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Chapter 1

Introduction

Classical statistical techniques involve the analysis of realisations x of random variables X
that take the form of single points (possibly multidimensional) within their domain DX ⊆ RD.
Classical datasets then comprise of N observations, with D measurements each, where D is the
number of variables in X. A consequence of the increasing occurence of huge, complex datasets,
often referred to as big data (Billard and Diday, 2003), is the large computational power required
for a classical analyses. If a grouping mechanism is available for the dataset, then one solution
is to summarise the data within known groups by a set of summary statistics, termed ’symbols’,
and then perform an analysis on the smaller dimensional ’symbolic’ dataset. Diday (1989) first
proposed the notion of Symbolic Data Analysis (SDA), whereby these summary level observa-
tions are analysed instead of the much larger underlying classical dataset, allowing for huge
potential savings in computation, storage and transmission if enough information is retained in
the symbolic dataset. Examples of commonly recorded symbols are intervals, histograms, dis-
tributions and lists (Billard and Diday, 2003). For the above examples, the underlying classical
data (also termed ’microdata’) is divided into disjoint groups using some known criteria (age,
gender, nationality, weight), and then aggregated into a set of symbolic observations, one per
group for a total of B groups. The choice of groups is dependent on the problem at hand, with
different configurations appropriate for different forms of analysis. For example, in an analysis
of medical data, it might make sense to group individual patient records by gender, age and
weight, as you would expect similar observations within each group. SDA methods are also
useful for situations where the privacy of the individuals is required to be maintained, and so
the data is only available in the form of group level summaries, thus protecting the privacy of
individual level observations. For example, when performing an analysis on the salaries of all
the employees in a company, individual records may not be available, in order to protect the
sensitive financial information. Instead, the data for each division of the company might be
aggregated into a set of intervals or histograms (one per variable), from which the practitioner
needs to extract a meaningful analysis.

When analysing symbolic data in the form of intervals, a simple approach is to perform
the classical analysis on the midpoints of the intervals/subintervals. Comparable approaches
are available for histogram-valued data, whereby the midpoints of the histogram bins, weighted
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16 CHAPTER 1. INTRODUCTION

by their respective counts, are analysed in place of the underlying microdata. Approaches
such as these have been utilised to derive estima tes for the sample variances and covariances
of a symbolic dataset (Billard and Diday, 2003, Oliveira et al., 2018). While this approach is
computationally efficient and easy to implement, it ignores the internal variation of the microdata
within each symbol. An assumption commonly utilised in SDA to address this problem is that
of within-symbol uniformity. That is, we assume the distribution of an underlying classical
observation, given the symbol (interval, histogram subinterval), is uniform (Billard and Diday,
2006). This assumption has been used to derive expressions for the sample symbolic mean and
variance for univariate symbolic datasets by Bertrand and Goupil (2000), Billard (2007), and
was then extended to estimating the sample symbolic correlation for multidimensional symbolic
datasets by Billard and Diday (2003), Billard (2007). Oliveira et al. (2018) explored how these
expressions have an underlying microdata interpretation, and are in fact comparable to their
classical equivalents, if the uniform within-symbol distribution is correctly specified.

When the within-symbol uniformity assumption is violated, SDA results are often signifi-
cantly different to that of a comparable analysis performed on the complete underlying classical
dataset (Beranger et al., 2018). When analysis at the group level is all that is required, this
difference is meaningless as the group differences are of interest, not the individual differences.
However, if an analysis with an underlying classical interpretation is desired, then a parametric
assumption is often utilised to remove the within-symbol uniformity assumption. Heitjan (1989)
examined the case whereby data arrives in a grouped continuous form (histograms), and a nor-
mal distribution is assumed for the underlying microdata. A grouped likelihood function is then
constructed using the difference of cumulative distribution functions (cdf’s) for each histogram
bin, taken to the power of the count for that bin. The results from an analysis of the underlying
classical data, the grouped likelihood function and a classical analysis of the midpoints with
sheppards correction are then compared, with the latter two performing comparably. Heitjan
and Rubin (1991) then investigated the effects of the coarsening mechanism for histogram data,
and determined that if the coarsening occurs according to a Coarsening at Random (CaR) pro-
cess, then the likelihood of the coarsening can be ignored. Le Rademacher and Billard (2011)
derive likelihood functions for intervals and histograms with group-level interpretations, whereby
parametric functions are assumed for the parameters of interest. Zhang et al. (2019) construct
interval symbolic likelihood functions for parametric models, whereby parametric models are fit
to the interval-valued observations, with the results comparable to that of the classical anal-
ysis performed on the microdata if enough information about the underlying classical data is
retained in the aggregation process. Beranger et al. (2018) then proposed a generalised sym-
bolic likelihood function for symbolic datasets for which an underlying parametric model can
be assumed for the microdata, and propose examples of new types of symbolic observations for
which this method of analysis can be easily applied to. The parametric frameworks for intervals
and histograms presented in Heitjan (1989) and Zhang et al. (2019) respectively are then special
cases of this construction. The generalised symbolic likelihood is shown to reduce to the classical
likelihood function for a certain level of data aggregation, with the subsequent results allowing
inferences to be made at both the group and individual levels.
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If a parametric form of the underlying microdata is unable to be assumed, then non-
parametric techniques for symbolic data can be utilised to obtain inferences with an underlying
classical interpretation. For data arriving in the form of a histogram, Scott and Sheather (1985)
and Hall (1996) examine the errors associated with a kernel density estimation on the midpoints
of each histogram bin, weighted by the bin’s count. Analogous methods to the classical case can
be utilised to determine the appropriate kernel bandwidth, and subsequent underlying classical
densities. Minnotte (1996) and Koo and Kooperberg (2000) fit splines to the observed histogram
proportions, with reasonable results if there aren’t any non-empty bins (excluding bins on the
edge). Histogram density estimates are also constructed using underlying interval/histogram
datasets by Billard and Diday (2003), whereby the density at any given point within the do-
main of the microdata is estimated as the probability that an underlying observation would lie
in the subinterval that point falls in (given the symbolic dataset), weighted by the size of the
subinterval.

The thesis proceeds as follows. In Chapter 2 we undertake a thorough literature review of
the currently developed SDA methodologies. Basic descriptive statistics for common symbolic
observations are described, along with existing methodologies for parametric and non-parametric
analyses of symbolic data. Particular attention is paid to the methods available within SDA
whereby the results of the analysis have an underlying classical interpretation, and are compa-
rable to the results that would have been obtained from a complete analysis of the underlying
classical dataset.

Often a likelihood analysis requires the evaluation of large-dimensional, intractable func-
tions. Composite likelihoods (Cox and Reid, 2004, Lindsay, 1982, Varin, 2008) are used as
a solution to this issue, whereby large dimensional intractable likelihoods are replaced by the
product of smaller-dimensional, unbiased likelihoods of marginal or conditional events. The
resultant analysis however typically has a large number of terms (especially if the number of
variables D is large), and so for datasets with a large number of observations, a composite like-
lihood analysis is computationally very intensive. A composite likelihood analysis of summary
level symbols, instead of the complete classical dataset, is a potential method of reducing this
computational burden. In Chapter 3 we extend the likelihood framework of Beranger et al.
(2018) to the composite likelihood setting, whereby large-dimensional datasets are aggregated
into sets of lower-dimensional histograms, on which a likelihood analysis is undertaken. The
estimators obtained via this symbolic composite likelihood function are shown to be asymptoti-
cally consistent with the classical estimator with an increasing amount of information retention
in the aggregation process. The derived symbolic composite likelihood function is then utilised
in the analysis of a large temperature dataset as an example of its applicability in the analysis
of max-stable processes. An interesting result that arises from this analysis is that for classical
data that has been aggregated into a set of bivariate histograms, while the parameter estimates
obtained from a symbolic composite approach are asymptotically consistent with an increasing
number of bivariate bins, their variances require the number of histogram replications to in-
crease in order to converge towards the classical results. Variances for the parameter estimates
are then obtained via the Godambe information matrix (Godambe, 1960, White, 1982), allowing
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standard parametric inferences to be obtained.
For large dimensional data, the symbolic likelihood framework of Beranger et al. (2018) re-

quires the solution of a large dimensional integral for histogram valued data. For many known
distributions, such as the bivariate max-stable models investigated in Chapter 3, these integrals
have closed form solutions, and so are computationally simple to evaluate. However, for many
parametric models, such as logistic regression, these integrals have no closed form solution for
multidimensional data, and thus require numerical methods to evaluate, increasing the com-
plexity of the computation. Due to the curse of dimensionality, the complexity of the integral
also grows with the dimension, meaning for datasets with many (more than 2 or 3) predictor
variables, a symbolic analysis becomes computationally infeasible. Furthermore, a composite
likelihood approach isn’t available, as lower dimensional unbiased likelihoods do not exist for
the logistic regression model. In Chapter 4 we derive closed form expressions for the approximate
composite likelihood of a multi-class logistic regression model, whereby the predictor variables
arrive in the form of univariate histograms, one per class. A distributional assumption is utilised
for the predictor variables, leading to the reduction of an intractable large dimensional integral
(and subsequent likelihood) to a computational simple univariate function. If this distributional
assumption is reasonable, predictions obtained from the approximate univariate likelihood are
shown to be comparable to that of a classical analysis on the microdata. If the distributional as-
sumption is violated, normalisation procedures are readily available to improve the assumption.
A consequence of this is that when a logistic regression analysis is desired, a continuous classical
underlying dataset can be stored, transferred and analyse in the form of a set of univariate
histograms, leading to massive gains in computation.

In the above analyses, the uniformity-within-intervals assumption problem previously de-
scribed is fixed using a parametric assumption for the underlying microdata. However, if no
parametric assumption is available (due to lack of information, desire for flexibility, etc...) then
non-parametric methods can be utilised in the analysis of symbolic data. The methodology of
Beranger et al. (2018) requires a parametric assumption of the model to be fitted, however,
and so new methods need to be developed for symbolic data that fit within a non-parametric
framework for cases where the uniformity-within-intervals assumption is known to be violated.
In Chapter 5 we extend the generalised symbolic likelihood presented by Beranger et al. (2018)
to this non-parametric framework, whereby general forms of symbolic statistics with underlying
classical interpretations (for which the uniform assumption estimates are a special case) are
presented, and examined as solutions to classical Estimating Equations (EE’s). Methods of
estimating each within-symbol distribution for intervals and histograms without the need for
an underlying parametric or uniform assumption are presented that produce closer estimates
to the classical case than estimates obtained via the uniformity-within-intervals assumption for
certain settings. A symbolic empirical likelihood approach is then derived for the estimation of
the variances of the symbolic EE estimates, with statistics such as means, variances, correlations
and quantiles used in the demonstration of its applicability.

For privacy reasons, often count data is rounded to a known degree, such that the underlying
classical datapoint from which a rounded observation arose is known to belong to a given subset
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of count value, for which the analysis of is not trivial. In Chapter 6 we apply the previously
derived new methodologies on the applied analysis of rounded count data. Symbolic equivalents
are developed for several types of Generalised Linear Models (GLMs), such as Poisson, Binomial
and Ordinal Logistic regression, which take into account the variation associated with rounded
count data, along with the incorporation of extra marginal information. It is shown through
simulations that the parameter estimates obtained from a symbolic GLM analysis are closer
to those of the analysis of the complete (unknown) classical microdata than an analysis of the
rounded data, with the results improving as the degree of rounding decreases. Furthermore,
the utilisation of additional information that wasn’t originally included in the models in this
symbolic analysis further improves the results in terms of biases, variances and Mean Squared
Error (MSE). As an example, for a Poisson analysis the number of women for a given group is
treated as the response variable, with classically observed covariates. Due to privacy reasons,
the response is only reported rounded to the nearest 5, and so the symbolic approaches described
above can be used to improve on a classical analysis of the rounded data. The incorporation
of the additionally known rounded observations for the total number of staff and men then
allows a better specification of the distribution of a given underlying classical datapoint, given
its rounded observation.

In Chapter 7 we conclude with a summary of the work developed within this thesis, along
with a discussion of the potential impacts. We then comment on the potential future directions
of SDA thesis, and discuss some open ended questions. Appendices and extra information for the
work undertaken in this thesis are then given after the references and following the conclusion.



20 CHAPTER 1. INTRODUCTION



Chapter 2

Literature review

2.1 Introduction

The evolving capabilities of modern computation has led to increasingly large and complex
datasets, the analysis of which is not trivial (Bock and Diday, 2000). These datasets are of-
ten aggregated into smaller dimensional summary level datasets, with the aim of reducing the
burden associated with computation, storage and transmission, whilst still retaining enough in-
formation within the summary level datasets to produce meaningful and informative analyses.
Diday (1989) first introduced the notion of Symbolic Data Analysis (SDA), whereby the under-
lying classical data is aggregated into a set of summary level (symbolic) statistics, where each
symbol represents the data from a known subset of the microdata, termed a ‘class’. Classes can
be chosen using a broad range of criteria, such as temporal factors (e.g. each class represents
a different month), known categorical factors (e.g. species, gender), or even completely ran-
domly. Intervals, histograms, lists and distributions are examples of commonly used symbolic
constructions, used to summarise underlying microdata Billard (2011). The statistical analyses
performed on the symbolic observations then consider each symbol as an individual in the clas-
sical setting. As an example, a dataset with one observation per day could be aggregated into
a dataset with one symbol per year.

n City Type Age Gender Sys. pressure (mm Hg) Dias. pressure (mm Hg)
1 Boston Medical 24 M 120 79
2 Boston Medical 56 M 130 90
3 Chicago Dental 48 M 126 82
4 El Paso Medical 47 F 121 86
5 Byron Dental 79 F 150 88
6 Concord Medical 12 M 126 85
7 Atlanta Medical 67 F 134 89
8 Boston Optical 73 F 121 81
... ... ... ... ... ... ...
... ... ... ... ... ... ...

Table 2.1: Classical data table for sample medical records

21
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n Type × gender Age Sys. pressure (mm Hg) Dias. pressure (mm Hg)
1 Dental Males [17,76] [113,126] [72,88]
2 Dental Females [20,70] [116,150] [78,97]
3 Medical Males [6,84] [108,132] [74,98]
4 Medical Females [11,87] [114,135] [72,96]
5 Optical Males [57,86] [114,114] [72,78]
6 Optical Females [73,79] [106,121] [78,81]

Table 2.2: Symbolic data table for sample medical records

We now present a simple example of a classical and resultant symbolic big data table, taken
as subsets of tables presented in Billard and Diday (2006), to demonstrate how underlying
classical microdata can be aggregated into a set of symbols for each class. In Table 2.1, we
have a classical data table, where each row represents a classical individual medical record
observation, and the city, type of medical service used (Medical, Dental or Optical) and Gender
(Male, Female) are recorded as categorical observations, with continous observations rounded to
integer values given for Age, Systolic pressure and Diastolic pressure. If we then aggregate the
continuous observations in this dataset into a set of univariate intervals, whereby each symbol
represents the data from one unique combination of Type and Gender (class), we obtain the
symbolic data table in Table 2.2. Note that there are only 6 rows, as that is the total number
of unique combinations of gender and type, and thus the size of the dataset has been greatly
reduced. In this example, a subsequent analysis of the smaller symbolic data table would be
computationally superior to a classical analysis of the full underlying classical data.

2.2 Symbolic Descriptive Statistics

We now define the notation we will use throughout the rest of this chapter. Let X =
(X[1], ..., X[D]) ∈ DX be aD−dimensional random variable with domainDX = DX[1]×...×DX[D] ,
and suppose X = (X1, ..., XN ) represent N i.i.d. replications of X, with realisations given as
x1, ..., xN . Denote X(b) = (X(b)

1 , ..., X
(b)
cb ) as a subset of X, such that X = X(1)∪· · ·∪X(B), with

realisation given by x(b). cb therefore represents the size of the bth subset, such that
∑B
b=1 cb = N .

Suppose our dataset X1, ..., XN is aggregated into a set of symbols S = (S1, ..., SB), where each
Sb represents a set of summary level statistics for all the underlying microdata from a given
pre-specified class X(b), with realisation given by sb, b = 1, ..., B. Examples of how classes might
be constructed are given in Section 2.1.

2.2.1 Interval-Valued Symbols

Suppose thatDX = RD and that for each class, b = 1, ..., B, the dataX1, ..., XN is aggregated
into a set of intervals sbd = (lbd, ubd), where lbd and ubd represent respectively the minimum and
maximum values for the underlying classical data for the bth class and dth variable, such that
sb = (sb1, ..., sbD), b = 1, ..., B, d = 1, ..., D. An equivalent paramerisation with a bijective
mapping to (lbd, ubd) was proposed by Brito and Silva (2012) and is given as sbd = (mbd, rbd),
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where mbd and rbd represent respectively the midpoint and range of the interval. Using an
assumption of uniformity for the distribution of the microdata within each interval, Bertrand
and Goupil (2000) defined the empirical cumulative distribution and density functions for a set
of B interval observations s = (s1, ..., sB) as follows.

Definition 2.2.1. If a uniform distribution is assumed for the microdata within each interval-
valued symbol, then the cumulative distribution function (cdf) of a random variable for the dth

dimension, given its observed interval dataset is given as

FS(x[d]) = 1
B

B∑
b=1

FSbd(x[d]),

where

FSbd(x[d]) =


0 if x[d] ≤ lbd
x[d]−lbd
ubd−lbd if x[d] ∈ [lbd, ubd]

1 otherwise.

Definition 2.2.2. Similarly, the density function for the observed interval dataset for the dth

dimension is given as

fS(x[d]) = 1
B

B∑
b=1

fSbd(x[d]), (2.1)

where

fSbd(x[d]) =


1

ubd−lbd if x[d] ∈ [lbd, ubd]

0 otherwise.
(2.2)

Bertrand and Goupil (2000) then derive expressions for the sample mean and variance of
the symbolic dataset using the within-symbol uniformity assumption, whereby the mean and
variance of a classical observation within the bdth interval are given respectively as µbd = lbd+ubd

2
and σ2

bd = (ubd−lbd)2

12 , which are clearly the mean and variance of a random variable distributed
uniformly on (lbd, ubd).

