]T, SPSA is unable to lead the search towards the identified narrow strip of 

global optimal region in Figure 6.9. This is consistent with our previous discussion on 

how to choose 𝑐. We already observe from Figure 6.11 that the objective function is 

highly noisy, and 𝑐 should therefore not be set close to zero with the aim of filtering out, 

to some extent, the numerical noise in the gradient approximation and guiding the search 

in a right direction. We also observe that apart from the narrow strip of global optimal 

region, many other local optimal regions exist resulting in a very high chance of getting 

trapped in one of them, which is exactly the case in Figure 6.13(f). 𝑐 = 0.025 is simply 

not “strong” enough to provide the needed “bounce” for SPSA to escape from a local 

optimum and to act as a global optimizer, not to mention that 𝛕0 = [0.75,0.75]T is rela-

tively far away from the global optimal region. 
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Figure 6.13 Effects of different parameter settings on the performance of SPSA where the 

red crosses are the calculated and evaluated points along the search paths and the shaded  

area roughly represents the narrow strip of global optimal region previously identified in 

Figure 6.9 

 

In contrast, when we increase 𝑐 = 0.1, SPSA quickly orients its search path to-

wards the global optimal region rather than wandering around a local optimum. Perhaps 

the only concern is the resultant bigger move per iteration as is also observed in Figure 

6.13(b), even though 𝑎𝑖 in Equation (6.2) which controls the step size at every iteration 

is a decreasing function of the number of iterations. The reason is twofold: 
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• A larger 𝑐 generally results in a larger magnitude of the gradient approx-

imation around the narrow strip of global optimal region, as compared 

with that in other parts of the search space. 

• The objective function is highly noisy that possibly increases the magni-

tude of the gradient approximation. 

Figure 6.14(a-c) show that the magnitude of the gradient approximation keeps 

changing at every iteration and does not decay at least within the 100 iterations or, equiv-

alently, 200 function evaluations. The difference between the objective function values 

corresponding to the two perturbed points at every iteration exhibits a similar non-decay-

ing pattern as well, see those red vertical lines in Figure 6.14(d-f). 
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Figure 6.14 Results of SPSA with different initial points at every iteration along the search 

path: (a-c) magnitude of the gradient approximation, and (d-f) differences between the 

objective function values corresponding to the two perturbed points 

 

To make moves smaller and hence less fluctuating, one can always choose to set 

𝑎 to a smaller value or, alternatively, scale down the gradient approximation, both of 

which have the same effect of reducing the step size along the search path at every itera-

tion. As a comparative example, Figure 6.15(a) shows the result of SPSA when all the 

parameters are kept the same as in Figure 6.13(b) except that the gradient approximation 

is scaled down. The moves clearly become less “aggressive” and hence no longer “bounce” 

back and forth around the narrow strip of global optimal region. All this, however, does 
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not suggest that the gradient approximation is (asymptotically) decaying to the ideal zero, 

see Figure 6.15(b), neither is the difference between the objective function values at the 

two perturbed points, see Figure 6.15(c). In fact, even if one uses a small 𝑐 value and the 

search path successfully reaches the global optimal region, the presence of high numerical 

noise makes it almost impossible for the two to vanish. 

 

 
(a) 

  
(b) (c) 

 

Figure 6.15 Effects of scaling down the gradient approximation on the performance of 

SPSA with 𝑐 = 0.1 and 𝛕0 = [0.5,0.5]T 

 

A notable concern about SPSA is that the method only evaluates the two perturbed 

points at every iteration but not the points along the search path. Therefore, to determine 

the optimal solution and the associated objective function value, one may need to spend 

a bit more effort evaluating some of the points presumably at the tail of the search path. 

Unfortunately, this can be indeterminate in the presence of high numerical noise. Perhaps 

a more practical strategy is to keep track of the objective function values at those 
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perturbed points and consider the best solution as the optimum. As shown in Figure 6.16, 

the optimal objective function values for different initial points all reduce mostly within 

the first 50 function evaluations and remain almost constant after 100 function evaluations. 

This turns out to be a very similar result compared with RK in Figure 6.10(b). 

 

 
 

Figure 6.16 Optimal objective function values when applying SPSA with different initial 

points as the number of function evaluations increases 

 

6.3.4. DIviding RECTangles (DIRECT) 

While DIRECT originates from Lipschitzian optimization, it is akin to the well-

known direct search methods – another big category of SO – as both only require direct 

function evaluations. However, unlike most direct search methods that function as a local 

optimizer, DIRECT is a global optimization method and involves perhaps the least pa-

rameter tuning effort among the four SO methods. The only user-specified parameter, 𝜀 

in Equation (6.4), turns out to have limited effect on the performance of DIRECT and 

hence can be fixed to a value, e.g. ranging from 10−7 to 10−3 (Jones et al., 1993). Since 

DIRECT is a deterministic method, there is no need to perform multiple runs. 