Definition 2.2.3. The symbolic sample mean and variance for the dth dimension of an interval-
valued dataset are given respectively as

µd = 1
B

B∑
b=1

lbd + ubd
2 = 1

B

B∑
b=1

µbd (2.3)

σ2
d = 1

3B

B∑
b=1

(u2
bd + lbdubd + l2bd)−

1
4B2

B∑
b=1

(ubd + lbd)2. (2.4)
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Billard (2007) rearranges Equation (2.4) to obtain an expression for the symbolic sample
variance that has an intuitive interpretation, given as

σ2
d = 1

B

B∑
b=1

(µbd − µd)2 + 1
B

B∑
b=1

(ubd − lbd)2

12 . (2.5)

We see that the first part of Equation (2.5) is the sample variance of the symbolic means
µ1d, ..., µBd of the interval observations, i.e. the between sum of squares (SSB) divided by the
sample size, and the second part of Equation (2.5) is the average variance of a datapoint within
each interval, i.e. the within sum of squares (SSW). Billard (2007) therefore show that the
symbolic sample variance can be expressed as the summation of the within and between sum of
squares, i.e.

σ2
d = 1

B
(SSW + SSB) . (2.6)

Equation (2.6) can be shown to be equivalent to the sample variance for the underlying micro-
data, if the microdata if truly uniformly distributed within each interval. This expression now
seems intuitive, as the total symbolic sample variance is now given as the sum of the variance
of the interval means and the within-interval variance of the microdata for each symbol, and
in fact in Chapter 5 we explore the implications of this interpretation, with the consequence
that the symbolic sample variance is close to that of the complete underlying microdata if the
within-interval uniformity assumption is reasonable, but significantly different if this assumption
is violated. Billard and Diday (2003) note that the above expressions for the distribution and
density functions and the sample means and variances weight the contributions of each symbol
equally, i.e. each term in each summation is equally weighted by 1

B . In the construction of the
symbols however this may not be valid if different numbers of observations contributed to each
interval. The above expressions may therefore be extended to the case whereby each interval
observation is assigned a weight pb, resulting in the following expressions.

Definition 2.2.4. For weights p1, ..., pB,
∑B
b=1 pb = 1, the cumulative distribution and density

functions for the dth dimension of an interval dataset are given as

FS(x[d]) =
B∑
b=1

pbFSbd(x[d]). (2.7)

Similarly, the density function of the interval dataset for the dth dimension is given as

fS(x[d]) =
B∑
b=1

pbfSbd(x[d]). (2.8)

Definition 2.2.5. For weights p1, ..., pB,
∑B
b=1 pb = 1, the symbolic sample mean and variance
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of an interval dataset are given as

µd =
B∑
b=1

pb
lbd + ubd

2 =
B∑
b=1

pbµbd (2.9)

σ2
d =

B∑
b=1

pb(µbd − µd)2 +
B∑
b=1

pb
(ubd − lbd)2

12 . (2.10)

For aggregation processes where different amounts of microdata contribute to each interval,
the intuitive choice is pb = cb

N , where cb represents the number of underlying datapoints that
contributed to the bth interval (i.e. the number of individuals in the bth class), and N repre-
sents the total number of observations, such that

∑B
b=1 cb = N . Billard (2003) then extend

the univariate constructions of Bertrand and Goupil (2000) to the bivariate setting, deriving
expressions for the bivariate cumulative distribution and density functions of a set of bivariate
intervals (rectangles). We present the general case with pb here, from which the specific equally
weighted case with pb = 1

B easily follows.

Definition 2.2.6. Assuming a uniform distribution within each bivariate interval-valued sym-
bol, the cumulative distribution function (cdf) of the interval dataset with respect to variables
d and e is given as

FS(x[d], x[e]) =
B∑
b=1

pbFSbde(x[d], x[e]), (2.11)

where

FSbde(x[d]) =


(x[d]−lbd)(x[e]−lbe)
(ubd−lbd)(ube−lbe) if (x[d], x[e]) ∈ (lbd, ubd)× (lbe, ube)

0 otherwise.
(2.12)

Similarly, the density function of the interval dataset is given as

fS(x[d], x[e]) =
B∑
b=1

pbfSbde(x[d], x[e]), (2.13)

where

fSbde(x[d], x[e]) =


1

(ubd−lbd)(ube−lbe) if (x[d], x[e]) ∈ (lbd, ubd)× (lbe, ube)

0 otherwise.
(2.14)

Note that fSbde(x[d], x[e]) is simply the density function of a variable that is uniformly dis-
tributed over the rectangle (lbd, ubd)× (lbe, ube). Bivariate expressions for the sample mean and
variance are equivalent to that of the univariate case in Equations (2.9) and (2.10), due to the
independence between margins for the estimation of those parameters. Two different definitions
of the symbolic sample covariance are proposed in Billard (2007) and Billard (2008), given as
follows.

Definition 2.2.7. For an interval dataset as described above, Billard (2007) defines the symbolic
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sample covariance for margins d and e as

Cov(x[d], x[e]) = σde =
B∑
b=1

cbµbdµbe − µdµe. (2.15)

In contrast, Billard (2008) defines the symbolic sample covariance function Cov(x[d], x[e]) as

σde =
B∑
b=1

cb
N

(ubd − lbd)(ube − lbe)
12 +

B∑
b=1

cb
N

(µbd − µd)(µbe − µe). (2.16)

Covariance matrices Σ, where Σc,d = σde if c 6= d and Σdd = σ2
d can then easily be obtained,

along with the sample correlation function

ρ(x[d], x[e]) = σde
σdσe

.

An explanation for the differences in symbolic covariance definitions is provided in Oliveira
et al. (2018), and involves the underlying classical data assumptions for each expression. Each
covariance definition can in fact be considered the sample covariance of the underlying classical
data, provided certain within-symbol distributional assumptions are met. For example, we see
that Equation (2.15) has a simple interpretation as the covariance between the intervals means,
meaning that if there is no within-symbol variance (i.e. every underlying classical datapoint
occurs at an interval midpoint), this expression is equivalent to the covariance of the underlying
microdata. Similarly to the sample symbolic variance, equation (2.16) reduces to the summation
of the within sum of products and between sum of products for uniformly distributed bivariate
variables, meaning that if the microdata follow independent uniform distributions within each
interval, this definition of the sample symbolic covariance will be comparable to that of the full
underlying classical dataset. The microdata conditions considered are fairly restrictive however,
and not often applicable to real observed data. We provide more general definitions of the
symbolic covariance in Chapter 5, along with better methods of estimating the within-symbol
distributions/correlations.

Symbolic estimates for quantities such as means, variances and covariances/correlations are
crucial in many types of statistical analyses. In particular, symbolic versions of Principal Com-
ponent Analysis (PCA) have been developed for intervals by Billard and Le Rademacher (2012)
and Gioia (2006), and for histograms by Le Rademacher and Billard (2013) in which definitions of
symbolic means, variances and correlations are required. Other methods of symbolic PCA utilise
the locations of the centers and ranges (Lauro and Palumbo, 2000, Douzal-Chouakria et al.,
2011). A good overview of all of these symbolic PCA methods can be found in Le Rademacher
(2008).

2.2.2 Histogram-Valued Symbols

Suppose now that the data for each class is aggregated into a set of univariate histograms
sbd = (cbd1; (ydb0, ydb1], ..., cbBd

b
; (yd

b(Bd
b
−1), y

d
bBd

b

]), with Bd
b subintervals for the univariate histogram
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for the bth class and dth variable, ydbc > ydb(c−1), b = 1, ..., B, c = 1, ..., Bd
b and

cbdc =
N∑
n=1

I(xnd ∈ (ydb(c−1), y
d
bc] ∩ xn ∈ x(b)).

Note that cbdc therefore represents the number of observations for the bth class whose dth margin
falls in the cth bin of that respective histogram, such that

∑B
b=1

∑Bdb
c=1 cbdc = N , d = 1, ..., D. Bil-

lard and Diday (2003) assume a uniform distribution for the microdata within each subinterval,
allowing them to derive the following expression for the density function for histogram-valued
data.

Definition 2.2.8. If a uniform distribution is assumed for the microdata within each sub-
interval for each univariate histogram as described above, then the density function (cdf) of the
histogram dataset is given as

fS(x[d]) =
B∑
b=1

Bbd∑
c=1

cbdc
N

fSbdc(x[d]), (2.17)

where

fSbdc(x[d]) =


1

yd
bc
−yd

b(c−1)
if x[d] ∈ (ydb(c−1), y

d
bc]

0 otherwise.
(2.18)

Note that Equation (2.17) is equivalent to the density of a set of univariate intervals (lbdc, ubdc]
with proportions pbdc = cbdc

N , where lbdc = ydb(c−1) and ubdc = ydbc.

Similarly to the interval case, expressions for sample means and variances can be obtained via
the same uniformity within each subinterval assumption, meaning that the means and variances
for each subinterval are given respectively as µbdc =

yd
b(c−1)+y

d
bc

2 and σ2
bdc =

(ydbc−y
d
b(c−1))

2

12 , b =
1, ..., B, d = 1, ..., D, c = 1, ..., Bbd.

Definition 2.2.9. For a histogram dataset as described above, the symbolic sample mean and
variance of the dth dimension are given as

µd =
B∑
b=1

Bbd∑
c=1

cbdc
N

ydb(c−1) + ydbc

2 =
B∑
b=1

Bbd∑
c=1

cbdc
N

µbdc

σ2
d =

B∑
b=1

Bbd∑
c=1

cbdc
N

(µbdc − µd)2 +
B∑
b=1

Bbd∑
c=1

cbdc
N

(ydbc − ydb(c−1))
2

12 .

Billard (2008) use an analogous derivation to the interval case to obtain an expression for
the symbolic covariance for histogram-valued observations, again assuming uniformity within
each histogram subinterval. As with the interval case, this expression is shown as the sum of
the within observations sum of products and the between observations sum of products.
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Definition 2.2.10. For a histogram dataset as described above, the symbolic sample covariance
for dimensions d and e is given as

σde =
B∑
b=1

Bbd∑
c1=1

Bbe∑
c2=1

cbdc1cbec2
N

δbdc1δbec2
12 +

B∑
b=1


Bbd∑
c1=1

cbdc1
N

(µbdc1 − µd)




Bbe∑
c2=1

cbec2
N

(µbec2 − µe)

 ,
where δbdc = ybdc − ybd(c−1), b = 1, ..., B, c = 1, ..., Bbd, d = 1, ..., D.

As with the interval case, these expressions are comparable to the classical equivalents, if the
within-symbol uniformity assumption is correct. However, when estimates with an underlying
classical interpretation are desired and this uniformity assumption is violated, different methods
are needed to obtain better estimates.

2.3 Parametric models for symbolic datasets

When the within-symbol uniformity assumption is likely to be violated, a parametric ap-
proach can be used to assume some internal non-uniform structure within each symbol. Heitjan
(1989) explores the use of Sheppard’s correction (Sheppard, 1897) in the estimation of moments
from an equally spaced histogram-valued dataset, assuming a reasonable normal structure to
the underlying microdata. In the construction of the histograms, they assume the aggregation
is done via a ‘coarsening’ of the data, where each bin count represents the number of underlying
classical datapoints that are closest to that bin midpoint.

Definition 2.3.1. Suppose θkbd is the observed kth moment of the observed midpoints data
(weighted by their respective counts) for the bth histogram and dth variable, i.e. the observed
moment of the set of histogram midpoints µbdc =

yd
b(c−1)+y

d
bc

2 , each observed cbdc times, b =
1, ..., B, c = 1, ..., Bbd, d = 1, ..., D. Let δbd = ydbc − ydb(c−1) represent the standard bin width
for each histogram. Then closer moment estimates (to that of the latent unrounded data) for
the bth histogram and dth variable, which we denote as θ̂kbd, can be obtained via the following
correction formulae for k = 1, 2, 3, 4.

θ̂1bd = θ1bd

θ̂2bd = θ2bd −
δ2
bd

12
θ̂3bd = θ3bd

θ̂4bd = θ4bd −
δ2
bdθ2bd

2 + 7δ4
bd

240 .

Heitjan (1989) compares this approach with the raw midpoint estimates and estimates ob-
tained using a weighted product of bin probabilities for each subinterval (which we will later see
is a specific case of the general symbolic likelihood approach), where the bin probabilities are
estimated using a normal parametric assumption. It is shown that if the normality assumption
is reasonable, Sheppard’s correction and the parametric method perform comparably and better
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than the naive classic analysis of the observed midpoints, although Sheppard’s correction is com-
putationally simpler. Heitjan and Rubin (1991) explore the impact of the coarsening mechanism
on the subsequent parametric analysis. Suppose we have a random vector X ∼ fX(x; θ), dis-
tributed according to a parametric distribution f with parameter θ. Suppose also that instead
of observing X, we observe some aggregated version Y , a coarsened version of X.

Definition 2.3.2. Suppose the coarsening mechanism has a stochastic nature, in that the
likelihood of Y being observed, given it arose from an underlying latent classical variable X, is
denoted as g(y|x; θ). The likelihood of the observed coarsened variables is then given as

L(θ; y) ∝
∫
DX|X→Y

g(y|x; θ)fX(x; θ)dx, (2.19)

where DX|X→Y represents the domain of the underlying microdata, given the observed his-
tograms. If the data are considered Coarsened at Random (CAR), then the density function
g(y|x; θ) is uniformative and can be ignored in the parametric analysis of the data.

For interval and histogram-valued symbolic data, Le Rademacher and Billard (2011) pro-
posed a likelihood based approach whereby the estimates obtained from the analysis are inter-
pretable at the symbolic level. A set of vectors θ1, ..., θB is created whereby each vector uniquely
defines a distinct symbol, i.e. a bijective mapping exists between Sb and θb, b = 1, ..., B. A
parametric model is then specified for each symbol, from which parameter estimates can be
obtained via Maximum Likelihood Estimation.

Example. As an example, suppose have a set of D−dimensional intervals (with equal counts)
sb = (sb1, ..., sbD), sbd = (lbd, ubd), b = 1, ..., B, d = 1, ..., D, as described in Section 2.2.1. Define
θbd = (θbd1, θbd2) as the vector arising from a bijective mapping from sbd, where θbd1 and θbd2

represent the interval mean and variance respectively, b = 1, ..., B, d = 1, ..., D. We now specify
a normal N(µd, σ2

d) distribution with mean µd and variance σ2
d for θbd1, and an exponential

Exp(βd) distribution with mean βd for θbd2, d = 1, ..., D, such that an assumption of uniformity
within each symbol results in

lbd + ubd
2 ∼ N(µd, σ2

d)

(ubd − lbd)2

12 ∼ Exp(βd).

Note that we are assuming independence between the interval means and variances, and also
between margins. The likelihood for the dth margin is then given as

L(µd, σ2
d, βd;β1d, ..., βBd) =

B∏
b=1

g(θbd1;µd, σ2
d)h(θbd2;βd), (2.20)

where

g(θbd1;µd, σ2
d) = 1√

2πσ2
d

exp
(
−

( lbd+ubd
2 − µd)2

2σ2
d

)
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and
h(θbd2;βd) = 1

βd
exp

(
(ubd − lbd)2

12βd

)
are the density functions for the normal and exponential distributions respectively. Differenti-
ating the subsequent log-likelihood with respect to each parameter, and then solving for zero
provides the following Maximum Likelihood Estimators (MLE’s).

µ̂d = 1
B

B∑
b=1

lbd + ubd
2

σ̂2
d = 1

B

B∑
b=1

(
lbd + ubd

2 − µd
)2

β̂ = 1
B

B∑
b=1

(ubd − lbd)2

12 .

More complex examples involving multivariate and dependent data, as well as histogram
equivalents are presented in Le Rademacher and Billard (2011). Brito and Silva (2012) utilise a
similar approach by fitting normal and skew-normal distributions to the means and log ranges of
interval-valued datasets, assuming again uniformity within each symbol. Lin et al. (2017) utilise
a Bayesian approach in fitting distributions to the means and log ranges of interval in a meta
analysis of interval-valued count data for species. These approaches are useful for obtaining
symbolic-level parametric inferences for interval and histogram data, and the output of such an
analyses has an intuitive symbolic explanation, however is insufficient if the practitioner wishes
to obtain inferences that are interpretable at the level of the underlying latent classical data.

Beranger et al. (2018) proposed a generalised likelihood construction for symbolic data, from
which inferences with a classical interpretation can be obtained, provided enough information
about the underlying latent microdata is retained. This approach allows the generalised para-
metric modelling of symbolic datasets, from which analyses such as Zhang et al. (2019), Koo
and Kooperberg (2000), Cadez et al. (2002) and Heitjan (1989) can be considered special cases
for specific types of symbolic observations. This symbolic likelihood framework can be easily
adapted to new symbol designs, as highlighted by its implementation for different forms of in-
terval constructions in Beranger et al. (2018). Suppose X ∼ fX(x; θ) is distributed according
to a parametric distribution f with parameter vector θ, and denote N i.i.d. realisations of X as
x1, ..., xN . Suppose now that instead of observing x = (x1, ...xN ), we observe a set of symbols
s = (s1, ..., sB), whereby cb underlying classical observations were aggregated into the bth symbol
and each observation contributed to exactly one symbol.

Definition 2.3.3. The likelihood of each symbolic observation sb, given the parameter vector
and information about the aggregation process Q, is given as

L(sb; θ,Q) =
∫
DX

L(x; θ)fsb|X(sb|x, Q)dx, (2.21)

where fsb|X(sb|x, Q) is the density of the observed symbol sb, given the underlying classical
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observations x from which it arose. The likelihood and log-likelihood of the symbolic dataset
s = (s1, ..., sB) are therefore given as

L(s; θ,Q) =
B∏
b=1

L(sb; θ,Q)cb (2.22)

→ logL(s; θ,Q) =
B∑
b=1

cb logL(sb; θ,Q). (2.23)

Example. Suppose D = 1 and each sb represents a univariate interval-valued observation with
count cb, b = 1, ..., B. Using equations (2.22) and (2.23) and specifying a parametric model for
the underlying classical data allows the construction of

L(s; θ,Q) =
B∏
b=1

Pb(θ)cb

→ logL(s; θ,Q) =
B∑
b=1

cb logPb(θ)),

as the respective likelihood and log-likelihood for the symbolic dataset s = (s1, ..., sB), where
Pb(θ) =

∫ ub
lb
fX(x; θ)dx.

For intervals, it is shown in Zhang et al. (2019) that MLE’s obtained via the maximisation of
the above log-likelihood are asympotically consistent with that of a likelihood analysis performed
on the underlying classical microdata, with decreasing interval widths. As each interval gets
smaller, more information is retained about the underlying microdata from which that symbol
arose from, leading to more accurate results.

Parametric analyses such as those outlined above are often sufficient in the analysis of low-
dimensional symbolic datasets. However, an increase in data dimension often leads to intractable
high-dimensional likelihood functions, in which high-dimensional integrals are often required to
be evaluated numerically. Furthermore, the curse of dimensionality means that the computation
required to evaluate said integrals grows exponentially with the number of variables. This leads
to large computational costs, for even for a moderate number of variables D, often making a
parametric symbolic analysis infeasible. If a model with an underlying classical interpretation is
desired, new methods need to be developed that reduce the dimension of the symbolic likelihoods,
and therefore reduce the computational burden. In Chapter 3 we extend the likelihood frame-
work of (Beranger et al., 2018) to the composite likelihood setting, allowing high-dimensional
datasets to be reduced to low-dimensional marginal histograms, and subsequently analysed. In
Chapter 4 we develop a new composite marginal approach to logistic regression modelling to
similarly reduce the dimension and subsequent computational burden of the symbolic likelihood.



32 CHAPTER 2. LITERATURE REVIEW

2.4 Non-Parametric models for SDA

When a parametric model can be assumed for the underlying classical data, it follows that
each symbolic observation is assigned an internal structure, given the parameter vector. However,
when we are unable to specific a parametric model for the data, due to reasons such as a lack
of information, a desire for flexibility or no known parametric family seems to model underlying
data at least reasonably well, different methods are needed to specify the internal structure of
each symbol, beyond reverting back to the within-symbol uniformity assumption. An intuitive
starting point is to estimate the underlying non-parametric density using the observed symbols.

Scott (1985) investigated the theoretical properties of the frequency polygon, and showed
that the density estimate obtained from this construction is far superior in terms of MSE than
that obtained from the original histogram. The frequency polygon is a computationally simple
construction of a density estimate from histogram-valued data, and is constructed by connecting
the midpoints of adjacent histogram bins at heights equal to the proportion of data within each
bin. Jones (1998) proposed a similar estimator, denoted as the edge frequency polygon, in which
the edges of each histogram bin are joined by straight lines, with their weights calculated as
the average of weights of the adjacent histogram bins. Billard and Diday (2003) explored the
use of a histogram constructed from a set of intervals as a means of representing the data.
The constructed histograms can then be used to obtain estimates for quantities such as the
symbolic means and variances, or covariances in the multidimensional setting. We now present
their constructed histograms for observed interval datasets, adjusted for the setting whereby
the counts for each symbol are potentially unequal. A set of C + 1 break points (y0, ..., yC) are
specified, such that δc = yc − yc−1, c = 1, ..., C and there are C subintervals in total.

Definition 2.4.1. For univariate, unequally weighted interval-valued data sb = (cb, (lb, ub]),
b = 1, ..., B, with

∑B
b=1 cb = N , the Billard and Diday (2003) histogram density estimate for a

point x ∈ DX is given as

f(x) = 1
N

C∑
c=1

pc
N

I(x ∈ (yc−1, yc]),

where

pc =
B∑
b=1

cb
N

|(yc−1, yc) ∩ (lb, ub)|
|(lb, ub)|

and |A| represents the length of the region A.

Methods that have been used to estimate a non-parametric curve from non-standard data
include spline methods (Gu, 1993, Smith et al., 2004, Rizzi et al., 2016) and a bootstrap ker-
nel method (Wang and Wertelecki, 2013). Hall (1982) investigated the bias that occurs when
performing a Kernel Density Estimation (KDE) analysis (Parzen, 1962) on the midpoints of
binned data, and showed that as the bin width of each histogram decreases, the binned KDE
estimator approaches the density estimate obtained from classical KDE analysis on the under-
lying microdata. Scott and Sheather (1985) examined the errors associated with performing
a classical kernel density analysis on a rounded sample, and provide formulas for the errors
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associated with performing a classic KDE analysis on histogram bin midpoints, as compared to
an analysis of the underlying latent data. This extends to formulas that allow the evaluation of
the ‘optimal’ smoothness parameter for the binned KDE analysis, which has equivalent forms
in the classial setting. Hall (1996) then provided further results, whereby the mean squared
error of the binned KDE estimator can be compared to that of the classical case, and also the
true unknown underlying classical density. This allows the development of formulas that allow
the practitioner to determine the minimum bin width required for each histogram, in order to
achieve a specified level of accuracy.

Definition 2.4.2. Suppose X1, ..., XN are N i.i.d. univariate random variables, distributed
according to an unknown distribution f . The kernel density estimator, as described by Parzen
(1962), is denoted as

fN (x;h) = 1
Nh

N∑
n=1

K

(
x− xn
h

)
, (2.24)

where h is a specified bandwidth parameter and K is a given kernel function. Common examples
of kernel functions K include the standard normal and uniform distributions.

Definition 2.4.3. Suppose now that x = (x1, ..., xN ) is binned using C known bins y0 < ... <

yC , where cc =
∑N
n=1 I(xn ∈ (yc−1, yc]), δ = δc = yc − yc−1 and mc = yc−1+yc

2 , c = 1, ..., C. Hall
(1982) and Scott and Sheather (1985) define the binned kernel density estimator as

fN (x;h, s) = 1
Nh

C∑
c=1

ccK

(
x−mc

h

)
. (2.25)

Equations for the optimal value of the bandwidth parameter h can then be derived using similar
methodologies to their counterparts in the classical setting.

Some interesting similarities exist between the fields of missing data analysis, measurement
error analysis and SDA, in that in some settings the missing data/measured-with-error variables
can themselves be considered symbolic observations. Wang and Pepe (2000) proposed an ex-
pected estimating equations approach to accomodate the fact that some variables/observations
are measured with error. In this approach, the expectation of the classical estimating equations
for the measured-with-error observations are calculated using the data that is fully observed,
and arrives in classical pointwise form. While this method isn’t applicable to the field of SDA,
given in SDA often there are no classical observations available, it does use a similar rationale
to the estimators we derive in Chapter 5, whereby the internal non-parametric structure of
each symbol is estimated according to its expectation given the rest of the symbolic dataset.
Wang et al. (2008) extend this expected estimating equations methodology to the missing data,
covariate measurement error and missclassification settings. For covariate measurement error,
the contributions of missing covariates to the estimating equation are again replaced by their
expectations, given some prior specification. In the examples they provided, this prior speci-
fication involved a joint parametric assumption for the underlying missing microdata and the
errors, which can lead to issues if the parametric assumption is violated or cannot be made. For
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missing and missclassified data, the framework is largely similar. The contributions of the miss-
ing/missclassified observations to the estimating equations are replaced by their expectations
with respect to a parametric model dependent on available fully observed data. Elashoff and
Ryan (2004) propose the use of the Expectation-Maximisation (EM) algorithm to estimate the
expectation of missing data estimating equations, again using classically observed data. Zhou
et al. (2008) also address the missing data problem for non-parametric estimating equations by
using kernels to impute their contributions. This approach removes the need for a parametric
assumption, but is still not generally applicable in the field of SDA, as the imputed kernels are
still constructed using available fully observed classical data.

Approaches such as those described above involving the evaluation of the expectation of es-
timating equations, given some non-standard data, have been extended to the generalised linear
model (GLM) setting by Lipsitz et al. (2004), who derive likelihood functions for GLMs for
data where some discrete covariates are rounded to a known degree. A distribution is defined
for the coarsened covariate, given the fully observed data. Given the discrete nature of the
covariate data, the likelihood function has a closed form analytical expression involving simple
summations over the possible classical estimating equations, and thus its optimisation is compu-
tationally reasonable. In chapter 6 we develop a similar method to analyse rounded discrete data,
whereby the distribution of the coarsened covariate is defined using other rounded observations,
as well as additional information not originally utilised in the model. Johnson (2006) extend the
methodology of Lipsitz et al. (2004) to the case of continuous rounded variables, and discuss the
computational issues associated with the evaluation of the likelihood, given an intractable inte-
gral. Some of these computational issues can be addressed using the methodology presented in
Chapter 4, albeit only for logistic regression. A similar method employing a Bayesian approach
is then employed in Johnson and Wiest (2014), whereby a parametric framework is assumed for
the parameters of the model, leading to computationally easier analyses.

2.5 Conclusion

Symbolic data can arise in a number of different forms from the aggregation of an underlying
classical dataset. Methods of analysis and inference for symbolic data are currently well devel-
oped if interpretations at the symbolic level are desired. However if the practitioner wishes to
obtain results with an underlying classical interpretation, then new methods of analysis need to
be developed. Furthermore, methods are needed that not only possess a classical interpretation,
but also produce comparable results to an equivalent classical analysis performed on the under-
lying microdata for a certain level of aggregation. If the within-symbol uniformity assumption is
reasonable, then current SDA methodologies, such as the formulas described above and derived
by Bertrand and Goupil (2000), Billard and Diday (2003) and Billard (2007), are sufficient in
providing comparable results to the classical case. However, this assumption is often violated,
as the underlying classical data is often continuous and generated from a non-uniform process.
When this within-symbol uniformity assumption is violated, different forms of parametric anal-
yses are available whereby an underlying classical parametric model is fit to a set of symbolic
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data.
When the parametric assumption described above is violated, or the practitioner does not

wish to be restricted to a parametric framework, then non-parametric statistics provides methods
of obtaining inferences in both the classical and symbolic setting. In the symbolic setting,
kernel estimation methods exist for various types of symbolic data, revolving largely around
performing a classical analysis on interval midpoints. New methods are needed that are able
to better estimate the internal structure of a set of symbols, that don’t rely on a parametric
assumption and takes into account the internal variation. A consequence of better estimation of
the underlying non-parametric density/dataset is that better estimates for internal parameters of
a symbol can be obtained, such as means and variances, which have many applications including
hypothesis testing and PCA.

The contributions of this thesis are as follows: In Chapter 3, we extend the generalised sym-
bolic likelihood construction of Beranger et al. (2018) to the composite likelihood framework,
demonstrating its application in an analysis of high-dimensional max-stable data. In Chapter
4 we then utilise the symbolic likelihood framework to develop logistic regression models for
classification data with histogram-valued covariates. In Chapter 5 we develop a non-parametric
framework for symbolic estimating equations and derive methods that allow the better esti-
mation of within-symbol and sample quantities, such as means, variances, etc., with variances
obtained through a derived symbolic empirical likelihood method. In Chapter 6 we apply the
symbolic framework to GLMs with rounded, discrete data, with specific examples given for
poisson, binomial and ordinal logistic regression, and utilise this methodology in the real data
GLM analysis of count data. A discussion then follows in Chaper 7, along with references and
appendices.
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Chapter 3

A composite likelihood approach for
histogram-valued random variables

3.1 Introduction

Continuing advances in measurement technology and information storage are leading to
the creation of increasingly large and complex datasets. This inevitably brings new inferential
challenges. Symbolic data analysis (SDA), a relatively new field in statistics, has been developed
as one way of addressing these issues (e.g. Diday, 1989, Bock and Diday, 2000). In essence, SDA
argues that many important questions can be answered without needing to observe data at the
micro-level, and that higher-level, group-based information may be sufficient. As a result, SDA
methodology aggregates the micro-data into a much smaller number of distributional summaries,
such as random rectangles, random histograms and categorical multi-valued variables, each
summarising a portion of the larger dataset (Dias and Brito, 2015, Le Rademacher and Billard,
2013, Billard and Diday, 2006). These new data “points” (i.e. distributions) are then analysed
directly, without any further reference to the micro-data. See e.g. Billard (2011), Bertrand and
Goupil (2000) and Billard and Diday (2003) for an exposition of these ideas.

SDA methods have found wide application, and have been developed for a range of in-
ferential procedures, including regression models (Dias and Brito, 2015), principle component
analysis (Kosmelj and Billard, 2014), time series analysis (Wang et al., 2016), clustering (Brito
et al., 2015), discriminant analysis (Silva and Brito, 2015) and Bayesian hierarchical mod-
elling (Lin et al., 2017). Likelihood-based methods for distributional data were introduced
by Le Rademacher and Billard (2011) for direct modelling at the level of the distributional
summary.

More recently, Zhang et al. (2019) and Beranger et al. (2018) developed likelihood functions
for observed random rectangles and histograms that directly accounts for the process of con-
structing the symbols from the underlying micro-data. By explicitly considering the full genera-
tive process – from micro-data generation to constructing the resulting distributional summary
– the resulting symbolic likelihood allows the fitting of the standard micro-data likelihood, but
while only observing the distributional-based data summaries. The symbolic likelihood reduces

37
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to the standard micro-data likelihood as the observed symbols reduce to the underlying micro-
data (e.g. as the number of histogram bins gets large, and the size of each histogram bin gets
small). Beranger et al. (2018) demonstrate a 14× computational speed up for the symbolic
analysis over the standard micro-data analysis for computing the maximum likelihood estimates
of a hierarchical skew-normal model.

While attractive, a limitation of this approach is that grid-based multivariate histograms
become highly inefficient as data summaries as the dimension of the data increases. This means
that the histogram-based approach in Beranger et al. (2018), where the computational overhead
is proportional to the number and dimension of histogram bins, is practically limited to lower-
dimensional data analyses.

In this paper we address this problem by extending the likelihood-based approach of Be-
ranger et al. (2018) to the composite-likelihood setting. Focusing on histogram-based distribu-
tional summaries, the components of the composite likelihood are constructed based on low-
dimensional marginal histograms derived from the full K-dimensional histogram. We demon-
strate consistency of the resulting symbolic composite maximum likelihood estimator, and show
that for a certain level of data aggregation, the symbolic composite likelihood function provides
a useful and more computationally efficient substitute for the standard micro-data analysis.
We obtain results that describe the reduction in information that occurs when aggregating the
micro-data into histograms, and how this reduction is dependent on the number of observed his-
tograms. These results also provide insights on the efficiency of standard composite likelihood
techniques when the micro-data are grouped into blocks, but where the location of data within
each block is not known.

While the above techniques are general, throughout we are motivated by the need to develop
computationally viable statistical techniques for fitting max-stable process models for spatial
extremes. This becomes particularly challenging when both the number of spatial dimensions
K (the number of physical recording stations) and the number of observations over time (N)
become large, as is the case with millennial scale climate simulations (Huang et al., 2016). While
composite-likelihood techniques (Padoan et al., 2010, Blanchet and Davison, 2011, Varin et al.,
2011, Lee et al., 2013, Castruccio et al., 2016, Beranger et al., 2019) provide one way to approach
the issue of spatial dimensions, they are not able to cope with large amounts of observed data
at each spatial location. By developing composite likelihood techniques for the analysis of
K-dimensional histogram-valued random variables, we are able to directly and efficiently fit
max-stable processe models to very large temporal datasets.

This article is structured as follows: In Section 3.2 we describe the ideas behind the sym-
bolic likelihood framework of Beranger et al. (2018), with a focus on histogram-valued random
variables, extend this approach to the case of a marginal histogram, and briefly present relevant
background on composite likelihood methods.

In Section 3.3 we extend the histogram-based symbolic likelihood function to the composite
likelihood setting. We demonstrate that increasing the number of bins (and reducing their size)
in each histogram yields composite maximum likelihood estimators (MLEs) that are asymp-
totically consistent with those of the classical (micro-data) setting, but at a potentially much
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cheaper computational cost. While these composite MLEs retain this asymptotic consistency re-
gardless of the method of histogram construction (as long as the volume of each bin approaches
zero as the number of bins approaches infinity) and how many random histograms are used,
their variances depend heavily on the amount of temporal information retained during the data
aggregation process. Accordingly we show that increasing the number of random histograms
leads to an overall decrease in the variance of the composite MLE. In Section 3.4 we explore the
performance of the histogram-based composite likelihood function through simulation studies
using max-stable processes, and in Section 3.5 we analyse real and future-simulated datasets
comprising daily maxima temperature data from 105 locations across Australia. We conclude
with a Discussion.

3.2 Symbolic and composite likelihoods

We first provide a brief overview of likelihood-based methods for symbolic random variables,
in particular focusing on histogram-valued random variables and the approach of Beranger
et al. (2018). Motivated by a desire to reduce computational overheads as the dimension of
the histogram K increases, we extend this setup to the case of a marginal-histogram (i.e. a
lower-dimensional margin of an original histogram). We then briefly review the ideas behind
composite likelihoods in a general setting.

3.2.1 Generative symbolic likelihoods

In simple terms, symbolic random variables are distributional-valued random variables that
are constructed by the aggregation of standard, classical random variables into a distributional
summary form, such as a random interval or random histogram. Symbolic data analysis is the
study and analysis of symbolic random variables (Billard, 2011, Billard and Diday, 2003, Bock
and Diday, 2000). Within this field, two main likelihood-based techniques have been developed
for the analysis of symbolic data; one based on analysing the symbols directly (Le Rademacher
and Billard, 2011, Brito and Silva, 2012, Lin et al., 2017) and one based on also modelling
the construction of the symbols from the generating process of the classical random variables
(Beranger et al., 2018, Zhang et al., 2019). This latter technique allows for the use of symbolic
data analysis methods as a means to expedite standard data analyses for large and complex
datasets. We adopt both this approach and motivation here.

The general construction of Beranger et al. (2018) is given as follows. Denote by X =
(X1, . . . , XN ) a vector of i.i.d. classical random variables, which takes values in some space DX
and has density gX( · ; θ) with unknown parameter vector θ. Each Xi takes values in DX and has
density gX( · ; θ) =

∫
gX( · ; θ)dX−i where X−i = X/Xi, so that DX = (DX)N . The observed

values x of X can then be aggregated into a distribution-valued symbol s, itself a realisation
of some symbolic random variable S ∈ DS , according to a known function fS|X=x(s|x, φ). The
likelihood associated with the process of generating and constructing the observed symbol s is
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then given by
L(s; θ, φ) ∝

∫
DX

fS|X=x(s|x, φ)gX(x; θ)dx. (3.1)

That is, L(s; θ, φ) is the expectation of the classical data likelihood gX(x; θ) over all possible
classical datasets x that could have produced the observed symbol s.

Beranger et al. (2018) considered several forms for fS|X=x(s|x, φ) that allowed for different
types of symbol (e.g. random intervals, hyper-rectangles and different forms of random his-
togram) and accordingly different resulting forms of symbolic likelihood function. Here we focus
on the fixed-bin, random-counts histogram, although extension of the results in this article to
other symbolic likelihood forms is possible.

Suppose that X1, . . . , XN are K-dimensional random vectors with DX = RK . The collection
of N classical data observations x ∈ RN×K may be aggregated into a K-dimensional histogram
on DX , where the k-th margin of DX is partitioned into Bk ∈ N bins, so that B1 × · · · × BK

bins are created in DX through the K-dimensional intersections of each marginal bin. Indexing
each bin b = (b1, . . . , bK), bk = 1, . . . , Bk, as the vector of marginal bin indices, bin b may be
constructed over the space Υb = Υ1

b × · · · × ΥK
b , where Υk

b = (ykbk−1, y
k
bk

] ⊂ R, and where, for
each margin k, −∞ < yk0 < yk1 < . . . < yk

Bk
< ∞ are fixed points that define the change from

one bin to the next. That is, b describes the coordinates of a bin within the K-dimensional
histogram and Υb ⊆ RK defines the space that it covers.