Figure 6.17 shows multiple interpolated contour plots of the objective function as 

DIRECT proceeds with its iterations by sampling and evaluating more and more points. 
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As shown in Figure 6.17(e), the final 35th iteration evaluates a total of 669 sample points 

and produces a contour plot that highly resembles Figure 6.11(b) – the narrow strip of 

global optimal region is readily recognizable. As far as this many function evaluations 

are concerned, the optimal toll rates are 0.19 $/km for the first tolling interval and 0.95 

$/km for the second. The corresponding optimal objective function value is 0.005 vpkmpl 

which is extremely close to the ideal zero. Nevertheless, within about 100 function eval-

uations as shown in Figure 6.17(a), DIRECT is able to step into the global optimal region 

(more accurately, the lower part of it) producing an optimal solution of [0.24,0.06]T and 

an optimal objective function value of 0.874. With this many function evaluations, the 

solution quality is roughly the same as that offered by RK (see Figure 6.10) and SPSA 

(see Figure 6.16). We do notice that a greater part of the computational effort is spent 

exploiting a local optimal region in the lower middle part of the search space. But, starting 

from Figure 6.17(b) and towards Figure 6.17(e), the global exploration property of DI-

RECT becomes increasingly prominent and the outline of the global optimal region grad-

ually takes shape. 
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(a) 11th iteration, 103 sample points (b) 20th iteration, 217 sample points 

  
(c) 26th iteration, 309 sample points (d) 33rd iteration, 415 sample points 

 
(e) 35th iteration, 669 sample points 

 

Figure 6.17 Interpolated contour plots of the objective function for a few selected itera-

tions of DIRECT where the black dots are the sampled and evaluated points 

 

Figure 6.18 shows how the optimal objective function value reduces as the num-

ber of function evaluations increases. As we previously touched upon, 100 function eval-

uations are enough to locate a decent solution in the global optimal region, although not 

necessarily being a global one in an absolute sense. This result is similar to what we 

achieve by applying RK and SPSA. With more function evaluations, the optimal objective 
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function value reduces further, as expected, and eventually converges to almost zero as 

the absolute global optimum. 

 

 
 

Figure 6.18 Optimal objective function values when applying DIRECT as the number of 

function evaluations increases 

 

6.4. Solving the Complex Problem 

When formulating the complex TLP, we assume that the shape of the NFD in-

cluding the critical network density does not change significantly when the network is 

pricing-controlled. This assumption, however, does not always hold and can truly affect 

the effectiveness of the optimal tolls. Therefore, instead of specifying a critical network 

density around which the network should operate, we now look directly at the network 

flow which is to be maximized throughout the tolling period. With 𝑚 = 8 and 𝐾cr =

25 vpkmpl, Problem (5.1-5.5) with a modified direct flow maximization objective is to 

be solved, respectively, by the three SO methods excluding the PI controller due to its 

inability to consider complex objective functions and constraints. Here, we consider the 

more efficient and equitable JDDT to further increase the problem dimension and 
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complexity. The tolling period now covers the 8-10 AM peak period with eight 15-min 

tolling intervals. 

6.4.1. Regressing Kriging (RK) 

When applying RK to solve the complex TLP, we incorporate the toll pattern 

smoothing constraints into the GA, thereby narrowing down the feasible domain when 

searching for the optimal infill sample point at each iteration. As before, we use 100 func-

tion evaluations as the computational budget and perform three runs to consider the ran-

domness effect. 

Figure 6.19(a) shows how the optimal objective function values increase as the 

number of function evaluations increases. There is a gradual increasing trend, as expected, 

toward the end of the 100 function evaluations because we are now directly maximizing 

the network flow throughout the tolling period. Figure 6.19(b) shows the simulated NFDs 

of the PZ under the optimal tolling scenarios where the network flow maintains almost at 

its maximum for a range of density values (roughly ranging from 20 to 40 vpkmpl). We 

have already observed that without pricing, the critical network density of the NFD is 

somewhere between 20 and 30 vpkmpl. Result here, however, suggests that the network 

density can be allowed to evolve to 40 vpkmpl while maintaining a high network flow. 

Given the objective of direct flow maximization, one need not to struggle with specifying 

the critical network density around which the network should be pricing-controlled. There 

is also no need to assume that the shape of the NFD including the critical network density 

does not change significantly when the network is pricing-controlled. This assumption, 

as we previously argued, does not always hold. 
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Figure 6.19 Applying RK to directly maximize the network flow: (a) how the optimal 

objective function values change as the number of function evaluations increases, and (b) 

simulated NFDs of the PZ under the optimal tolling scenarios 

 

To demonstrate that the shape of the NFD after pricing might change affecting the 

effectiveness of the optimal tolls, we further apply RK to solve the same problem except 

that we now aim to operate the network around the specified critical network density (25 

vpkmpl) rather than directly maximizing flow. Similar to Figure 6.19(a), Figure 6.20(a) 

shows that RK can quickly orient its search toward the global optimum within 100 func-

tion evaluations. However, the resulting NFDs as shown in Figure 6.20(b) exhibit an un-

expected and undesirable shape. Although the network is well controlled around the crit-

ical network density, the NFDs have already entered the congested regime leading to a 

rather low network flow. The new critical network density appears to be 15 vpkmpl and 

the previous 25 vpkmpl no longer qualifies. Compared with the trapezoidal shape of the 

non-tolling NFD, the NFD after pricing has been somewhat squeezed to the left taking on 

a triangular shape. The optimal tolls are by no means optimal given this change in the 

shape of the NFD. While one may argue that this issue can be resolved by increasing the 

critical network density, there is no guarantee that the new critical network density can 

result in a similar shape of the NFD before and after pricing. Therefore, specifying the 

critical network density might become a tedious trial-and-error process. 

 



Dynamic Congestion Pricing in Urban Networks with the Network Fundamental Diagram and Simulation-

Based Dynamic Traffic Assignment 

140 

 

  
(a) (b) 

 

Figure 6.20 Applying RK to achieve the critical network density: (a) how the optimal 

objective function value changes as the number of function evaluations increases, and (b) 

simulated NFDs of the PZ under the optimal tolling scenarios 

 

6.4.2. Simultaneous Perturbation Stochastic Approximation (SPSA) 

Due to the presence of the toll pattern smoothing constraints, SPSA cannot be 

applied directly to solve the complex TLP. We therefore integrate SPSA with the penalty 

function method (Bazaraa et al., 2013) to transform the original constrained optimization 

problem into an unconstrained one. The penalty parameter here is set at 10 to be consistent 

with DIRECT. In a nutshell, if the toll pattern smoothing constraints are violated, there 

will be a penalty imposed on the objective function value forcing SPSA to search in the 

space where the constraints are satisfied. 