Now let Sb denote the random number of observed data points X1, . . . , XN that fall in bin
b. Then S = (S1, . . . , SB) is the vector of counts from the first bin 1 = (1, . . . , 1) to the last
bin B = (B1, . . . , BK), of length B1 × · · · × BK , and which satisfies

∑
b Sb = N . That is, S is

a random histogram with N observations. Following Beranger et al. (2018), and assuming that
gX(x; θ) =

∏N
i=1 gX(xi; θ), the resulting symbolic likelihood function (3.1) then becomes

L(s; θ) ∝ N !
s1! . . . sB!

B∏
b=1

Pb(θ)sb , (3.2)

where s = (s1, . . . , sB) is the observed value of S, and where Pb(θ) =
∫

Υb
gX(z; θ)dz is the

probability of observing a datapoint in bin Υb under the model gX(x; θ). (The φ parameter in
(3.1), which controls quantities relevant to constructing the symbol, is fixed in this setting, and
so we omit it from subsequent notation.) This multinomial form of likelihood makes intuitive
sense in that maximising this likelihood amounts to choosing parameters θ that optimally match
the empirical bin proportions with the corresponding bin probabilities under the model gX(x; θ).

Looking ahead to Section 3.3 where we will be constructing composite symbolic likelihood
functions, suppose that we are only interested in a subset of the K dimensions, represented by
some index set i = (i1, . . . , iI) ⊆ {1, . . . ,K}, where for convenience i1 < . . . < iI . We may
then construct the associated I-dimensional marginal histogram, defining bi as the subvector
of b containing those elements corresponding to the index set i. (We use this notation more
generally, so that a vector with superscript i means the subvector containing those elements
corresponding to the index set i.) Then if Si

bi is the random number of observed data points
Xi

1, . . . , X
i
N that fall in bin bi, we may construct an I-dimensional random marginal histogram
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Si = (Si1i , . . . , S
i
Bi) as the associated vector of random counts from the first bin 1i = (1, . . . , 1)

to the last bin Bi = (Bi1 , . . . , BiI ). The vector Si has length Bi1 × . . . × BiI and satisfies∑
bi Si

bi = N .
Note that we can write Si

bi =
∑
b̃:b̃i=bi Sb̃ so that we are effectively marginalising out the

non-indexed set −i = {1, . . . ,K}/i dimensions of the histogram S. Hence, Si is truly a marginal
histogram of S in the usual sense of the term.

Similarly to (3.2), the resulting symbolic likelihood function for the marginal histogram Si

is then given by

L(Si; θ) ∝ N !
si1i ! · · · siBi !

Bi∏
bi=1i

Pbi(θ)s
i
bi , (3.3)

where si = (si1i , . . . , s
i
Bi) denotes the observed value of Si and Pbi(θ) =

∫
Υ

bi
gi
Xi(zi; θ)dzi is the

probability of observing a datapoint in the I-dimensional marginal bin Υbi under the marginal
model gi

Xi(xi; θ) =
∫
gX(z; θ)dz−i, where z−i is the vector of elements of z that are not in zi.

In the case where I = {1, . . . ,K} then (3.3) is equal to (3.2).
Following similar arguments to Beranger et al. (2018), the symbolic likelihood L(Si; θ) ap-

proaches the equivalent classical data likelihood L(Xi; θ) = gi
Xi(Xi; θ) as the number of bins

in the marginal histogram approaches infinity and the volume of each bin approaches zero. In
particular, suppose for simplicity that the length |Υk

b | = ykbk − y
k
bk−1 of each univariate marginal

bin Υk
b = (ykbk−1, y

k
bk

] is equal for each margin k = 1, . . . ,K, with fixed endpoints yk0 and yk
Bk

.
Then as Bk →∞ the number of equally spaced bins grows, but their length |Υk

b | → 0. Then

lim
Bk→∞
k=1,...,K

L(Si; θ) = L(Xi; θ).

Intuitively in this setting, as the number of bins gets large and their volume reduces, in the limit
almost all bins will be empty, with each observed datapoint xi being contained in exactly one bin.
For the symbolic likelihood (3.3), this means that empty bins (si

bi = 0) will not contribute to the
likelihood, and the N non-empty bins (si

bi = 1) will contribute the term gi
Xi(xi; θ) = gXi(xi; θ),

which is the equivalent term contributed to the classical likelihood function L(Xi; θ).
As a result, this means that taking more bins will allow L(Si; θ), taken as an approximation

to L(Xi; θ), to approximate the classical data likelihood arbitrarily well. The difference is that
the symbolic likelihood contains B1 × . . .×BK terms, which may be considerably less than the
N terms of the classical data likelihood L(Xi; θ) =

∏N
k=1 gXi(xik; θ) for large datasets. In this

setting, the tradeoff of improved computational efficiency for some, perhaps small, approximation
error may be attractive.

In particular, we may construct the log-likelihood function of a bivariate random marginal
histogram Si2 by specifying the indices i2 = (i1, i2), marginal bin indices b2 = (bi1 , bi2) and
number of bins Bi1 ×Bi2 , giving

`(Si2 ; θ) ∝
Bi1∑
bi1=1

Bi2∑
bi2=1

si2(bi1 ,bi2 ) logP(bi1 ,bi2 )(θ). (3.4)
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Similarly, specifying i = (i1, i2, i3) leads to the log-likelihood function of a trivariate random
marginal histogram Si3 with Bi1 ×Bi2 ×Bi3 bins indexed by b3 = (bi1 , bi2 , bi3), given by

`(Si3 ; θ) ∝
Bi1∑
bi1=1

Bi2∑
bi2=1

Bi3∑
bi3=1

si3(bi1 ,bi2 ,bi3 ) logP(bi1 ,bi2 ,bi3 )(θ). (3.5)

Clearly the number of terms in the full symbolic likelihood (3.2), B1 × . . . × BK , increases
exponentially as the dimension of the histogram, K, increases. This is further compounded
since larger Bk, k = 1, . . . ,K, will produce a closer likelihood approximation L(S; θ) ≈ L(X; θ),
which may be desirable. Similarly, the complexity of efficiently computing the K-dimensional
integral Pb(θ) =

∫
Υb
gX(z; θ)dz also increases with K. Together this means that it may rapidly

become practically infeasible to directly use the symbolic likelihood of Beranger et al. (2018)
in more than, say, K = 5 or 6 dimensions, which reduces the applicability of this approach.
However, the computational overheads of the bivariate and trivariate marginal histogram log-
likelihoods (3.4) and (3.5) will be much lower. This motivates the use of composite likelihood
techniques, constructed from marginal histograms Si of S, which we now describe within the
symbolic likelihood setting.

3.2.2 Composite likelihoods

Composite likelihoods, part of the family of pseudo-likelihood functions, are one practical
technique for constructing asymptotically consistent likelihood-based parameter estimates when
the standard likelihood function is computationally intractable (Lindsay, 1988, Varin et al.,
2011). Such intractability can occur in many common modelling scenarios (Varin and Vidoni,
2005, Sisson et al., 2018). In particular, in Section 3.4 we examine max-stable process models
for spatial extremes (Davison et al., 2012, Padoan et al., 2010), for which closed-form densities
are available for models with K = 2 or 3 spatial locations, but not for the larger K required in
practical applications, typically measured in the hundreds. See Section 3.4 for further details.
Composite likelihoods are defined as the weighted product of conditional or marginal events
of a process, each of which may be described by e.g. an ordinary likelihood function (Lindsay,
1988). If we assume all weights are equal for simplicity, a composite likelihood function can be
expressed as LCL(x; θ) ∝

∏m
i=1 Li(x; θ), where Li(x; θ) is the likelihood function of a conditional

or marginal event of x for a given parameter vector θ.
A special case of the composite likelihood function is the j-wise composite likelihood function,

comprising all j-dimensional marginal events. Using the same notation as in Section 3.2.1, and
defining Ij = {i : i ⊆ {1, . . . ,K}, |i| = j} to be the set of all j-dimensional subsets of {1, . . . ,K},
the j-wise composite likelihood function can be written as

L
(j)
CL(x; θ) ∝

∏
i∈Ij

gi
Xi(xi; θ), (3.6)

where, as before, gi represents the j-dimensional (marginal) density associated with the j-wise
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event i ∈ Ij . In analogy with (3.4) and (3.5), when j = 2 the pairwise composite log-likelihood
function, `(2)

CL, is given by

`
(2)
CL(x; θ) ∝

K−1∑
i1=1

K∑
i2=i1+1

log gXi1 ,Xi2 (xi1 ,xi2 ; θ), (3.7)

and similarly for j = 3, the triple-wise composite log-likelihood, `(3)
CL, is given by

`
(3)
CL(x; θ) ∝

K−2∑
i1=1

K−1∑
i2=i1+1

K∑
i3=i2+1

log gXi1 ,Xi2 ,Xi3 (xi1 ,xi2 ,xi3 ; θ).

Taking first order partial derivatives of `(j)CL(x; θ) with respect to θ yields the composite
score function ∇`(j)CL(θ;x), and taking second order partial derivatives gives the Hessian matrix
∇2`

(j)
CL(θ;x). Lindsay (1988) showed that the resulting maximum j-wise composite likelihood

estimator, θ̂(j)
CL, is asymptotically consistent and distributed as

√
N
(
θ̂

(j)
CL − θ

)
→ N

(
0, G(j)(θ)−1

)
,

where G(j) is the (j-wise) Godambe information matrix (Godambe, 1960) defined by G(j)(θ) =
H(j)(θ)J (j)(θ)−1H(j)(θ), where H(j)(θ) = −Eg(∇2`

(j)
CL(θ;x)) and J (j)(θ) = Vg(∇`(j)CL(θ;x)) are

respectively the sensitivity and variability matrices. For standard likelihoods we have j = K and
I = {(1, . . . ,K)}, and so dropping the superscripts, H(θ) = J(θ) and the Godambe information
matrix reduces to G(θ) = H(θ) = I(θ), where I(θ) is the Fisher information matrix. The above
result shows that the composite MLE is asymptotically unbiased, however it is worth noting
that G(θ)−1 often does not attain the Cramer-Rao lower bound and subsequently there is a
decrease in efficiency when the the composite MLE is used in the place of the standard MLE
(Varin et al., 2011).

3.3 Composite likelihood functions for histogram-valued data

In this Section we introduce a composite likelihood function for random histograms that
is constructed using sets of marginal histograms. We will first present the main result, before
examining the consistency and variability of the symbolic composite MLE in turn, as the form
of each of these has interesting implications for statistical inference using random histograms.

3.3.1 Composite likelihood function

Suppose that we observe T independent replicates, X1, . . . ,XT , of the random variable
X = (X1, . . . , XN ) ∈ RK×N over some index variable t = 1, . . . , T (e.g. time), and denote the
realised values as xt. For each Xt, t = 1, . . . , T , we may construct a K-dimensional random
histogram St over the set of bins {1, . . . ,B}. A j-dimensional marginal histogram of St may
then be constructed as Sit, where i ∈ Ij . For a given model gX(x; θ) =

∏N
i=1 gX(xi; θ) for the
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micro-data Xt, the likelihood of the marginal histogram Sit is then given by L(Sit; θ) in (3.3).
We can now define the j-wise symbolic composite likelihood for all j-dimensional marginal
histograms Sit of St, i ∈ Ij , t = 1, . . . , T as follows.

Proposition 3.3.1. Writing S1:T = (S1, . . . ,ST ) as the collection of K-dimensional his-
tograms, the j-wise symbolic composite likelihood for S1:T is given by

L
(j)
SCL(S1:T ; θ) =

T∏
t=1

∏
i∈Ij

L(Sit; θ), (3.8)

where L(Sit; θ) is defined in (3.3). Defining the maximum j-wise symbolic composite likelihood
estimator as θ̂(j)

SCL = arg maxθ L
(j)
SCL(S1:T ; θ), following standard composite likelihood construc-

tion arguments (Lindsay, 1988) we have

√
N
(
θ̂

(j)
SCL − θ

)
→ N

(
0, G(j)(θ)−1

)
,

as N →∞ where G(j)(θ) = H(j)(θ)J (j)(θ)−1H(j)(θ), and where estimates of the sensitivity and
variability matrices are given by

Ĥ(θ̂(j)
SCL) = −

T∑
t=1

∑
i∈Ij

∇2`(Sit; θ) = −
T∑
t=1

∑
i∈Ij

Bi∑
bi=1i

si
t,bi∇2 logPt,bi(θ̂(j)

SCL) (3.9)

Ĵ(θ̂(j)
SCL) =

T∑
t=1

∑
i∈Ij

∇`(Sit; θ)

∑
i∈Ij

∇`(Sit; θ)

>

=
T∑
t=1

∑
i∈Ij

Bi∑
bi=1i

si
t,bi∇ logPt,bi(θ̂(j)

SCL)

∑
i∈Ij

Bi∑
bi=1i

si
t,bi∇ logPt,bi(θ̂(j)

SCL)

> , (3.10)

where t subscripts indicate dependence on St.

For example, the pairwise (j = 2) symbolic composite log-likelihood function is given by

`
(2)
SCL(S1:T ; θ) =

T∑
t=1

K−1∑
i1=1

K∑
i2=i1+1

`(S(i1,i2)
t ; θ) (3.11)

where `(S(i1,i2)
t ; θ) is given by (3.4), and the triple-wise (j = 3) symbolic composite log-likelihood

function is given by

`
(3)
SCL(S1:T ; θ) =

T∑
t=1

K−2∑
i1=1

K−1∑
i2=i1+1

K∑
i3=i2+1

`(S(i1,i2,i3)
t ; θ) (3.12)

where `(S(i1,i2,i3)
t ; θ) is given by (3.5).
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3.3.2 Symbolic composite maximum likelihood estimator consistency

It is straightforward to show that the j-wise symbolic composite likelihood estimator θ̂(j)
SCL

that maximises (3.8) is consistent with the equivalent composite likelihood estimator θ̂(j)
CL that

maximises L(j)
CL(X1:T ; θ) =

∏T
t=1 L

(j)
CL(Xt; θ) where L(j)

CL(Xt; θ) is given by (3.6) as the number
of bins in each marginal histogram approaches infinity and the volume of each bin approaches
zero.

We show this by extending the univariate proof described by Zhang (2017) to (w.l.o.g) the
bivariate (j = 2) setting, from which the extension to the K-dimensional case is immediate.

Consider the pairwise composite log likelihood given in (3.11). In this case, for i = (i1, i2) ∈
I2, and for any t = 1, . . . , T (although dropping the subscript t for clarity), the probability that
a bivariate micro-data observation Xi ∈ R2 falls in marginal bin bi = (bi1 , bi2) over the region
(yi1bi1−1, y

i1
bi1

]× (yi2bi2−1, y
i2
bi2

] is

Pbi(θ) = GiXi(yi1bi1 , y
i2
bi2

; θ)−GiXi(yi1bi1−1, y
i2
bi2

; θ)−GiXi(yi1bi1 , y
i2
bi2−1; θ) +GiXi(yi1bi1−1, y

i2
bi2−1; θ),

where GX(x; θ) is the distribution function of gX(x; θ).

Fixing the i2 margin, by the mean value theorem there exists a x̃bi1 ∈ (yi1bi1−1, y
i1
bi1

] such that

Pbi(θ) = (yi1bi1 − y
i1
bi1−1) d

dx1
GiXi(x̃bi1 , y

i2
bi2

; θ)− (yi1bi1 − y
i1
bi1−1) d

dx1
GiXi(x̃bi1 , y

i2
bi2−1; θ),

where d
dxk

GX denotes differentiation with respect to the k-th component of GX . Similarly fixing
the i1 margin, again by the mean value theorem there exists a x̃bi2 ∈ (yi2bi2−1, y

i2
bi2

] such that

Pbi(θ) = (yi1bi1 − y
i1
bi1−1) d

dx1

[
GX(x̃bi1 , y

i2
bi2

; θ)−GX(x̃ib1 , y
i2
bi2−1; θ)

]
= (yi1bi1 − y

i1
bi1−1)(yi2bi2 − y

i2
bi2−1) d

dx1

d

dx2
GX(x̃bi1 , x̃bi2 ; θ)

∝ d

dx1

d

dx2
GX(x̃bi1 , x̃bi2 ; θ) = gX(x̃bi1 , x̃bi2 ; θ).

This allows the pairwise symbolic composite log likelihood to be written as

`
(2)
SCL(S1:T ; θ) ∝

T∑
t=1

K−1∑
i1=1

K∑
i2=i1+1

Bi1∑
bi1=1

Bi2∑
bi2=1

si(bi1 ,bi2 ) log giXi(x̃bi1 , x̃bi2 ; θ).

Now, letting the number of bins Bi1 , Bi2 →∞ such that each bin’s volume→ 0 means that in the
limit each bin will either contain zero (si(bi1 ,bi2 ) = 0) or, assuming continuous data, exactly one
observation (si(bi1 ,bi2 ) = 1). In the case where a bin contains exactly one observation, the m-th
observed classical datapoint (xm,i1 , xm,i2), we have (yi1bi1−1, y

i1
bi1

]× (yi2bi2−1, y
i2
bi2

] → (xm,i1 , xm,i2).
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Hence (x̃bi1 , x̃bi2 )→ (xm,i1 , xm,i2) and so

`
(2)
SCL(S1:T ; θ) →

T∑
t=1

K−1∑
i1=1

K∑
i2=i1+1

N∑
m=1

log giXi(xm,bi1 , xm,bi2 ; θ),

which is has a maximum at θ̂(2)
CL. This argument straightforwardly extends to the j-wise symbolic

composite likelihood by iterated use of the mean value theorem.
This result means that the symbolic composite likelihood can be considered an asymptotically

consistent approximation of the standard composite likelihood, which yields an approximation
of the standard MLE. As a consequence, this approach can be considered ‘an approximation
of an approximation’, with the limiting case with increasing B (and reduction in bin volume)
resulting in the standard composite MLE, and this, simultaneously with increasing N yields
consistent estimates to the true value θ. The approximation can be arbitrarily close to the
classical composite equivalent (though at the cost of increasing computational overheads) as the
number of bins increases.