Figure 6.21 shows how SPSA performs assuming different initial points. There is 

an expected increasing trend in the optimal objective function values as the number of 

function evaluations increases toward 200. A comparison between Figure 6.21 and Figure 

6.22 suggests that in general, SPSA can improve the optimal objective function value at 

a faster rate than DIRECT. However, different initial points may affect the search for the 

optimal solution and an ill-conditioned initial point is likely to trap the search at a bad 

local optimum. When comparing Figure 6.21 with Figure 6.19(a), we find that RK is the 

best-performing method for solving the complex TLP which improves the optimal objec-

tive function value at a much faster rate than either SPSA or DIRECT. 
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Figure 6.21 Applying SPSA to solve the complex TLP: how the optimal objective func-

tion values change as the number of function evaluations increases 

 

6.4.3. DIviding RECTangles (DIRECT) 

When applying DIRECT to solve the complex TLP, we again employ the penalty 

function method to deal with the toll pattern smoothing constraints. Figure 6.22 shows 

that the optimal objective function value gradually increases as the number of function 

evaluations increases. The penalty parameter is set at 10, but the result does not change 

much when we use 1, 50, and 100. When comparing Figure 6.22 with Figure 6.19(a), we 

find that DIRECT performs surprisingly slowly in improving the objective function value. 

We have already observed that within 100 function evaluations, RK can increase the op-

timal objective function value to at least almost 320 vph. However, DIRECT with the 

same 100 function evaluations can only improve the optimal objective function value to 

about 285 vph. Even with nearly 600 function evaluations, the optimal objective function 

value is only slightly above 300 vph. A possible reason, as we previously discussed, is 

the existence of high numerical noise that cannot be tolerated by DIRECT. Another pos-

sible reason is the presence of the toll pattern smoothing constraints that restrict the fea-

sible domain to a small part of the original design space. As such, DIRECT may require 
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a lot more function evaluations than RK given its iterative and exhaustive partitioning 

property without taking into account directly the feasibility constraints. 

 

 
 

Figure 6.22 Applying DIRECT to solve the complex TLP: how the optimal objective 

function value changes as the number of function evaluations increases 

 

6.5. Discussion 

The four SO methods investigated and compared have their own distinct “intelli-

gent” ways of leading the search for the global optimum and are, therefore considered 

representatives of computationally efficient SO methods. The applicability of these meth-

ods is not limited to solving TLPs. They can be applied to solve other types of NDPs that 

rely on computer simulation as well. The only requirement is perhaps that the defined 

objective and constraint functions should be evaluable by the simulation. Based on our 

results, a few recommendations are made for applying the four SO methods. These are 

authors’ recommendations and hence by no means some universal laws that apply to 

every conceivable SO problem. We recommend considering some case-specific features 

or requirements as well if one is interested in applying one of these methods to solve the 

problem at hand. 
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When applied to solve the simple TLP, all the methods perform quite well, alt-

hough, clearly, having their own pros and cons when compared with each other. If the 

optimization problem can be formulated as a simple problem having a low-dimensional 

decision vector, a set-point objective, and only bound constraints, the PI controller is par-

ticularly suited and will likely result in a much faster rate of convergence, although re-

quiring a bit trial-and-error to tune the controller gain parameters. Note, however, that the 

PI controller is only able to search for a single global optimum. If multiple global optima 

coexist and one is interested in the overall distribution of the optimal solutions, RK and 

DIRECT are preferable and should be considered. When comparing RK, SPSA, and DI-

RECT, SPSA requires the greatest effort for parameter tuning which might be a major 

concern if the objective function is computationally expensive. Although having the po-

tential to act as a global optimizer for many challenging optimization problems, it is not 

impossible to get trapped in a bad local optimum. This possibility might even be greater 

if the objective function is highly noisy and one accidentally chooses an ill-conditioned 

initial point that is far away from the global optimal region. A straightforward solution is 

to inject Monte Carlo noise into the basic SPSA to avoid premature convergence. This 

strategy, however, largely slows down the theoretical rate of convergence and requires 

even greater effort for parameter tuning. Finally, as with the PI controller, SPSA per run 

is only able to search (hopefully) for a single global optimum but not every one of them 

if multiple global optima coexist. A multi-start approach is handy but, again, significantly 

increases the computational intensity. RK and DIRECT are always preferred if one cares 

about the overall distribution of the optimal solutions rather than a single optimum. This 

is equivalent to providing multiple rather than a single choice for decision making. When 

the numerical noise in the objective function is not high, both SO methods should perform 

equally well. DIRECT might be a better option if parameter estimation required by RK 
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for constructing the RS turns out to be far more time-consuming than the simulation itself, 

although this can only happen when the problem dimension is very high. When the nu-

merical noise increases to a rather high level, RK should be considered over DIRECT 

irrespective of the problem dimension given its capability of filtering out the noise and 

hence requiring possibly fewer function evaluations to locate the global optimum or op-

tima. 

When applied to solve the complex TLP, RK turns out to be the best-performing 

method amongst the three alternatives followed by SPSA and then DIRECT. Given the 

same amount of computational budget (i.e., the same number of function evaluations), 

RK can improve the optimal objective function value at a much faster rate than either 

DIRECT or SPSA and achieve the best solution quality, thereby being the most compu-

tationally efficient SO method for such a high-dimensional problem. Therefore, if the 

optimization problem features a high-dimensional decision vector, a complex objective, 

and/or a set of complex constraints, RK is the preferred method over SPSA and DIRECT. 

In general, RK seems to have a wider applicability amongst the four SO methods consid-

ered. It can be applied to solve both simple and complex SO problems and can handle 

both noisy and noiseless objective functions. Perhaps this explains why RK has been ad-

vocated quite frequently in recent SO studies. 

6.6. Chapter Remarks 

This chapter focuses on comparing the performance of four SO methods on two 

benchmark TLPs, including the PI controller method, RK, SPSA, and DIRECT. These 

methods are considered as computationally efficient representatives amongst the big fam-

ily of SO methods. Our comparative results suggest that we use the PI controller method 

to solve a simple problem due to its much faster convergence, and that RK is the preferred 
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method for solving a complex problem given its capabilities of filtering out the numerical 

noise arising from computer simulations and of capturing the overall distribution of the 

optimal solutions.
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CHAPTER 7. NETWORK PARTITIONING FOR TOLL 

AREA IDENTIFICATION 

This chapter provides a numerical study on the network partitioning approach for 

solving the TAP corresponding to Section 3.5. After presenting the network partitioning 

framework in Section 7.1 as the solution algorithm, we show in Section 7.2 the numerical 

results of static partitioning, and go deeper in Sections 7.3 and 7.4 to investigate dynamic 

partitioning and the effect of missing data, respectively. Section 7.5 concludes the chapter. 

The work of this chapter is currently under revision: 

• Gu, Z., Saberi, M., 2019. A bi-partitioning approach to congestion pattern 

recognition and toll area identification. Transp. Res. Part C, under revision. 

To facilitate the presentation, the variables used in this chapter are first summarized in 

Table 7.1. 
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Table 7.1 Variables used in CHAPTER 7 

Notation Interpretation 

𝐖 Composite similarity matrix 

𝐖K/𝐖D Density/distance similarity matrix 

𝜎, 𝛾 Level of accuracy 

𝜃 Weight coefficient 

𝑆K̅
𝑚/𝑆D̅

𝑚 Average density/distance similarity measure of the PZ for the 𝑚-th 𝜃 

𝛿𝑚 Percentage of improvement in the overall similarity for the 𝑚-th 𝜃 

𝐸Y/𝐸N Set of links with and without density data 

𝑆K̅/𝑆D̅ Average density/distance similarity measure of the PZ 

𝑆K
𝑖 /𝑆D

𝑖  Density/Distance similarity measure of link 𝑖 

𝑆̃K/𝑆̃D Density/distance threshold 

𝑝K/𝑝D Density/distance scaling parameter 

𝑃 Penetration rate 

 

7.1. Network Partitioning Framework 

The network partitioning framework is illustrated in Figure 7.1 followed by de-

tailed algorithmic steps. 
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Link density 

data

Calculate the density and distance similarity 

matrices WK and WD and set γ = 1

Uniformly sample θ every σ distance between 

0 and 1 where σ is a function of γ

Calculate the composite similarity matrix W 

for each sample of θ and perform SymNMF

Identify the optimal value(s) of θ using the 

concept of  knee 

Stop

Any two adjacent samples 

of θ are  knee  solutions

No

γ = γ + 1 

Yes

 
 

Figure 7.1 Flowchart representation of the proposed solution framework 

 

Step 1. Initialization. Given the network topology and link density data, we calculate 

the density and distance similarity matrices, 𝐖K and 𝐖D. 𝑛 is the number of 

links in the network and 𝑘 = 2 is the number of clusters. 

Step 2. Sampling. Let 𝜎 = 0.1𝛾 where 𝛾 represents the level of accuracy initially set 

at 1. We uniformly sample 𝜃 every 𝜎 distance in [0,1] resulting in 𝜎−1 inter-

vals and 𝜎−1 + 1 samples. For example, 𝛾 = 1 is equivalent to 𝜎 = 0.1 re-

sulting in 10 intervals and 11 samples. 
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Step 3. Network partitioning. Given 𝐖K and 𝐖D, we calculate the composite simi-

larity matrix, 𝐖, for each sampled 𝜃 and apply SymNMF to obtain the clus-

tering assignment. 

Step 4. Solution identification. Let 𝑆K̅
𝑚 and 𝑆D̅

𝑚 denote respectively the average val-

ues of 𝑆K
𝑖  and 𝑆D

𝑖  over all links in the partitioned PZ. 𝜃𝑚 = 𝜎(𝑚 − 1) where 

𝑚 ∈ {1, … , 𝜎−1 + 1}. We define an indicator, 𝛿𝑚, corresponding to 𝜃𝑚 to 

show the percentage of improvement in the overall similarity between links 

in the partitioned PZ. Based on the concept of “knee”, any 𝜃 with a large 𝛿𝑚 

is considered as a significant solution from the Pareto front. 

 

 
𝛿𝑚 = (

𝑆K̅
𝑚 − 𝑆K̅

𝑚−1

𝑆K̅
𝑚−1 +

𝑆D̅
𝑚 − 𝑆D̅

𝑚−1

𝑆D̅
𝑚−1 ) × 100% (7.1) 

 

Step 5. Stop test. If any two adjacent 𝜃’s exhibit a large 𝛿𝑚 simultaneously, we can-

not locate the significant solutions because the interval is not small enough 

to guarantee an unchanged clustering assignment. There may be additional 

significant solutions in between as well. We therefore increase 𝛾 by 1 to re-

duce 𝜎, and go back to Step 2. We terminate the algorithm until any two 

adjacent 𝜃’s do not exhibit a large 𝛿𝑚 simultaneously. 