There are a number of specifications under which the T random histograms may be con-
structed from the underlying micro-data (and the details of these are encoded in the parameter
φ in (3.1)). These specifications control the location and sizes of the bins in each random his-
togram, and the number of random histograms, T , itself. While we do not discuss the merits
of particular constructions here, we note that the above asymptotic consistency result for the
symbolic composite log likelihood holds regardless of the method of bin construction in each
histogram (as long as the volume of each bin approaches zero as the number of bins approaches
infinity), and regardless of the number of random histograms, T (as long as the underlying
micro-data X1, . . . , XN are stationary). Consistency also holds for different numbers of micro-
data encoded in each random histogram St as long as there is sufficient data in enough unique
bins that `(Sit; θ) is well defined and satisfies the usual regularity conditions.

In particular, if each random histogram has exactly the same bins, so that ykt,bk = ykbk for all
t = 1, . . . , T , then the choice of T has no effect on the symbolic composite maximum likelihood
estimator. That is, θ̂SCL takes the same value independently of the number of random histograms
T . This is easily seen as

T∑
t=1

si
t,bi = si

bi , ∀b, i, (3.13)

where si
bi is the count of all micro-data falling in (marginal) bin bi when all data are allocated

to a single (T = 1) histogram. As a result, we then have

T∑
t=1

∑
i∈Ij

Bi∑
bi=1i

si
t,bi logPt,bi(θ) =

∑
i∈Ij

Bi∑
bi=1i

si
bi logPbi(θ),

and so the resulting symbolic composite maximum likelihood estimators are equivalent. As a
result, if primary interest of an analysis is of fast computation of θ̂SCL, then the optimal choice
is by constructing T = 1 random histograms, as this will allow for the fastest optimisation of
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`
(j)
SCL(S1:T ; θ). (Note that if all bins are equal, then this single histogram can be created by
simply summing the counts in each bin, following (3.13).) However, T = 1 will not be the
optimal choice if interest is also in computing Var(θ̂(j)

SCL) – see the following Section.

3.3.3 Variance consistency

We now show the conditions under which the symbolic Godambe information matrixG(θ̂(j)
SCL)

converges to the standard Godambe matrix G(θ̂(j)
CL). In particular, we will show that as the

number of equally spaced histogram bins becomes large (so that Bk → ∞ for k = 1, . . . ,K)
while the volume of each bin approaches zero (|Υb| → 0, ∀b), and as the number of histograms
T → N so that each histogram contains exactly one micro-data observation, then

lim
T→N

lim
Bk→∞
k=1,...,K

Var(θ̂(j)
SCL) = Var(θ̂(j)

CL).

Following the same arguments as in Section 3.3.2 it is straightforward to show that

lim
Bk→∞
k=1,...,K

Ĥ(θ̂(j)
SCL) = Ĥ(θ̂(j)

CL),

so that the symbolic Hessian matrix converges to the standard composite likelihood Hessian
matrix, regardless of the number of histograms, T , due to the additive form of (3.9). Numerical
estimates of Ĥ(θ̂(j)

SCL) can be obtained through numerical methods during maximum likelihood
estimation (e.g. using the optim function in R).

The natural estimator for the variability matrix is the empirical variance estimator (3.10).
With increasing T , the sum of the counts in each histogram St decreases in magnitude until
there is exactly 1 non-empty bin with count 1 in each of T = N marginal histograms. At this
point

Bi∑
bi=1i

si
t,bi = 1, ∀i ∈ Ij , t = 1, . . . , N.

As a result, the limit of the symbolic composite log-likelihood function, as T → N , is

lim
T→N

`
(j)
SCL(S1:T ; θ) ∝ lim

T→N

T∑
t=1

∑
i∈Ij

Bi∑
bi=1i

si
t,bi logPt,bi(θ) =

N∑
t=1

∑
i∈Ij

logPt,b(t)i(θ),

where b(t) denotes the bin which contains the single micro-data observation xt in histogram St.
Because

lim
Bk→∞
k=1,...,K

logPt,b(t)i(θ) = log giXi(xit; θ)

reduces to the standard composite likelihood marginal event component as the histogram bins
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reduce in size, then lim Bk→∞
k=1,...,K

θ̂
(j)
SCL = θ̂

(j)
CL. It then follows that from (3.10)

lim
T→N

lim
Bk→∞
k=1,...,K

Ĵ(θ̂(j)
SCL) = lim

Bk→∞
k=1,...,K

N∑
t=1

∑
i∈Ij

∇Pt,b(t)i(θ̂(j)
SCL)

∑
i∈Ij

∇Pt,b(t)i(θ̂(j)
SCL)

>

= lim
Bk→∞
k=1,...,K

N∑
t=1

∑
i∈Ij

∇giXi(xit; θ̂
(j)
CL)

∑
i∈Ij

∇giXi(xit; θ̂
(j)
CL)

>

= Ĵ(θ̂(j)
CL).

Convergence of the symbolic Godambe information matrix G(θ̂(j)
SCL) to the standard Godambe

matrix G(θ̂(j)
CL) then follows under these limit conditions.

While the above result confirms that the limiting behaviour of θ̂(j)
SCL is the same as θ̂(j)

CL, in
particular as T → N , in practice we may prefer to have less than N random histograms for a
given analysis, particularly if N is very large. In this setting, for a fixed T < N we then have

lim
Bk→∞
k=1,...,K

Ĵ(θ̂(j)
SCL) =

T∑
t=1

∑
i∈Ij

∇gi
Xi(xit; θ̂

(j)
SCL)

∑
i∈Ij

∇gi
Xi(xit; θ̂

(j)
SCL)

> (3.14)

using similar arguments to the above.

Compared to the standard composite likelihood sensitivity matrix Ĵ(θ̂(j)
CL), (3.14) can be

interpreted as the sensitivity matrix for a classical (micro-data) dataset where some temporal
information is lost. That is, we know which time block (histogram) t = 1, ..., T each observation
came from, but not specifically when each observation occurred within that block. As a result
the variability of θ̂(j)

SCL will always be larger for a smaller number of time blocks. As T increases,
more temporal information is retained as each time block then decreases in size. This leads to
more precise knowledge about when each data point may have been observed, and accordingly
leading to a reduction in the variance of θ̂(j)

SCL. The standard composite likelihood case is
recovered for T = N when the time of each datapoint is known exactly.

Equation (3.14) thereby characterises the loss in precision for the standard composite MLE
as temporal information is lost. It also characterises the limiting performance (in the sense
of Bk → ∞, ∀k) of the symbolic composite MLE. (This relationship is explored explicitly in
Section 3.4.2.) However the advantage of working with θ̂(j)

SCL is that the likelihood function is
typically more computationally efficient to evaluate for large N . As such, estimating Var(θ̂(j)

SCL)
represents a trade-off between greater precision (larger T ) and greater computational and data
storage efficiency (smaller T ).

In practice, the analyst would choose T as small as possible such that the inferential goals
(perhaps depending on confidence intervals of model parameters) are still viable, in order to
maximise overall analysis efficiency. Recall that, as discussed in Section 3.3.2, if all histogram
bins are equal, computation of the symbolic composite MLE itself can be achieved at low cost
by combining all histograms into a single histogram (T = 1). So the main impact of the number
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of histograms is on the variability of the symbolic composite MLE. If the underlying data is
available, then T = N can be used to determine the lowest possible variance of the obtained
estimates, as the computational cost of evaluating the variance, given the estimates, is only a
small proportion of the total computation when compared to the cost of evaluating the estimates
via the optimisation of the likelihood.

Increasing values of B can be investigated sequentially in order to determine the point at
which comparable estimates and standard errors to the classical composite likelihood function are
obtained. For the value B at which the change in results compared to the previously investigated
value is negligible, the practitioner can be confident that further increasing the number of bins
will not significantly improve the analysis, although it will increase the computational burden.
Although this approach requires the optimisation of multiple symbolic composite likelihood
estimators θ̂(j)

SCL for varying values of B, the simulations in the following section will demonstrate
that this is still more computationally efficient than the existing classical analysis for large
datasets, due to the large computational gains associated with employing a symbolic approach.
This simple approach is utilised in both the simulation studies in Section 3.4, and the real data
analysis in Section 3.5.

3.4 Simulation studies

We now examine the performance of the symbolic composite maximum likelihood estimator
within the context of our motivating application – modelling spatial extremes using max-stable
processes. We first briefly introduce these, before comparing θ̂(j)

SCL to standard composite likeli-
hoods in accuracy, precision and efficiency under a range of modelling scenarios.

3.4.1 Max-stable process models

Jenkinson (1955) first proposed a limiting distribution for modelling datasets comprising
of block maxima. Suppose X1, . . . , Xn ∈ D, in some continuous space D, are i.i.d. univariate
random variables with distribution function F , and Mn = max{X1, . . . , Xn}. If there exist
constants an > 0, bn ∈ R such that

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= lim

n→∞
Fn(anx+ bn) = G(x),

is non-degenerate, for all x ∈ D, then G is a member of the generalised extreme value (GEV)
family whose distribution function is given by G(x;µ, σ, ξ) = exp{−v(x;µ, σ, ξ)}, where µ ∈ R,

σ > 0, ξ ∈ R, v(y;µ, σ, ξ) =
(
1+ξ y−µσ

)− 1
ξ

+
when ξ 6= 0 and e−

y−µ
σ otherwise, and a+ = min{0, a}.

Max-stable processes (de Haan, 1984, Resnick, 1987, de Haan and Ferreira, 2006) are a
popular tool to model spatial extremes. Let X1, X2, . . . be a sequence of i.i.d. copies of a
stochastic process {X(t) : t ∈ T } over some space T . If continuous functions an(t) > 0,
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bn(t) ∈ R exist such that

lim
n→∞

maxi=1,...,nXi(t)− bn(t)
an(t) = Y (t)

is non-degenerate, then Y (t) is a max-stable process. Spectral representations (de Haan, 1984,
Schlather, 2002) allow to define max-stable models for Y (t) such as the flexible extremal skew-t
(Beranger et al., 2017) and its particular cases. Here we select the Gaussian max-stable process
(Smith, 1990), one of the simplest parametric models. Genton et al. (2011) derived the joint
distribution function of this model for K ≥ 2 spatial locations with coordinates tk ∈ T = Rd,
k = 1, . . . ,K, where K ≤ d + 1. Let T̃ = (t1, . . . , tK) ∈ Rd×K be the matrix of coordinates
for the locations, and T̃−k be the matrix T̃ without the kth column, k = 1, . . . ,K. Also let
v = (v1, . . . , vK)> ∈ RK+ and c(j)(v) =

(
c

(j)
1 (v), . . . , c(j)

j−1(v), c(j)
j+1(v), . . . , c(j)

K (v)
)>
∈ RK−1,

where, for k = 1, . . . ,K, vk = v(yk;µ, σ, ξ)−1 and c(j)
k (v) = (tj − tk)>Σ−1(tj − tk)/2− log

(
vj
vk

)
.

Then, writing Σ(j) = (tj1>K−1 − T̃−j)>Σ−1(tj1>K−1 − T̃−j), where 1d = (1, . . . , 1)> ∈ Rd, the
distribution function of the Gaussian max-stable process model can be written as

P (Y1(t) ≤ y1, . . . , YK(t) ≤ yK) = exp

−
K∑
j=1

1
vj

ΦK−1
(
c(j)(v); Σ(j)

) , (3.15)

where Φd( · ; Σ) is the d−dimensional zero-mean Gaussian distribution function with covariance
matrix Σ. Each univariate margin of this process is a GEV distribution. The parameters for
this model are the spatial covariance matrix Σ = [σij ] and the marginal GEV parameters µ, σ, ξ.

For typical spatial problems the number of spatial locations K is in the order of hundreds.
We useK ∼ 100 in some of the below simulations and the future-simulation climate data analysis
in Section 3.5. However, for a d = 2 dimensional surface, (3.15) is only valid for K = 2 or 3
locations, and for other constructions of max-stable models the distribution function becomes
rapidly intractable for more than a handful of spatial locations. For this reason, composite
likelihood techniques are attractive in practice.

In the following we compare the performance of both symbolic composite and standard
composite likelihood MLEs (θ̂(j)

SCL and θ̂(j)
CL respectively) in scenarios following those in Padoan

et al. (2010) and Genton et al. (2011), where θ = (σ11, σ12, σ22, µ, σ, ξ).
For each experiment, K locations are generated uniformly over the space T = [0, 40] ×

[0, 40] (d = 2). For each location, N realisations are generated from the Gaussian max-stable
model using the R package SpatialExtremes (Ribatet, 2015) with standard Gumbel margins
(i.e. (µ, σ, ξ) = (0, 1, 0)).

3.4.2 Comparisons with composite likelihoods

Varying the number of bins, B

We generate N = 1 000 realisations for K = 15 locations and 5 different configurations of the
covariance matrix Σ, with true values given in Table 3.1, which represent a range of dependence
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Figure 3.1: B × B bivariate histograms for different values of B for the same classical dataset
(bottom right panel) of size N = 1 000, generated at two spatial locations under the Gaussian
max-stable model with Σ = Σ3 (Table 3.1).

Model σ11 σ12 σ22
Σ1 300 0 300
Σ2 300 150 300
Σ3 300 150 200
Σ4 3 000 1 500 3 000
Σ5 30 15 30

Table 3.1: Spatial dependence parameter specifications for the Gaussian max-stable model,
following Padoan et al. (2010).

scenarios. For each dataset a single histogram S (T = 1) is ‘constructed’, although in practice
we only construct all histograms Si, i ∈ I2 for each pair of spatial locations. The number of
bins is constant in each dimension Bk = B, k = 1, . . . ,K, and we specify B = 2, 3, 5, 10, 15 and
25. Figure 3.1 shows the resulting bivariate histograms for two locations with Σ = Σ3.

Table 3.2 reports the resulting mean symbolic composite and composite MLEs, θ̂(2)
SCL and

θ̂
(2)
CL, with standard errors in parentheses, based on 1 000 replicate analyses, for different values
of B. While for low B there is high variability in the estimates, as B increases the mean MLEs
and standard errors approach the same quantities obtained under the classical data analysis,
even in cases of very strong (Σ4) or very weak (Σ5) dependence.

In this case, comparable estimates to the composite MLEs are available for B = 25, however
practically viable estimates (with larger variances) can be obtained for much smaller values
(B ≈ 10).
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Model B σ11 σ12 σ22 µ σ ξ

Σ1

2 335.5 (585.5) 5.7 (232.2) 317.2 (125.1) 0.0383 (0.1639) 0.8687 (0.0061) -0.0194 (0.0301)
3 301.0 ( 34.5) -0.1 ( 16.9) 301.9 ( 33.5) 0.0812 (0.0550) 0.9195 (0.0342) 0.0182 (0.0210)
5 299.1 ( 23.1) -0.9 ( 13.2) 299.9 ( 24.1) 0.0067 (0.0295) 0.9666 (0.0285) 0.0136 (0.0194)

10 299.8 ( 20.2) -0.5 ( 11.1) 300.0 ( 20.9) -0.0015 (0.0276) 0.9898 (0.0186) 0.0039 (0.0120)
15 299.8 ( 18.9) -0.3 ( 10.4) 300.0 ( 19.5) -0.0017 (0.0272) 0.9929 (0.0179) 0.0027 (0.0110)
25 299.7 ( 18.0) -0.3 ( 10.0) 300.2 ( 18.9) -0.0016 (0.0272) 0.9954 (0.0179) 0.0013 (0.0102)

Classic 300.76 (17.1) -0.4 (9.7) 301.02 (18.1) -0.0019 (0.0262) 0.9986 (0.0173) 0.0007 (0.0084)

Σ2

2 316.59 (149.1) 165.1 (246.8) 332.9 (153.5) 0.3763 (0.1448) 0.8671 (0.0632) -0.0163 (0.0284)
3 299.6 ( 35.0) 149.7 ( 24.9) 300.8 ( 33.7) 0.0755 (0.0439) 0.9258 (0.0284) 0.0151 (0.0192)
5 298.9 ( 23.4) 149.2 ( 16.7) 299.9 ( 23.4) 0.0077 (0.0280) 0.9705 (0.0266) 0.0114 (0.0182)

10 299.3 ( 20.2) 149.6 ( 13.9) 300.3 ( 19.9) 0.0002 (0.0267) 0.9912 (0.0182) 0.0023 (0.0118)
15 299.4 ( 19.2) 149.7 ( 13.2) 300.5 ( 19.0) -0.0001 (0.0265) 0.9941 (0.0179) 0.0021 (0.0108)
25 299.7 ( 18.3) 149.9 ( 12.5) 300.5 ( 18.1) 0.0001 (0.0265) 0.9964 (0.0176) 0.0009 (0.0100)

Classic 300.7 (17.0) 150.4 (11.6) 301.53 (17.0) -0.0002 (0.0258) 0.9997 (0.0172) 0.0004 (0.0081)

Σ3

2 321.6 (360.0) 162.3 (210.6) 210.8 (131.2) 0.3596 (0.1310) 0.8671 (0.0586) -0.0150 (0.0271)
3 296.1 ( 30.6) 147.4 ( 20.1) 197.9 ( 19.9) 0.0723 (0.0422) 0.9302 (0.0280) 0.0113 (0.0174)
5 298.8 ( 23.3) 149.4 ( 15.3) 199.6 ( 15.4) 0.0065 (0.0263) 0.9713 (0.0237) 0.0102 (0.0170)

10 299.0 ( 19.3) 149.6 ( 12.3) 199.7 ( 12.9) -0.0001 (0.0252) 0.9908 (0.0174) 0.0031 (0.0114)
15 299.5 ( 18.7) 149.8 ( 11.6) 199.8 ( 12.1) -0.0009 (0.0249) 0.9942 (0.0170) 0.0021 (0.0105)
25 299.7 ( 17.8) 150.0 ( 11.2) 200.0 ( 11.8) -0.0009 (0.0251) 0.9963 (0.0168) 0.0009 (0.0096)

Classic 300.7 (16.4) 150.6 (10.2) 200.6 (10.9) -0.0013 (0.0243) 0.9993 (0.0164) 0.0004 (0.0079)

Σ4

2 3554 (2071) 1848 (1319) 3473 (1839) 0.4337 (0.2211) 0.8691 (0.0847) -0.0393 (0.0342)
3 2954 ( 435) 1453 ( 294) 2952 ( 405) 0.0857 (0.0729) 0.9132 (0.0418) 0.0202 (0.0250)
5 3003 ( 345) 1500 ( 244) 2996 ( 337) 0.0071 (0.0355) 0.9626 (0.0366) 0.0156 (0.0258)

10 3002 ( 249) 1506 ( 169) 2997 ( 239) -0.0004 (0.0323) 0.9891 (0.0233) 0.0030 (0.0172)
15 2992 ( 217) 1498 ( 148) 2988 ( 211) -0.0009 (0.0318) 0.9930 (0.0224) 0.0009 (0.0147)
25 2992 ( 199) 1499 ( 136) 2991 ( 200) -0.0010 (0.0318) 0.9953 (0.0222) -0.0001 (0.0128)

Classic 3002 (190) 1503 (124) 2999 (189) -0.0001 (0.0308) 0.9988 (0.0217) -0.0025 (0.0113)

Σ5

2 30.97 (3.57) 15.53 (2.81) 30.98 (3.86) 0.3356 (0.1003) 0.8662 (0.0456) -0.0002 (0.0093)
3 29.83 (2.04) 14.89 (1.58) 29.82 (2.18) 0.0633 (0.0246) 0.9452 (0.0184) 0.0032 (0.0099)
5 29.86 (1.54) 14.85 (1.17) 29.82 (1.71) 0.0071 (0.0157) 0.9821 (0.0140) 0.0021 (0.0076)

10 29.93 (1.27) 14.92 (0.95) 29.91 (1.45) 0.0012 (0.0149) 0.9928 (0.0111) 0.0009 (0.0046)
15 29.96 (1.20) 14.93 (0.91) 29.91 (1.33) 0.0004 (0.0146) 0.9952 (0.0108) 0.0007 (0.0038)
25 29.97 (1.13) 14.95 (0.86) 29.94 (1.28) 0.0001 (0.0145) 0.9970 (0.0106) 0.0003 (0.0031)

Classic 30.10 (0.94) 15.06 (0.66) 30.06 (1.03) -0.0004 (0.0144) 0.9997 (0.0104) 0.0000 (0.0004)

Table 3.2: Mean (and standard errors) of the symbolic composite MLE θ̂
(2)
SCL and composite

MLE θ̂
(2)
CL (Classic) from 1000 replications of the Gaussian max-stable process model, for B×B

histograms for varying values of B. Results based on N = 1 000 observations at K = 15 spatial
locations and T = 1 random histogram.