 

The extended solution framework is illustrated in Figure 7.2. 
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Figure 7.2 Extending Figure 7.1 to further consider missing data 

 

7.2. Static Partitioning 

When the weight coefficient 𝜃 = 1, the composite similarity matrix, 𝐖, is simply 

the density similarity matrix, 𝐖K, suggesting that the network is partitioned based on the 

density similarity measure only. When 𝜃 = 0, 𝐖 = 𝐖D and the network is partitioned 

based on the distance similarity measure only. Since 𝜃 ∈ [0,1], the lower and upper 

bounds naturally provide two extreme scenarios. As shown in Figure 7.3(a), when 

SymNMF is applied with 𝜃 = 0 to consider the distance similarity measure only, the ex-

tracted cluster is highly compact and the included links are well connected, which con-

firms Proposition 3.2. By defining a distance threshold, we assume a spatial coverage of 

the initial PZ which is to be expanded or contracted for finding the optimum. We can vary 

the distance threshold to create different spatial coverages of the optimal PZ. Figure 7.3(b) 

shows the extracted cluster when SymNMF is applied with 𝜃 = 1 to consider the density 
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similarity measure only, which can be compared with the simulation result in Figure 

7.3(c). 229 out of 945 links are extracted into the cluster by SymNMF as congested links. 

Compared with the simulation result, there are 12 more links with densities slightly lower 

than the predefined density threshold. SymNMF considers these links as also being con-

gested because their densities are not significantly lower than the threshold. Overall, 

SymNMF performs quite well in capturing the spatial congestion pattern in the network. 

 

  
(a) (b) 

 
(c) 

Figure 7.3 (a) Network partitioning result when 𝜃 = 0, (b) network partitioning result 

when 𝜃 = 1, and (c) simulation result: red (green) links have densities higher (lower) than 

50 vpkmpl 

 

We proceed to find the optimal PZ. As shown in Figure 7.4(a), during the first 

iteration, 𝜎 = 0.1 results in 10 intervals and 11 samples. We apply SymNMF for each 

sampled 𝜃 and calculate the overall similarity improvement. The blue polyline implies 

that the termination criterion is not met as there is at least one pair of significant solutions 
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that are adjacent to each other. The algorithm therefore continues to the second iteration 

with 𝜎 = 0.01 which results in 100 intervals and 101 samples. Now, we can easily locate 

the significant solutions by referring to the multiple peaks of the orange polyline. Since 

the clustering assignment does not change or changes little between any two adjacent 

significant solutions, the algorithm terminates and finds six significant solutions from the 

Pareto front, see Figure 7.4(b). As shown in Figure 7.4(c), each significant solution results 

in a different pair of 𝑆K̅ and 𝑆D̅. Here, we use 𝑆D̅ = 0.75 as a threshold above which the 

significant solution with the smallest 𝑆D̅ is considered optimal. Recall that “optimal” only 

refers to a sensible trade-off between the two conflicting objectives. The optimal PZ rep-

resented by the shaded area in Figure 7.4(d) can be considered and used for further pricing 

control and optimization. As with Figure 7.3(c), the spatial congestion pattern distributes 

mainly along the north-south direction. There are three bottleneck corridors or sequences 

of congested links connecting the city center – one from the north and two from the south. 
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(a) (b) 

  
(c) (d) 

 

Figure 7.4 (a) Percentage of improvement in the overall similarity for each sampled 𝜃, (b) 

six significant solutions from the Pareto front, (c) conflicting relationship between 𝑆K̅ and 

𝑆D̅, and (d) optimal PZ 

 

7.2.1. Sensitivity Analysis 

In this sub-section, we perform a few sensitivity analyses on different parameters 

to examine their effects on the network partitioning results. 

 

Scaling Parameters 

The scaling parameters, 𝑝K and 𝑝D, are used to calculate the density and distance 

similarity measures, 𝑆K
𝑖  and 𝑆D

𝑖 , respectively. We previously set 𝑝K = 𝑝D = 5 to impose 

a rather high penalty on dissimilarity. For example, if link density is 40 vpkmpl, 𝑆K
𝑖 =

(
40

50
)
5

≈ 0.3 which implies low similarity, although the difference of 10 vpkmpl seems 

not that significant. We therefore test three other combinations of 𝑝K and 𝑝D: (i) 𝑝K = 3 
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and 𝑝D = 5, (ii) 𝑝K = 𝑝D = 3, and (iii) 𝑝K = 5 and 𝑝D = 3. When 𝑝K (𝑝D) is reduced, 

less penalty is imposed on the density (distance) dissimilarity. As shown in Figure 7.5, 

when 𝑝D  remains unchanged, different 𝑝K’s result in similar significant solutions and 

hence, there is no major difference between the extracted clusters. When 𝑝D reduces and 

𝑝K remains unchanged, the optimal PZ becomes slightly expanded, as expected, because 

a smaller 𝑝D equates to a larger 𝑆D
𝑖  that effectively increases the spatial coverage of the 

PZ. Overall, the network partitioning approach is a bit more sensitive to 𝑝D than to 𝑝K. 
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Figure 7.5 Sensitivity analysis on 𝑝K and 𝑝D: (a-c) overall similarity improvement for 

each sampled 𝜃, and (d-f) optimal PZs 

 

Location of the Source Link 

The location of the source link is used to build the shortest path tree for calculating 

𝑆D
𝑖 . The only selection requirement is that the link should be located around the center of 

the congested sub-network. 
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Figure 7.6 tests two other source links highlighted by the thick lines. A compari-

son between Figure 7.6(c) and (d) and Figure 7.4(d) reveals some spatial differences of 

the optimal PZs as we move the source link to different locations in the network. This is 

because the calculation of 𝑆D
𝑖  is largely dependent on the location of the source link which 

essentially determines the spatial coverage of the initial PZ and hence of the optimal PZ. 