Varying the number of bins and marginal histogram dimension

We generate N = 106 realisations for K = 10 locations using the covariance parameter
specification Σ = Σ3. Both pairwise (B2×B2 marginal histograms) and triplewise (B3×B3×B3

marginal histograms) symbolic composite MLEs, θ̂(2)
SCL and θ̂(3)

SCL, were computed and compared
for varying values of B2 and B3, constructed from a single (T = 1) random histogram.

Table 3.3 reports the resulting means and standard errors of θ̂(2)
SCL and θ̂(3)

SCL obtained over
200 replicate analyses. Each row represents marginal pairwise and triplewise histograms with
approximately equal numbers of bins (i.e. B2

2 ≈ B3
3) representing approximately equivalent

computational overheads. As before, both symbolic composite MLEs converge as the number
of bins increases.

When the number of bins are comparable (i.e. B2
2 ≈ B3

3) the pairwise estimates invariably
have smaller standard errors than the triplewise estimates. This can be attributed to the direct
tradeoff between a lower resolution histogram in higher dimensions compared to a higher reso-
lution histogram in lower dimensions, when keeping the number of histogram bins comparable.
In this case, the extra lower-dimensional precision is more informative for the model parameters
than higher-dimensional information, and so the pairwise estimator is more efficient. However,
when the number of bins in each margin is the same (B2 = B3), so that the resolution in each
dimension is the same, but where the triplewise estimator uses higher-dimensional information
(using more bins), then the triplewise composite MLE is naturally the most efficient.



3.4. SIMULATION STUDIES 53

B2
2 |B2

3
σ11 σ12 σ22

Pair Triple Pair Triple Pair Triple
32|23 300.62 (2.80) 298.98 (8.45) 150.35 (1.94) 149.36 (5.76) 200.14 (1.74) 199.68 (5.46)
52|33 300.55 (0.95) 300.23 (2.44) 150.40 (0.66) 150.09 (1.66) 200.26 (0.55) 200.02 (1.50)
82|43 300.45 (0.80) 300.21 (1.28) 150.31 (0.54) 150.16 (0.86) 200.20 (0.50) 200.07 (0.82)

112|53 300.57 (0.72) 300.42 (0.91) 150.39 (0.46) 150.30 (0.62) 200.22 (0.38) 200.19 (0.56)

B2
2 |B2

3
µ σ ξ

Pair Triple Pair Triple Pair Triple
32|23 0.0426 (0.0217) 0.1515 (0.0494) 0.9803 (0.0094) 0.9718 (0.0112) 0.0039 (0.0023) 0.0004 (0.0055)
52|33 0.0016 (0.0025) 0.0411 (0.0209) 0.9978 (0.0033) 0.9807 (0.0092) 0.0008 (0.0013) 0.0037 (0.0023)
82|43 0.0001 (0.0007) 0.0093 (0.0079) 0.9999 (0.0007) 0.9926 (0.0056) 0.0001 (0.0001) 0.0020 (0.0016)

112|53 0.0000 (0.0008) 0.0015 (0.0023) 0.9999 (0.0001) 0.9978 (0.0029) 0.0000 (0.0001) 0.0008 (0.0011)

Table 3.3: Mean (and standard errors) of the pairwise (θ̂(2)
SCL) and triplewise (θ̂(3)

SCL) symbolic
composite MLEs from 200 replications of the Gaussian max-stable process model for B2 × B2
(pairwise) and B3 ×B3 ×B3 (triplewise) histograms, with varying B2, B3. Rows correspond to
B2

2 ≈ B3
3 to compare approximately equal numbers of histogram bins. Results based on N = 106

observations at K = 10 spatial locations, T = 1 random histogram and Σ = Σ3.

Varying the number of spatial locations, K

We generate N = 106 realisations at K locations (for varying K) using the covariance
parameter specification Σ = Σ3. The random locations for smaller K are a subset of those
for larger K. Both pairwise and triplewise symbolic composite MLEs, θ̂(2)

SCL and θ̂
(3)
SCL, are

computed, using B2 × B2 and B3 × B3 × B3 random marginal histograms, where B2 = 8 and
B3 = 4 so that each marginal histogram has 64 bins.

Table 3.4 reports the resulting means and standard errors of θ̂(2)
SCL and θ̂

(3)
SCL for different

values of K, based on 200 replicate analyses. As expected, as K increases both composite
MLEs become increasingly accurate, particularly the dependence parameters (σ11, σ12, σ22), as
the amount of spatial information increases, with the pairwise composite MLEs producing more
accurate estimates for an equivalent number of bins. These results are consistent with those for
standard pairwise and triplewise composite MLEs seen in e.g. Padoan et al. (2010) and Genton
et al. (2011).

Varying the number of underlying observations, N

One of the motivations for aggregating micro-data into random histograms before an analysis
is that the analysis, while losing some information in the data, will be much faster. We generate
N = 103, . . . , 107 realisations for K = 10 locations using the covariance parameter specification
Σ = Σ3. We compute standard pairwise composite (θ̂(2)

CL) and symbolic pairwise composite
(θ̂(2)
SCL) MLEs, with B2 = 25 and T = 1.
Table 3.5 reports the resulting means and standard errors of θ̂(2)

CL and θ̂(2)
SCL for different values

of N , based on 100 replicate analyses. As expected, as N increases the composite MLEs become
increasingly accurate, with the standard composite MLEs outperforming the symbolic composite
MLEs, although the difference here is relatively minor as we are using 25 × 25 histogram bins
in each pairwise comparison. However, it was not computationally viable to compute θ̂(2)

CL for
N ≥ 106. To explore this in more detail, these simulations were repeated for K = 20, 50, 100
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K
σ11 σ12 σ22

Pair Triple Pair Triple Pair Triple
3 300.44 (5.80) 299.24 (13.37) 150.30 (2.41) 150.02 (6.75) 201.55 (11.12) 200.12 (7.84)
5 300.35 (1.53) 299.95 ( 2.37) 150.28 (1.10) 150.02 (1.99) 200.22 ( 1.00) 199.98 (1.89)
10 300.21 (0.88) 299.95 ( 1.22) 150.15 (0.59) 149.99 (0.83) 200.10 ( 0.53) 199.94 (0.77)
15 300.19 (0.71) 299.93 ( 1.12) 150.12 (0.48) 150.00 (0.73) 200.06 ( 0.46) 200.00 (0.72)
20 300.20 (0.78) 299.99 ( 0.99) 150.14 (0.47) 150.02 (0.70) 200.08 ( 0.44) 199.99 (0.69)

K
µ σ ξ

Pair Triple Pair Triple Pair Triple
3 -0.00003 (0.0011) 0.00727 (0.0102) 0.9999 (0.0009) 0.9947 (0.0069) 0.00006 (0.00062) 0.00121 (0.00193)
5 -0.00002 (0.0010) 0.00671 (0.0088) 0.9999 (0.0008) 0.9950 (0.0064) 0.00008 (0.00059) 0.00111 (0.00187)
10 -0.00006 (0.0009) 0.00595 (0.0068) 0.9999 (0.0007) 0.9956 (0.0047) 0.00009 (0.00048) 0.00093 (0.00133)
15 -0.00004 (0.0001) 0.00553 (0.0054) 0.9999 (0.0007) 0.9958 (0.0042) 0.00007 (0.00042) 0.00092 (0.00131)
20 -0.00005 (0.0001) 0.00524 (0.0053) 0.9999 (0.0007) 0.9961 (0.0039) 0.00006 (0.00048) 0.00080 (0.00121)

Table 3.4: Mean (and standard errors) of the pairwise (θ̂(2)
SCL) and triplewise (θ̂(3)

SCL) symbolic
composite MLEs from 200 replications of the Gaussian max-stable process model for B2 × B2
(pairwise) and B3×B3×B3 (triplewise) histograms, with varying K. Results based on N = 106

observations in T = 1 random histogram with B2 = 8 and B3 = 4 (so that B2
2 = B3

3) and
Σ = Σ3.

spatial locations, and a slightly smaller range of observed data (N = 1 000 to 500 000) to provide
a better comparison with the standard composite MLEs.

Table 3.6 summarises the mean computation times (in seconds) for different stages involved
in computing the composite MLEs, based on 10 replicate analyses. Simply in terms of optimising
the respective likelihood functions, the symbolic composite likelihood (ts) is much more efficient
than the equivalent composite likelihood (tc). The computational overheads of the former are
essentially constant with respect to N , and so these are largely driven by the number of pairwise
components (K/(K − 1)/2) in the likelihood. The computational overheads of the composite
likelihood are driven both by N and K, and so computing θ̂

(2)
CL becomes largely impractical

when either becomes moderately large. Clearly computation of θ̂(2)
SCL would take similar times

to those in Table 3.6 for considerably larger N .

An additional step in computing θ̂(2)
SCL is construction of all bivariate marginal histograms

Si, i ∈ I2. We constructed these in two alternative ways: using the R function hist (thistR)
and the R package DeltaRho (thistDR) which provides an interface to map-reduce functionality
whereby the histograms can be constructed in parallel on multiple processors and machines, and
then combined.

For small values of N , using the simple hist function on a local machine is quicker than us-
ing DeltaRho and communicating between multiple machines. However, DeltaRho increasingly
outperforms hist as the number of datapoints N increases. Our DeltaRho setup was modest
with only 4 parallel machines; more expansive setups could drastically reduce histogram con-
struction time for large N . Regardless of the histogram construction method adopted, it is clear
that computing the symbolic composite MLE is considerably more efficient than the standard
composite MLE.
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N
σ11 σ12 σ22

Classic Pair Classic Pair Classic Pair
103 299.48 (17.09) 298.11 (17.24) 149.90 (10.37) 148.84 (11.05) 200.45 (11.05) 200.11 (11.69)
104 299.07 ( 5.76) 298.56 ( 6.07) 149.65 ( 3.26) 149.09 ( 3.63) 199.92 ( 3.32) 199.39 ( 3.70)
105 300.56 ( 1.56) 300.49 ( 2.07) 150.42 ( 0.98) 150.32 ( 1.27) 200.28 ( 1.14) 200.18 ( 1.49)
106 – 300.21 ( 0.61) – 150.18 ( 0.45) – 200.14 ( 0.43)
107 – 300.13 ( 0.23) – 150.06 ( 0.17) – 200.02 ( 0.18)

N
µ σ ξ

Classic Pair Classic Pair Classic Pair
103 -0.0074 (0.0280) -0.0077 (0.0286) 0.9972 (0.0169) 0.9964 (0.0170) 0.0016 (0.0115) 0.0024 (0.0123)
104 -0.0017 (0.0074) -0.0013 (0.0076) 0.9989 (0.0051) 0.9988 (0.0052) -0.0002 (0.0039) -0.0002 (0.0040)
105 -0.0002 (0.0021) -0.0002 (0.0025) 1.0000 (0.0014) 1.0000 (0.0015) 0.0001 (0.0010) 0.0001 (0.0013)
106 – 0.0000 (0.0007) – 1.0000 (0.0004) – 0.0000 (0.0004)
107 – -0.0001 (0.0002) – 1.0000 (0.0001) – 0.0000 (0.0001)

Table 3.5: Mean (and standard errors) of the standard pairwise composite (θ̂(2)
CL) and symbolic

pairwise composite (θ̂(2)
SCL) MLEs from 100 replications of the Gaussian max-stable process model

with B2 × B2 histograms with B2 = 25. Results are based on K = 10 spatial locations, T = 1
random histogram and Σ = Σ3.

Varying the number of histograms, T

Until now the N observed datapoints have been aggregated into a single histogram, T = 1 (or
more precisely one low-dimensional marginal histogram per composite likelihood component). If
each histogram S1, . . . ,ST has exactly the same bins then collapsing these to a single histogram,
as discussed in Section 3.3.2, will produce the same symbolic composite MLE as if T > 1
histograms were used. However the number of random histograms T will affect the standard
errors of θ̂(j)

SCL, as discussed in Section 3.3.3. That is, by aggregating the spatially observed micro-
data over multiple time points, there is a loss of information in knowing which observations at
location ti occurred at the same time as observations at location tj within the same random
histogram. This results in a loss of spatial information, which will impact the efficiency of the
symbolic likelihood estimators.

To examine this we generate N = 1 000 realisations for K = 10 spatial locations using the
covariance parameter specification Σ = Σ3. We compute the standard composite (θ̂(2)

CL) and
symbolic (θ̂(2)

SCL) pairwise composite MLEs when aggregating the observations equally into T =
4, 5, 10, 20, 40, 50, 100, 200 and 1000 histograms St (so that for T = 1 000 we have 1 observation
per random histogram), with B×B = 252 bins in each pairwise marginal histogram. The means
of the Godambe standard errors for the composite MLEs for each value of T are reported in
Table 3.7, based on 1 000 replicate analyses. This procedure is then repeated 100 times while
varying the number of marginal histogram bins (B2), with the results illustrated in Figure 3.2.

From Table 3.7, for a small number of histograms the estimated standard errors are large
compared to the standard composite likelihood estimates due to the significant loss of tempo-
ral information. As T increases these standard errors reduce as more temporal information is
recovered. With T = N (and one data point per histogram) the standard errors become com-
parable, although the location of the single datapoint within each histogram for T = N is still
uncertain, and so unless the number of bins also increases, the standard errors of the symbolic
composite MLE will be larger than those of the standard composite MLE, even for T = N .
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N
K = 10 K = 20

tc ts thistDR thistR tc ts thistDR thistR

1 000 71.9 22.5 0.8 0.1 383.4 79.6 1.8 0.4
5 000 291.8 19.0 0.8 0.3 1 578.2 99.3 2.1 1.0
10 000 591.7 23.8 0.9 0.5 3 125.4 103.2 2.4 1.8
50 000 2 626.8 24.2 1.7 2.1 20 459.4 107.3 4.5 7.6
100 000 5 610.7 25.4 2.4 4.2 – 115.0 6.9 14.9
500 000 31 083.1 23.2 7.5 20.6 – 96.1 26.6 73.5

N
K = 50 K = 100

tc ts thistDR thistR tc ts thistDR thistR

1 000 7 333.9 528.5 9.3 3.0 – 2 238.0 78.8 12.0
5 000 27 616.5 665.1 10.6 7.7 – 2 650.2 81.7 30.9
10 000 – 696.3 12.4 13.5 – 2 356.6 85.8 54.1
50 000 – 744.8 24.8 59.0 – 2 300.6 131.6 237.0
100 000 – 768.1 41.3 115.7 – 2 766.9 188.2 461.8
500 000 – 802.9 156.1 561.3 – 3 111.5 627.1 2 243.5

Table 3.6: Mean computation times (seconds) for different components involved in computing
θ̂

(2)
CL and θ̂(2)

SCL for different classical dataset sizes N and number of spatial locations K, based
on 10 replicate analyses. Columns tc and ts respectively show the time taken to optimise the
standard composite and symbolic composite likelihood functions. Columns thistDR and thistR
show the time taken to aggregate the data into histograms using DeltaRho and R function hist
respectively. Results are based on T = 1 random histogram and Σ = Σ3.

Figure 3.2 illustrates how the mean Godambe standard errors, for fixed T , approach the (square
root of the) appropriate diagonal term of the limit (3.14) of the variability matrix Ĵ(θ̂(2)

SCL), as
the number of histogram bins becomes large. As T → N this limit (horizontal dashed lines)
approaches the equivalent standard errors under the standard composite likelihood (the lowest
horizontal dashed line).

Of course, while standard error accuracy increases for larger T , computational overheads
increase in proportion to T . Hence in practice, and with equal bins over all histograms, to
compute the symbolic composite MLE θ̂

(j)
SCL we would use T = 1, whereas to compute standard

errors we would use as small a number of histograms as possible (to maximise computational
efficiency) such that the scale of the standard errors is acceptable within the context of the given
analysis.

T σ11 σ12 σ22 µ σ ξ
5 217.81 147.60 158.48 0.31 0.19 0.13
10 167.90 113.21 122.55 0.23 0.15 0.10
20 122.00 82.66 88.64 0.17 0.11 0.07
50 79.09 54.10 57.91 0.11 0.07 0.05
100 56.23 38.37 40.93 0.08 0.05 0.03
200 40.01 27.19 29.02 0.06 0.04 0.02
1000 17.94 12.28 13.07 0.03 0.02 0.01

Classic 16.65 11.53 12.69 0.021 0.014 0.008

Table 3.7: Means of the estimated Godambe standard errors of θ̂(2)
SCL and θ̂

(2)
CL for different

numbers of random histograms, T , based on 1 000 replicate analyses. Results are based on
N = 1 000 observations with B = 25 and Σ = Σ3.
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Figure 3.2: Godambe standard errors (solid lines) for the dependance parameters (σ11, σ12, σ22)
of θ̂(2)

SCL for varying number of random histograms T , and number of marginal histogram bins
B2. Dashed horizontal lines denote the appropriate term of the limit (3.14) of the variability
matrix Ĵ(θ̂(2)

SCL). Results are based on N = 1 000 observations with Σ = Σ3.