Nevertheless, this type of sensitivity can be indirectly considered through varying the 

distance threshold, S̃D, to create different spatial coverages. 
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Figure 7.6 Sensitivity analysis on the location of the source link: (a) and (b) overall sim-

ilarity improvement for each sampled 𝜃, and (c) and (d) optimal PZs where the source 

links are highlighted by the thick lines 

 

Density and Distance Thresholds 

The density and distance thresholds, 𝑆̃K and 𝑆̃D, are used to calculate 𝑆K
𝑖  and 𝑆D

𝑖 , 

respectively. While more (fewer) links are considered as being congested when we 
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decrease (increase) 𝑆̃K, the overall spatial congestion pattern in the network remains sim-

ilar and hence, the optimal PZs resulting from different 𝑆̃K’s are not significantly different, 

see Figure 7.7. 
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Figure 7.7 Sensitivity analysis on 𝑆̃K: (a) and (b) overall similarity improvement for each 

sampled 𝜃, and (c) and (d) optimal PZs 

 

It is obvious that changing 𝑆̃D results in different spatial coverages of the initial 

PZ as well as of the optimal PZ. This parameter therefore has a more profound impact on 

the network partitioning result. We emphasize that a variable 𝑆̃D provides more flexibility 

for applying the network partitioning approach – instead of focusing on a specific 𝑆̃D, one 

can choose and investigate multiple 𝑆̃D’s to consider different spatial coverages of the PZ. 

A gradually increasing 𝑆̃D helps capture the spatial evolution of the optimal PZ, which, 

to a large extent, reflects how congestion propagates in the network. As shown in Figure 
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7.8(a-f), the optimal PZ varies in size and shape as 𝑆̃D changes from 5 to 10. The captured 

spatial congestion pattern gradually evolves and increasingly resembles Figure 7.3(c). We 

observe from Figure 7.3(g) that 𝑆K̅ remains relatively stable as 𝑆̃D increases. 𝑆D̅, however, 

exhibits a slightly increasing trend due to the decreasing difference between the spatial 

coverages of the initial PZ and the original network – more links having a large 𝑆D
𝑖  natu-

rally results in a larger 𝑆D̅. If the initial PZ covers a relatively small area of the original 

network, this natural increase may become negligible. Although a changing 𝑆̃D results in 

different optimal PZs, the performance of the network partitioning approach is robust 

given similar 𝑆K̅’s and 𝑆D̅’s. Note that a variable 𝑆̃D enables designing a double- or multi-

layered PZ and we provide an example in Figure 7.8(d). This helps implement a hierar-

chical pricing scheme – the highest price can be imposed on the innermost area which 

gradually reduces towards the outmost area. 
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(a) 𝑆̃D = 5 (b) 𝑆̃D = 6 (c) 𝑆̃D = 7 

   
(d) 𝑆̃D = 8 (e) 𝑆̃D = 9 (f) 𝑆̃D = 10 

  
(g) (h) 

 

Figure 7.8 Sensitivity analysis on 𝑆̃D: (a-f) optimal PZs corresponding to different 𝑆̃D’s, 

(g) variations of 𝑆K̅ and 𝑆D̅ as 𝑆̃D changes, and (h) double-layered optimal PZ resulting 

from 𝑆̃D = 5, 10 

 

7.3. Dynamic Partitioning 

Traffic is inherently dynamic. Link densities usually vary with time and hence, 

the spatial congestion pattern in the network typically changes from time to time. To con-

sider this time-dependency nature, we further apply the network partitioning approach 

using link density data from different time intervals. As a result, the optimal PZ is dy-

namically changing with time rather than being time-invariant, which reflects the spatio-

temporal propagation of congestion in the network. 
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Figure 7.9 shows the optimal PZs for three different time intervals. During the 

7:30-7:45 AM interval, the network is almost free from congestion. There are only a few 

isolated congested links in the network and hence, the optimal PZ does not exhibit a well-

defined shape, as expected. The implication is twofold: 

• Congestion is currently at the embryonic stage without propagating 

throughout the network. 

• The scattered distribution of congestion across the network does not jus-

tify a well-defined PZ for an area charge. 

As congestion gradually builds up over time towards the 8:30-8:45 and 9:30-9:45 AM 

intervals, the isolated congested links become increasingly connected to form a well-de-

fined PZ, suggesting that dynamic partitioning has the potential to inform when to activate 

an area charge. 
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Figure 7.9 Network partitioning using link density data from different time intervals: (a-

c) 7:30-7:45 AM, (d-f) 8:30-8:45 AM, (g-i) 9:30-9:45 AM 

 

From a purely practical perspective, a time-varying PZ is not advisable at least for 

now as part of a congestion pricing policy. Since human-driven vehicles still account for 

the largest proportion of vehicles on roads, changing the PZ with time largely increases 

the complexity of the pricing system and hence makes it difficult for travelers to under-

stand, adapt, and eventually accept. See our discussion in Sub-section 2.1.2. Nevertheless, 

we believe that a time-varying PZ is a promising policy option when vehicle automation 

and communications become more and more popularized to take up a much larger market 

share. These technologies allow vehicles to easily adapt to the ongoing traffic conditions 

in the network without the need for any human intervention. 
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7.4. Considering Missing Data 

To investigate the performance of the network partitioning approach considering 

missing data, we design a few hypothetical scenarios where different penetration rates, 

𝑃’s, are assumed. Specifically, we assume that 30%, 50%, 70%, and 90% of links in the 

network are equipped with detectors to provide density data, respectively. Under each 

penetration rate scenario, we randomly generate three different sets of links with data and 

repeatedly apply the network partitioning approach. 

As shown in Figure 7.10(a-d), the optimal PZs under different penetration rate 

scenarios are quite similar and resemble the one obtained assuming perfect information 

of link densities. A further look into Figure 7.10(e) reveals an almost linearly increasing 

trend in 𝑆K̅ and 𝑆D̅ when 𝑃 increases from 30% to 100%. This is sensible as the optimal 

network partitioning result is expected to improve with greater availability of link density 

data. Nevertheless, Table 7.2 shows that 𝑆K̅ and 𝑆D̅ reduce only slightly even when 𝑃 

drops from 100% to 30%. Such a small difference suggest that the approach performs 

equally well even with a low penetration rate, a feature that is promising for practical 

applications that often violate the perfect information assumption. By using only a few 

detectors installed across the network, we can apply the network partitioning approach to 

achieve an equally good result. Note that a few studies (Ortigosa et al., 2013; Zockaie et 

al., 2018) have shown that the incomplete NFD from using only part of the network data 

can provide a good estimate of the actual complete NFD. 
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Random set 1 Random set 2 Random set 3 

   
(a) 𝑃 = 30% 

   
(b) 𝑃 = 50% 

   
(c) 𝑃 = 70% 

   
(d) 𝑃 = 90% 

 
(e) 

 

Figure 7.10 Network partitioning considering missing data under different penetration 

rate scenarios: (a-d) 𝑃 = 30%, 50%, 70%, 90%, and (e) variations of 𝑆K̅  and 𝑆D̅  as 𝑃 

changes 
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Table 7.2 Relative changes in 𝑆K̅ and 𝑆D̅ under different penetration rate scenarios com-

pared with 𝑃 = 100% 

Random set 

𝑃 = 30% 𝑃 = 50% 𝑃 = 70% 𝑃 = 90% 

𝑆K̅ 𝑆D̅ 𝑆K̅ 𝑆D̅ 𝑆K̅ 𝑆D̅ 𝑆K̅ 𝑆D̅ 

1 -8.6% -3.5% -9.2% -2.1% -5.0% -1.9% -0.9% -0.2% 

2 -9.4% -4.0% -8.8% -5.3% -4.2% -2.3% -1.9% -1.1% 

3 -8.8% -2.9% -6.1% -2.7% -2.9% -0.7% -1.3% -0.7% 

Average -8.9% -3.4% -8.0% -3.4% -4.0% -1.6% -1.4% -0.6% 

 

7.5. Chapter Remarks 

This chapter presents detailed numerical results for the network partitioning ap-

proach tailored for solving the TAP. Three key conclusions are summarized as follows: 

• Using different distance thresholds results in different spatial coverages of 

the optimal PZ. This flexibility enables designing a double- or multi-lay-

ered PZ for hierarchical pricing applications. 

• The optimal PZ can vary with time provided that data from different time 

intervals are available. This time-dependency nature helps inform when to 

activate an area charge. 

• The approach can handle different levels of missing data and provide ro-

bust network partitioning results.
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CHAPTER 8. CONCLUSION 

8.1. Summary 

This thesis advances the study, design, and implementation of two-region urban 

pricing systems as a promising TDM policy to reduce the increasing level of traffic con-

gestion in city centers. The proposed work extends the current congestion pricing theory 

by proposing and integrating advanced (i.e. more efficient and equitable) pricing regimes 

with the NFD and exploring and comparing computationally efficient SO methods in a 

simulation-based DTA environment. Results of this work not only help in developing 

effective pricing systems to mitigate urban traffic congestion, but also provide competi-

tive solutions to other types of NDPs. 

We investigate three types of pricing regimes in this thesis, namely the distance 

only toll, the JDTT, and the JDDT. The latter two are considered by the authors as ad-

vanced pricing regimes building upon the distance only toll which represents the state of 

the practice. Through computer simulations, we demonstrate the capability of the PI con-

troller method as our first proposed approach in solving a simple TLP – the network is 

successfully pricing controlled to achieve its optimal state defined by the critical network 

density of the NFD. We also demonstrate the superiority of the JDTT and the JDDT over 

the distance only toll in that the latter naturally drives travelers into the shortest paths 

within the PZ resulting in a more uneven distribution of congestion. While congestion 

certainly reduces to the desired level, the increased heterogeneity of congestion distribu-

tion leads to a larger hysteresis loop in the NFD and hence lower network flows especially 

during network recovery. The JDTT and the JDDT can overcome this limitation of the 

distance only toll by taking into account, respectively, a time and a delay toll component. 
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To explicitly model and minimize the heterogeneity of congestion distribution ra-

ther than simply renovating the pricing mechanism, the PI controller method is no longer 

applicable. Therefore, to solve such a complex TLP, we refer to RSM, or, more concretely, 

RK, as our second proposed approach. Results, as expected, show that higher network 

flows are achieved once we consider reducing the heterogeneity of congestion distribu-

tion as part of the optimization problem. The method turns out to be very effective and 

efficient even though the problem to be solved involves a high-dimensional decision vec-

tor and a set of complex constraints. 