3.5 Analysis of millennial scale climate extremes

We consider daily maxima of historical temperature data (1850–2006) and future simulated
temperature data (2006–2100) simulated using the CSIRO Mk3.6 climate model, for 105 grid
locations (considered as the spatial co-ordinates) at the centre of 1.875◦ × 1.875◦ grid cells over
Australia (Figure 3.3). Two different scenarios (RCP4.5 and RCP8.5) are used to generate the
future data, which represent two of the four greenhouse gas scenarios projected by the Intergov-
ernmental Panel on Climate Change (IPCC) based on how much greenhouse gases are emitted
in future years (Stocker et al., 2013). Due to seasonal periodicity, only data from 90 days across
the summer months (December–February) are considered, to induce approximate stationarity
of the process. Due to the temporal dependence evident in the RCP4.5 and RCP8.5 data the
daily maximum temperatures at each spatial location were linearly detrended, so that the re-
sulting block-maxima constitute the largest deviation above the mean temperature. Maxima
are computed over 15-day blocks, resulting in 6 observations per year, and N = 936 and 570
total observations per location for the historical and climate model data respectively. Following
Padoan et al. (2010) and Blanchet and Davison (2011) we fit the Gaussian max-stable process
(Smith, 1990) model with spatially varying marginal parameters, in particular with

µ(k) = α0 + α1x(k) + α2y(k), σ(k) = β0 + β1x(k) + β2y(k), ξ(k) = ξ,

where (x(k), y(k)) are the spatial co-ordinates of the k-th location. Other co-variates (such as
altitude) were not considered due to the reasonably flat nature of the topography across the
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study region.
Table 3.8 lists the total number of terms in the standard pairwise composite likelihood,

`
(2)
CL(θ), and the symbolic composite likelihood, `(2)

CL(θ), for a single (T = 1) bivariate B × B
histogram with B = 15, 20, 25, 30. While the number of terms in the symbolic likelihood is guar-
anteed to be lower than the standard likelihood if B2 < N , in practice the number of non-empty
histogram bins contributing to the likelihood (centre column, Table 3.8) can be considerably
smaller, particularly for strongly dependent data. For the current analyses, the symbolic com-
posite likelihood has significantly fewer terms, leading to substantially faster optimisation and
lower computational costs than the standard composite likelihood. As discussed in Section 3.3,
the symbolic composite MLE (θ̂(2)

SCL) can be computed exactly with T = 1 random histogram,
and so this optimisation (which evaluates the target function many times) can be very efficient.
In contrast, T = N histograms are required for the best variance estimates (see Table 3.7),
and so the resulting computational overheads are comparable to that of the standard composite
likelihood (though these are only a small proportion of total computation).

Figure 3.3: K = 105 spatial locations for the historical and future-simulated temperature data
over Australia. Each cross represents the midpoint of a 1.875◦ × 1.875◦ box in a spatial grid.

Table 3.9 displays the symbolic composite MLEs (and standard errors) of the three depen-
dence parameters and the marginal shape parameter ξ for the Smith model, calculated using
B = 15, 20, 25, 30. Comparable estimates are obtained for each value of B, with some clear
convergence in both the point estimates and their standard errors as the resolution of each his-
togram increases. While the standard errors are naturally larger than those under the standard
composite likelihood by construction, they are sufficiently small compared to the magnitude of
the composite MLE in order to make meaningful inference.

Compared to the observed historical extremes, we can see a slight increase in spatial depen-
dence for the RCP4.5 scenario data and a significant decrease in dependence for the RCP8.5
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Historical Actual RCP4.5/8.5 Maximum RCP4.5/8.5
B (N = 936) (N = 570) (N = 570)
15 642 898 529 584 1 228 500
20 960 403 774 060 2 184 000
25 1 286 714 1 016 565 3 412 500
30 1 609 923 1 247 465 4 914 000

Classic 5 110 560 3 112 200 3 112 200

Table 3.8: Total number of terms in each pairwise composite likelihood function for N = 936, 570
block maxima over K = 105 spatial locations. For standard composite likelihoods this corre-
sponds to NK(K − 1)/2 terms. For the symbolic composite likelihood constructed using a
single (T = 1) B ×B histogram, this corresponds to a maximum of B2K(K − 1)/2 terms. The
actual number of symbolic composite likelihood terms corresponds to the number of non-empty
histogram bins.

scenario.
The marginal shape parameter ξ is negative for all three datasets, with larger composite

MLEs estimated for the future-simulated data compared to the historical data. This implies
that the RCP4.5 and RCP8.5 data have higher upper bounds than that of the historical dataset,
meaning larger deviations from the mean are expected for the future scenarios.

Figure 3.4 illustrates expected and observed (columns) 95-year return levels for each dataset
(rows) for B = 15, 30. Higher expected (and observed) returns for the RCP4.5 and RCP8.5
scenarios compared to the historical setting are apparent.

Because extrapolation into and beyond the tails of observed data is sensitive to a model’s
parameter estimates, there are some differences in the return levels for the different values of
B. This suggests that, for applications in spatial extremes at least, higher resolution histograms
may be required, depending on the nature of inference required.

3.6 Discussion

In this article we have introduced a novel method for constructing composite likelihood func-
tions for histogram-valued random variables. Working with random histograms as summaries of
large datasets allows for computational efficiencies, as the histograms can efficiently represent
large amounts of data in a concise form. The benefit of working with composite likelihoods in
this setting is that the inefficiencies of working with histograms for higher dimensional data can
largely be avoided.

Our theoretical results show that if the bins in each random histogram are the same, then
the symbolic composite MLE can be computed exactly by combining the data into a single
histogram (by summing the totals in each bin). As the majority of the computational time for
an analysis is spent in optimising the likelihood, this is a particularly useful result that can
lead to fast inference. The precision of the composite MLE, however, depends on the number
of histograms: the more there are (assuming equal numbers of datapoints in each histogram),
the lower the estimated variance of the composite MLE. This will either present hard limits
on the possible level of inferential precision (if pre-made histograms are presented directly to
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Historical Data
B σ11 σ12 σ22 ξ
15 176.4 (2.85) -28.7 (0.32) 76.8 (3.29) -0.266 (0.053)
20 164.2 (2.89) -29.3 (0.30) 74.3 (4.69) -0.264 (0.049)
25 162.4 (2.17) -29.9 (0.33) 75.3 (2.84) -0.264 (0.049)
30 161.6 (2.01) -32.3 (0.29) 74.4 (2.34) -0.264 (0.050)

RCP4.5 Data
B σ11 σ12 σ22 ξ
15 160.9 (9.42) -34.1 (0.83) 79.0 (2.22) -0.249 (0.074)
20 163.5 (5.95) -41.1 (0.73) 77.6 (2.45) -0.249 (0.076)
25 150.3 (3.49) -33.1 (0.65) 70.7 (1.70) -0.250 (0.073)
30 150.2 (1.50) -31.6 (0.24) 70.7 (1.54) -0.250 (0.069)

RCP8.5 Data
B σ11 σ12 σ22 ξ
15 128.7 (8.60) -19.6 (0.92) 67.7 (3.92) -0.232 (0.061)
20 128.0 (6.30) -19.6 (1.29) 66.6 (3.32) -0.231 (0.059)
25 136.0 (3.95) -15.1 (0.93) 59.4 (3.17) -0.234 (0.060)
30 129.9 (4.01) -13.6 (0.83) 56.4 (2.94) -0.233 (0.055)

Table 3.9: The mean and standard errors of the composite MLEs for Σ obtained for the 105
locations across Australia from the bivariate symbolic composite log-likelihood function for B =
15, 20, 25, 30.

the analyst), or allow a trade-off of precision for computation to be made. As computation of
the Godambe information matrix is trivial compared to estimation of the composite MLE, if
the full dataset is available, then a large number of histograms could be used for relatively low
computational costs.

Our results have also shown the efficiency of standard composite likelihood techniques when
the data are grouped into time blocks such that it is know which block any data point belongs
to, but it is not known where the datapoint lies within each block.

We have not considered the question of how to best construct the random histograms. This
was considered in the present context by Zhang et al. (2019) and Beranger et al. (2018). Possible
approaches could follow standard nonparametric arguments of histogram binwidth selection
(e.g. Scott and Sheather (1985), Wand (1997)) or more complex space-partitioning processes
such as random trees, or alternatively be chosen to optimise pre-specified utility or loss functions.
This is a current topic of active research. In terms of determining a sufficient number of bins B to
ensure convergence to the classical composite MLE, a naive approach was utilised in the real data
analysis in Section 3.5, in which increasing values of B were investigated until comparable results
were obtained. While this approach does give an indication of where convergence to the classical
composite MLE has occurred, ideally a method would be developed in which only one value of B
needs to be investigated. Similarly to the optimal histogram construction previously described,
the sufficient value for B could possibly be determined via a binwidth selection algorithm, or
other loss-function based methods.

One of our motivations for analysing the extremes of very large climate datasets is that,
while exceptions exist, it is not uncommon for statistical analysis to only occur independently
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Figure 3.4: Predicted and observed 95-years return levels over Australia based on historical
(top row), RCP4.5 (middle row) and RCP8.5 (bottom row) scenario data. Columns denote
predictions based on B2 = 15×15 (left) and B2 = 30×30 (middle) histograms and interpolated
observed maxima (right).

at each spatial location, with very little work done to analyse the spatial dependence (Huang
et al., 2016). In Section 3.5, by fitting the Gaussian max-stable process to historical and future
scenario Australian temperature data, we were able to explore changes in the spatial dependence
structure that will accompany different levels of greenhouse gas emission levels in the coming
years, and provide insight into the effects of these changes. It would be extremely challenging
to perform these analyses, and others with even larger datasets, using standard techniques.

For the analysis of Australian temperature extremes, the data are presented as being located
at the centre of a box within a grid. As such, the presented analysis ignores the fact that the
data actually arose from the entire box, and not just this point location. One possible extension
of the work in this article is to similarly treat the actual spatial locations of each datapoint
within each grid box as unknown locations within a spatial histogram.

This would also allow datasets with extremely large numbers of locations (K) to be spatially
aggregated into smaller datasets with spatial bins as the locations instead of pointwise coor-
dinates, potentially drastically decreasing the computational cost and allowing the analysis of
much higher dimensional data.
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Chapter 4

Logistic regression models for
aggregated data

4.1 Introduction

There are many well developed statistical methods for classification, such as logistic regres-
sion, discriminant analysis and clustering, which predict a categorical variable that can take one
of K distinct values given an input vector of predictor variables (e.g. Hastie et al., 2008, Pampel,
2000). While these methods are effective for the analysis of standard data, when the data take
non-standard forms, such as random interval- or random histogram-based predictors, existing
methods are either underdeveloped or do not exist. Interval, histogram and other-distribution
based data summaries can arise through measurement error, data quantisation, expert elicitation
and, motivating this work, the desire to summarise large and complex datasets in an appropriate
way so that they can be analysed more efficiently than the full dataset (e.g. Zhang et al., 2019).
The field of Symbolic Data Analysis (SDA) was developed to analyse such distributional data
(Diday, 1989, Billard and Diday, 2003, Billard, 2011, Beranger et al., 2018). However, with
a few exceptions (discussed below), the parameters of existing SDA-based methods undesir-
ably lose their interpretation as parameters of models of the underlying (standard) micro-data,
which means that the resulting inferences are not directly comparable to the equivalent standard
full-data analysis (Zhang et al., 2019, Beranger et al., 2018).

Logistic regression (e.g. Cox, 1958, Hosmer et al., 2013) is one method of performing regres-
sion for categorical response data that has been utilised extensively in many fields, including
finance (Hauser and Booth, 2011, Hyunjoon and Zheng, 2010), epidemiology (Merlo et al., 2006),
medicine (Min, 2013, Hosmer et al., 2013), diagnostics (Knottnerus, 1992) and modelling income
(Pavlopoulos et al., 2010). Such models are typically fitted by numerical maximum likelihood
estimation as there is no closed form estimator, given certain conditions on the response and pre-
dictors such that the maximum likelihood estimate (MLE) exists (Albert and Anderson, 1984).
As a result, the computational overheads for determining the MLE can be high for very large
datasets

With this motivation, Wang et al. (2018) developed a data-subsampling scheme for binary

63



64 CHAPTER 4. LOGISTIC REGRESSION MODELS FOR AGGREGATED DATA

logistic regression (for K = 2 classes) whereby each observation is assigned a weight according to
a function that minimises the asymptotic mean squared error (MSE) of the MLE. A subsample
is then taken using those weights, with parameter estimates then obtained by maximising the
likelihood for the subsample. To calculate the observation weights, an initial parameter estimate
is obtained using r0 uniformly sampled observations. Wang et al. (2018) demonstrated good
estimator performance from the ‘optimal’ subsample using r0 = 1 000.

In contrast, de Souza et al. (2011) presented SDA-motivated versions of logistic regression
for interval-valued data (where the intervals are constructed from the minimum and maximum
observed values of each predictor in the micro-data), whereby the regressions are constructed
using the interval centres or endpoints as covariates. de Souza et al. (2008) developed a similar
approach for multi-class classification with logistic regression using interval endpoints. While
these SDA methods are computationally simple, because they are only based on random intervals
(that is, two quantiles of the data) much of the distributional information in the predictor values
is lost. In addition the implementations treat each interval equally, which can cause problems if
there are unbalanced numbers of micro-data in each category. Finally, as discussed above, the
fitted models cannot be compared to the equivalent models fitted to the full (non-summarised)
dataset.

In other work, Tranmer and Steel (1997) investigated the effect of data aggregation on logistic
regression when both the predictor and response variables are observed as the total sum of each
variable for each group. Bhowmik et al. (2016) proposed an iterative algorithm for estimating
Generalised Linear Models (GLMs) when the response variables are aggregated into histogram-
valued random variables. The resulting training error was numerically shown to approach that
of the full (non-aggregated) analysis as the number of histogram bins became large. Armstrong
(1985) considered the case where a single covariate is measured with error, and the distribution
of the coarsened (binned) value given the true latent observation is known. Estimates for
GLM coefficients are then obtained through the utilisation of this known density. Johnson
(2006) assumed Gaussian distributions for coarsened covariates and included their likelihood
within the GLM framework. Lipsitz et al. (2004) proposed a method for implementing a GLM
when one of the covariates is coarsened for only a subset of observations, whereby the resulting
likelihood is the integral over the likelihood of all possible values that this variable could have
taken, weighted by a density dependent on the uncoarsened, fully observed variables. Johnson
and Wiest (2014) proposed a Bayesian approach for coarsened covariates in GLMs whereby a
distribution is assumed for the coarsened covariates, given the uncoarsened data.

The above models work well if the distribution of the latent data given the observed data
is well-specified, but run into problems if the distributional assumptions are violated. Further,
if many covariates are provided in distributional form, these approaches require large computa-
tional overheads due to the curse of dimensionality. To the best of our knowledge, little progress
has been made in developing logistic regression models for fully histogram-valued predictor
variables, which provide far more insight into the shape of the underlying covariate data than
the interval case. Here, our primary motivation is in histograms constructed from very large
datasets by the analyst in order to facilitate increased computational speed of an analysis. In
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this setting, data could arrive in the form of univariate histograms for each predictor for each
of the K categories, instead of large (N × (K + 1))-dimensional tables (where N , the number
of observed predictor and class label pairs, is very large), allowing savings in data transmission,
storage and analysis.

In this article we develop methods for implementing logistic regression models with K re-
sponse categories, where the covariate data for each response category is in the form of marginal
or multivariate histograms (or random rectangles, as a special case of random histograms with
a single bin). The basic component of our approach adopts the likelihood-based SDA con-
struction of Beranger et al. (2018) (see also Zhang et al., 2019, Whitaker et al., 2019), which
unlike other SDA-based methods, directly fits models for the underlying micro-data given the
distributional-based data summaries.

We propose a mixed model in which the underlying data is analysed using a mixture of
standard and SDA likelihoods: histogram bins with low counts are discarded and the resid-
ing micro-data are used directly to contribute standard likelihood terms, while bins with high
counts contribute via the SDA framework. However, due to the computational difficulties as-
sociated with the potentially high-dimensional integrations required within the SDA likelihood,
this mixed model is unsuitable for moderate numbers of predictor variables. For this reason,
along with the benefits accompanying the potential additional savings in data storage and com-
putational overheads, models based on lower-dimensional marginal histograms are developed.

We develop an approximate marginal composite likelihood approach to obtain estimates for
the parameter vector of the complete (micro-data) model, using lower-dimensional marginal
histograms of the observed covariate data. Univariate and bivariate histograms are considered
for these models, with the predictions performed on test datasets shown to be comparable with
the full standard likelihood models, but at a much lower computational cost. The resulting
parameter estimates are directly comparable to the parameter estimates of the standard full-
data analysis, enabling both micro-data and histogram-based predictions, as required.

This article is structured as follows. In Section 4.2 we outline two types of established
logistic regression models for regular data. In Section 4.3 we briefly outline the general SDA-
based likelihood construction of Beranger et al. (2018), and introduce the mixed standard/SDA
likelihood model. We also develop the approximate composite likelihood approach based on
lower-dimensional marginal histograms. In Section 4.4 we perform various simulation studies
to demonstrate the effectiveness of each model. We show that each model is able to produce
comparable prediction accuracy compared to the full model at a superior computational cost
for a certain sample size, N . We also show that our method performs comparably with the
recently developed optimal subsampling method for binary logistic regression by Wang et al.
(2018), at a cheaper computational cost. In Section 4.5 we analyse satellite crop-prediction data
from Queensland, Australia, and simulated particle collision dataset from the Machine Learning
Repository (Dua and Graff, 2017), and show that our approach is highly competitive with much
more computationally expensive standard statistical methods. We conclude with a discussion.
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4.2 Logistic regression methods for classification

There are a variety of methods for classifying an instance into one of K ≥ 2 classes. Let Y
denote a discrete random variable taking a value in Ω = {1, . . . ,K} and X ∈ RD an associated
vector of explanatory variables. Using the information contained in the covariates X, the aim
is to estimate the probability of the outcome of Y = k for k ∈ Ω.