Since part of this thesis is about SO methods, we perform a comprehensive com-

parison between the performance of the PI controller method and RK as well as of two 

other computationally efficient SO methods, namely SPSA and DIRECT, on a same 

benchmark TLP. While results show that all the methods work well to solve the bench-

mark TLP, they clearly have their own pros and cons when compared with each other. In 

general, we recommend applying the PI controller method to solve a simple problem due 

to its much faster convergence and RK to solve a complex problem given its capabilities 

of filtering out the numerical noise arising from computer simulations and of capturing 

the overall distribution of the optimal solutions. 

As part of the overall TDP, we also study the TAP which is another important 

aspect of pricing system design but turns out to be much less researched in the literature 

compared with the TLP. In our work, we have employed a data-driven perspective and 

proposed a network partitioning approach to optimizing the PZ for a common two-region 

urban road network. The flexibility of the method enables designing a double- or multi-

layered PZ for hierarchical pricing applications as well as time-dependent partitioning 

that helps inform when to activate an area charge. Even with different levels of missing 

data, the method is shown to work well producing consistent and robust results. 
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8.2. Limitations and Future Work 

There are four main limitations of this work which can be extended as future re-

search directions: 

• Incorporating a demand model with the proposed work to jointly consider 

the effects of pricing on the mode and departure time choices. When ap-

plying different SO methods to solve a TLP, we assume that the demand 

is fixed without considering the effects of pricing on the mode and depar-

ture time choices. This assumption does not affect the performance of the 

proposed pricing optimization frameworks, but, to make the results more 

realistic, a demand model to be integrated with the simulation-based DTA 

model can be a research priority, although developing such a demand 

model per se is a non-trivial task. 

• Modeling and optimizing a coordinated multi-area pricing system. The 

proposed work focuses on modeling and optimizing a two-region urban 

road network. This requirement or assumption applies to most cities in the 

world having a single congested CBD, but not those having multiple dis-

joint CBDs. Therefore, further research effort is needed to develop meth-

ods for modeling and optimizing a coordinated multi-area pricing system. 

• Developing SO methods for simultaneously solving the TLP and the TAP. 

In this thesis, we consider the TLP and the TAP as two independent prob-

lems and hence solve them through different methods in a respective or 

sequential manner. Developing SO methods that can simultaneously solve 

the TLP and the TAP is accordingly a promising yet difficult research task. 

The biggest difficulty lies in how one can generate different cordon 
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samples and express the overall decision vector in an effective and effi-

cient manner. 

• Investigating real-time network-wide pricing. This thesis is all about pric-

ing system design for planning purposes. Therefore, a future research di-

rection, not necessarily being the limitation of the proposed work, is to 

investigate real-time network-wide pricing that is more suited for short-

term or special-event traffic control and management. 
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APPENDIX A. MESOSCOPIC SIMULATION MODEL 

The developed mesoscopic DTA model of Melbourne, Australia is deployed in 

AIMSUN as a discrete-event lane-based simulation. See Shafiei et al. (2018) for a thor-

ough description of how the model has been developed. Each link has information about 

its geometry and necessary traffic flow parameters such as capacity, speed limit, and jam 

density are defined. Each node is modeled as a queue server. While being able to replicate 

traffic dynamics and phenomena such as queue spillback, mesoscopic simulation as com-

pared with the microscopic counterpart largely eases the computational complexity of 

simulating large-scale dynamic traffic networks by using a simplified car-following 

model (TSS, 2014). 

The network configuration of the Melbourne metropolitan area is obtained from 

the Victorian Integrated Transport Model (VITM). Figure A. 1 shows the extracted sub-

network from the greater Melbourne area model that is used in this thesis for toll optimi-

zation. The sub-network bounded by the red dash lines has in total 4,375 links, 1,977 

nodes, and 492 centroids. The inner rectangle covers the Melbourne CBD where conges-

tion tends to be the severest and hence, represents the PZ. There are totally 282 links, 91 

nodes, and 30 centroids in the PZ. In the simulation model, signal timing at major inter-

sections is set as actuated control using the Sydney Coordinated Adaptive Traffic System 

(SCATS) data including the maximum cycle time, the minimum green time, and the turn-

ing movements for each phase. While traffic flow parameters for freeway links are cali-

brated against loop detector data from multiple months (Gu et al., 2016, 2018), the time-

dependent OD demand is calibrated and validated using multi-source traffic data (Shafiei 

et al., 2018). 
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Figure A. 1 The extracted sub-network from the greater Melbourne area model
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APPENDIX B. LIST OF ABBREVIATIONS 

Abbreviation Full name 

ALS Area licensing scheme 

CBD Central business district 

CV Cross validation 

DIRECT DIviding RECTangles 

DTA Dynamic traffic assignment 

DOE Design of experiments 

EDA Estimation of distribution algorithm 

EI Expected improvement 

ERP Electronic road pricing 

GA Genetic algorithm 

HSA Hierarchical search algorithm 

JDDT Joint distance and delay toll 

JDTT Joint distance and time toll 

LHS Latin hypercube sampling 

MCP Marginal-cost pricing 

MLE Maximum likelihood estimate/estimation 

MPEC Mathematical programming with equilibrium constraints 

NFD Network fundamental diagram 

OD Origin-destination 

PI Proportional-integral 

PZ Pricing zone 

RSM Response surface method 

RK Regressing kriging 

SA Stochastic approximation 

SO or SBO Simulation-based optimization 

SPSA Simultaneous perturbation stochastic approximation 
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STA Static traffic assignment 

SymNMF Symmetric nonnegative matrix factorization 

TAP Toll area problem 

TDM Travel demand management 

TDP Toll design problem 

TLP Toll level problem 

VTT Value of travel time 
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