Much work has been done on the comparison of the performance of various classification
algorithms. Gladence et al. (2015) describe logistic regression along with various Bayes classi-
fication methods such as naive Bayes, multinomial naive Bayes, Bayes networks and updatable
naive Bayes. The performance of these models are compared using five real datasets, and it
is shown that logistic regression generally gives superior results to the different Bayes methods
in terms of various metrics such as Precision, Recall, Mean Squared Error and Average Mean
Absolute error. Kiang (2003) use synthetic examples to compare the performance of several
well known statistical classification techniques, such as logistic regression, neural networks, kth

nearest neighbour, discriminant analysis and decision trees, with a particular focus on the effect
of violating several model assumptions, such as unimodality, non-collinearity, normality and
low-correlations. The performance of each model is assessed using the misclassification rate on
synthetic datasets that violate each of these model assumptions, with the authors determin-
ing that logistic regression and neural networks generally provide superior results compared to
the other methods under most scenarios. It is worth noting that for multimodal data, neural
networks significantly outperformed logistic regression (and the other methods).

The efficacy of logistic regression compared to other classification methods has similarly
been investigated in the context of specific applications. For example, Cigsar and Unal (2019)
compare the performance of logistic regression, Bayes networks, naive Bayes, random forests
and multilayer perceptron models in the prediction of default by banking customers using a
real dataset from the Turkish Statistical institute containing demographic and socioeconomic
properties of individual customers, such as age, gender, revenue, health, bills, education, etc.
The performance of each model is assessed using prediction accuracy, root mean squared error,
ROC area, precision and recall. Logistic regression provided superior results for all these metrics
with the exception of precision, for which it was slightly outperformed by Bayes networks and
naive Bayes. This leads the authors to conclude that logistic regression is the best algorithm
for analysing default risk within this dataset. Liu et al. (2011) compare the performance of
logistic regression, regression trees and neural networks models in the prediction of violent re-
offending using a UK dataset comprising of data from 1 225 UK male prisoners. Cross-validation
was performed using four subsets of the data, with prediction accuracy and AUC used as the
main indicators of performance success for each model. The authors concluded that for this
dataset, neural networks slightly outperformed logistic regression and regression trees, however
this increase in performance was deemed to be not significant. Given the benefits and drawbacks
associated with each model, the authors recommend that the appropriateness of each model is
specific to data characteristics and the aims of the study.

Here we focus on logistic regression, a widely used statistical modelling technique for bi-
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nary (K = 2) dependent variables. Multinomial logistic regression is a generalisation of logistic
regression to problems with possible outcomes taking values in Ω (K ≥ 2). An alternative prob-
lem representation recasts multinomial classification as multiple binary classification problems.
One-vs-Rest (OvR) logistic regression implements a separate binary logistic regression for each
class k ∈ Ω, assuming that each classification model is independent. To establish notation, we
briefly describe both multinomial and OvR logistic regression methods below.

4.2.1 Multinomial logistic regression

For each outcome k ∈ Ω\{K}, the multinomial logistic regression model defines the log
pairwise odds ratios through a linear model

log
(
PM(Y = k|X)
PM(Y = K|X)

)
= βk0 + β>k X, (4.1)

where PM(Y = k|X) denotes the probability that Y = k, under the multinomial model (M),
when X is observed, βk0 ∈ R is an intercept and βk = (βk1, . . . , βkD)> ∈ RD represents the
vector of regression coefficients associated with the D explanatory variables and the outcome k.
The outcome K is referred to as the pivot or reference category and its corresponding parameter
(βK0, β

>
K)> is the zero vector. Thus (4.1) can be rearranged as

PM(Y = k|X) = eβk0+β>k X

1 +
∑
j∈Ω\{K} e

βj0+β>j X

for all k ∈ Ω. This implies that the odds of preferring one class over another do not depend on
the presence or absence of other “irrelevant" alternatives.

Suppose that X = (X1, ..., XN ) is a vector of D-dimensional random vectors and Y =
(Y1, ..., YN )> is a vector of discrete random variables, with respective realisations x ∈ RD×N

and y ∈ ΩN . The likelihood function under the multinomial model is given by

LM(x, y;β) =
N∏
n=1

∏
k∈Ω

PM(Y = k|X = xn)1{yn=k}, (4.2)

where 1{·} represents the indicator function, and β = (β̌1, . . . , β̌K) ∈ R(D+1)×K with β̌k =
(βk0, β

>
k )> ∈ RD+1. We denote the maximun likelihood estimator for the multinomial logistic

regression model as β̂M = argmaxβ logLM(x, y;β). Existence of the MLE can be examined
through the concept of data separation.

Definition 4.2.1. (Multinomial model separation) There is complete separation of the
data if for all k ∈ Ω, a b = (b1, . . . , bK), bk ∈ RD, exists such that

(bk − bj)>xn > 0 for all n such that yn = k, j 6= k

(bk − bj)>xn < 0 for all n such that yn 6= k, j 6= k.
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There is quasi-complete separation of the data if for all k ∈ Ω, a b = (b1, . . . , bK), bk ∈ RD,
exists such that

(bk − bj)>xn ≥ 0 for all n such that yn = k, j 6= k

(bk − bj)>xn ≤ 0 for all n such that yn 6= k, j 6= k,

with equality for at least one observation xn in each class k.

Albert and Anderson (1984) proved that if there is neither complete nor quasi-complete
separation in the data, then the MLE β̂M exists for all classes k ∈ Ω.

4.2.2 One-vs-Rest logistic regression

For each outcome k ∈ Ω, the One-vs-Rest logistic regression model defines the log odds ratio
through a linear model

log
(
PO(Y = k|X)
PO(Y 6= k|X)

)
= βk0 + β>k X,

where PO(Y = k|X) denotes the probability that Y = k, under the OvR regression model (O),
when X is observed and where βk0 and βk are as defined previously. This ratio can be rearranged
as

PO(Y = k|X) = eβk0+β>k X

1 + eβk0+β>
k
X

for all k ∈ Ω. Note that here βK is different from the zero vector as each individual binary
model has an implied reference category and

∑
k∈Ω PO(Y = k|X) 6= 1. The likelihood function

can be written as

LO(x, y;β) =
N∏
n=1

PO(Y = yn|X = xn)
∏

k∈Ω\{yn}
PO(Y 6= k|X = xn)

 , (4.3)

which is expressed as the product of K binary logistic regressions for each observation (xn, yn).
The parameters of the multivariate and OvR regression models are not directly comparable,
but the performance of each model can be assessed by evaluating their prediction accuracy on
a training dataset (e.g. Eichelberger and Sheng, 2013).

As before, the MLE under the OvR model, β̂O = argmaxβ logLO(x, y;β), exists for all
classes k ∈ Ω if there is neither complete nor quasi-complete separation of the data for each
k ∈ Ω, but under slightly modified definitions of separation compared to the multinomial model
(Albert and Anderson, 1984).

Definition 4.2.2. (OvR model separation) There is complete separation of the data for the
kth class if a bk ∈ RD exists such that

b>k xn > 0 for all n such that yn = k

b>k xn < 0 for all n such that yn 6= k.
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There is quasi-complete separation of the data for the kth class if a bk ∈ RD exists such that

b>k xn ≥ 0 for all n such that yn = k

b>k xn ≤ 0 for all n such that yn 6= k,

with equality for at least one observation xn in the kth class, and at least one observation xn′ ,
n′ 6= n, not in the kth class.

4.2.3 Existing methods for large-sample logistic regression

If the practitioner wishes to use a Bayesian approach to fit a logistic regression model,
much work has been done on the use of subsampling to deal with the large computational
burden associated with huge datasets. MacLaurin and Adams (2014) present an algorithm that
introduces a Bernoulli random variable for each observation that selects the observations to
be included in the sample during each iteration of the Markov Chain Monte Carlo (MCMC)
algorithm. This algorithm then only requires the evaluation of the likelihood of a subset of
the complete dataset, but is still able to simulate from the exact posterior distribution. Logistic
regression is used as an example that demonstrates the utility of the algorithm, with comparable
results to the complete MCMC obtained at a cheaper computational cost. Quiroz et al. (2019)
assume that the log-likelihood follows a Gaussian distribution, allowing the use of the Central
Limit Theorem to obtain approximations of the log-likelihood. A bias-correction formula is
then included to account for the bias exhibited by the resultant likelihood estimator. Logistic
regression is used as one of the models for the synthetic examples, and the algorithm is shown
to perform well compared to other recent MCMC subsampling methodologies. Gunawan et al.
(2019) greatly speed up the sequential Monte Carlo algorithm by using data subsampling to
approximate the target likelihood and show that this algorithm provides theoretical guarantees
of fast convergence of the posterior distribution with increasing sample size. Logistic regression
is used as an example in the simulation studies to demonstrate the utility of their method.

Rather than approximating the likelihood, Bardenet et al. (2014) propose to approximate the
accept/reject step of each iteration of the Metropolis Hastings (MH) algorithm using a randomly
sampled subset of the full dataset. By observing the acceptance ratio for a subsample of the
data, upper and lower bounds can be obtained for the complete ratio. Guidelines are also given
that allow the determination of a sufficient subsample size that ensures a given probability of
correctness for the resultant accept/reject decision. Simulation studies are used to demonstrate
that good results can be achieved at only a fraction of the computational cost, compared to
the complete algorithm, with logistic regression used as a motivating example. Bardenet et al.
(2017) improve upon the algorithm derived in Bardenet et al. (2014) by using a control variate
approach to reduce the error associated with the bounds on the acceptance ratio. It is proven
that this improvement leads to significant computational gains, with logistic regression again
used as a demonstrative example in synthetic examples and a real data analysis. Bierkens et al.
(2019) introduce a new Bayesian sampling algorithm (termed the Zig-Zag sampling algorithm)
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that is easily estimated using sub-sampling, allowing for huge improvements in computation for
large datasets. The strong regularity conditions for the model being investigate that the Zig-Zag
sampling algorithm requires have been established for logistic regression, for which simulation
studies are used to demonstrate its utility. Comparably low MSEs are obtained for the logistic
regression model in various simulation studies, demonstrating the utility of this algorithm.

Subsampling has also been investigated as a method of dealing with the computational issues
associated with fitting frequentist logistic regression models to large datasets. Owen (2007)
derive asymptotic results for logistic regression models where one class is extremely rare, and
show how under mild conditions this setting can lead to computational savings in the estimation
of the model parameters. Fithian and Hasan (2014) investigate the problem of subsampling from
large datasets in which there is a significant class imbalance, and derive a subsampling scheme
in which the resultant subsample has a more balanced proportion of response classes. The
general idea is to iteratively retain the observations for which the response yn is considered
surprising, given the covariate xn, allowing for the most informative observations to comprise
the subsample. Wang et al. (2018) derive a two-step subsampling scheme for logistic regression
that minimises the asymptotic MSE of the resultant estimator. An initial parameter estimate is
obtained from an initial uniformly sampled subsample, and then used to assign each observation
a weight. A second subsample is then obtained using those weights, with the final parameter
estimate obtained from a combination of the two samples. It was demonstrated via synthetic
examples that for balanced datasets, this methodology obtained higher predictions and lower
MSEs than that of Fithian and Hasan (2014), and as such is considered in the simulation studies
in Section 4.4 as the ideal comparison for the models presented in this paper.

4.3 Classification for aggregated data

For each class k ∈ Ω, define X(k) = (Xn|Yn = k, n = 1, . . . , N) ∈ RD×Nk , where Nk =∑N
n=1 1{Yn = k}, as the matrix of Nk covariate vectors associated with outcome k. In this way

X(1), . . . ,X(K) partition the full covariate set X. When N is very large and |Ω| � N then it
can be expected than one or more of the Nk will also be large. In this context, directly opti-
mising likelihood functions for logistic regression models could be computationally prohibitive.
As an alternative, it might be appealing to aggregate the information contained in X(k) into
distributional form (such as a histogram) and to implement a classification algorithm using these
summaries only, which could be much more computationally efficient. The concept of perform-
ing statistical or inferential analyses on such distributional “datapoints” originated from Diday
(1989), and has become known as symbolic data analysis, where the ‘symbol’ corresponds to the
distributional summary (see also Billard and Diday, 2003, 2006, Bock and Diday, 2000).

A symbolic random variable Sk ∈ DSk can be viewed as the result of applying an aggregation
function π(·) to X(k) ∈ DX(k) (where DX(k) = RD×Nk), i.e. Sk = π(X(k)) : DX(k) → DSk so that
x(k) 7→ sk. In the present context sk corresponds to a vector of counts of the number of covariate
vectors in x(k) that reside in each histogram bin (see Section 4.3.1 below for more explicit
detail). Various likelihood-based techniques for fitting statistical models given the information
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in the distributional summaries have been developed (Le Rademacher and Billard, 2011, Brito
and Silva, 2012, Lin et al., 2017, Beranger et al., 2018, Zhang et al., 2019). Here we follow the
construction of Beranger et al. (2018) and Zhang et al. (2019) who fully model the construction
of the symbols from the generating process of the standard random variables X(k). Specifically,
the likelihood of observing sk is

L(sk; θ, ϑ) ∝
∫
D

X(k)

fSk|X(k)=x(k)

(
sk|x(k), ϑ

)
gX(k)

(
x(k); θ

)
dx(k), (4.4)

where fSk|X(k)( · ;ϑ) is the conditional density of Sk given X(k) relating to the aggregation of
x(k) 7→ sk, gX(k)(x(k); θ) is the standard likelihood function of the model at the data level with
parameter of interest θ, and x(k) =

(
x

(k)
1 , . . . , x

(k)
Nk

)
, with x(k)

n ∈ RD denoting the covariate vector
of the n-th observation with outcome k. The likelihood (4.4) is a general expression, for which
the density fSk|X(k)( · ;ϑ) takes different forms depending on the type of distributional summary
considered (see Beranger et al., 2018, for several examples using random intervals/rectangles
and random histograms). In the following we are interested in aggregating the covariates X(k)

that have the same outcome k into histograms (with fixed or random bins), Sk, and to fit logistic
regression type models (gX(k)

(
x(k); θ

)
).

4.3.1 Logistic regressions using histogram-valued data

For each class k ∈ Ω, suppose that the d-th margin of RD is partitioned into Bd
k bins, so

that B1
k × . . . × BD

k bins are created in RD through the D-dimensional intersections of each
marginal bin. Index each bin by bk = (b1k , . . . , bDk), bdk = 1, . . . , Bd

k , as the D-dimensional
vector of co-ordinates of each bin in the histogram. The bin bk is constructed over the space
Υbk = Υ1

bk
×· · ·×ΥD

bk
⊂ RD, where Υd

bk
= (ydbd−1, y

d
bd

] ⊂ R is a univariate bin in the d-th margin,
and where, for each margin d, −∞ < yd0 < yd1 < . . . < yd

Bk
<∞ are fixed points that define the

change from one bin to the next. The index k has been omitted in the above bin delimitations
in order not obscure notation any further, but it needs to be kept in mind that these are specific
to the outcome k ∈ Ω.

Let Sk represent a D-dimensional histogram constructed from X(k) through the aggregation
function π where

Sk = π(X(k)) : RNk×D → {0, . . . , Nk}B
1
k×...×B

D
k (4.5)

x(k) 7→ sk =

s1k =
Nk∑
n=1

1{x(k)
n ∈ Υ1k}, . . . , sBk =

Nk∑
n=1

1{x(k)
n ∈ ΥBk}

 .
The quantity Sbk denotes the random number of observed data points X(k)

1 , . . . , X
(k)
Nk

that fall in
the bin indexed by bk. Consequently, the histogram-valued random variable Sk = (S1k , . . . , SBk)
represents the full (B1

k× . . .×BD
k )-dimensional vector of counts from the first bin 1k = (1, . . . , 1)

to the last binBk = (B1
k, . . . , B

D
k ). In this manner, we can construct the collection of histograms

S = (S1, . . . , SK), with one Sk for each outcome index k ∈ Ω, that summarise the information
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contained in X = (X(1), . . . ,X(K)).

Proposition 4.3.1. Suppose that X(k), the covariates associated with each outcome k ∈ Ω, are
aggregated via (4.5), and let S = (S1, . . . , SK) denote the resulting collection of histograms. For
this summarised data S, using (4.4), the likelihood functions for the multinomial (4.2) and OvR
(4.3) logistic regression models become

LSM(s;β) ∝
∏
k∈Ω

Bk∏
bk=1k

(∫
Υbk

PM(Y = k|X = x)dx
)sbk

(4.6)

LSO(s;β) ∝
∏
k∈Ω

Bk∏
bk=1k

∫
Υbk

PO(Y = k|X = x)dx
∏

k′∈Ω\{k}

∫
Υbk

PO(Y 6= k′|X = x)dx

sbk

,

(4.7)

where s is the observed value of S, and sbk denotes the number of observations in bin bk in
histogram k. For a derivation see Appendix A.1.1.

We refer to these models as the symbolic multinomial (SM) and symbolic One-vs-Rest
(SOvR) logistic models. In effect, the uncertainty of the location of each predictor X is av-
eraged uniformly over its location in the histogram bin in which it resides. Note that the
likelihood functions (4.6) and (4.7) only implicitly depend on the vector of outcomes y since for
each possible outcome k ∈ Ω the covariates X(k) are summarised in a histogram Sk, and so the
product of the N (Yn, Xn) observations in the standard likelihoods ((4.2) and (4.3)) is replaced
by a product over the K outcomes. Further, the parameter ϑ in (4.4) denotes quantities relevant
to constructing the symbol (e.g. the number of bins and their locations), and so is fixed in this
setting and is therefore omitted in the notation.

Following similar arguments to Heitjan (1989), Beranger et al. (2018), the symbolic like-
lihoods LSM(s;β) and LSO(s;β) can each be shown to approach their classical equivalent,
LM(x, y;β) and LO(x, y;β), as the number of bins in each histogram approaches infinity and
the volume of each bin approaches zero. In this scenario, in the limit each bin will either be
empty (sbk = 0) or will contain exactly one point (sbk = 1) observed at each value of x(k)

n , which
then recovers the classical likelihood term. In this manner, the histogram-based likelihoods can
be viewed as approximations to the standard likelihood functions for each model.

To establish conditions for the existence of the respective MLEs, β̂SM = arg maxβ logLSM(s;β)
and β̂SO = arg maxβ logLSO(s;β), we need to consider modified definitions of complete and
quasi-complete separation of the data, in analogy with Definitions 4.2.1 and 4.2.2, to account
for the fact that the location of each covariate vector xn is only known up to the histogram bin
in which it resides.

Definition 4.3.1. (Histogram-based multinomial model separation) There is complete
separation of the set of histograms s if for all k ∈ Ω, a b = (b1, . . . , bK), bk ∈ RD, exists such
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that

(bk − bj)>x > 0 for all x ∈ Υbk such that sbk > 0, j 6= k

(bk − bj)>x < 0 for all x ∈ Υbk′ such that sbk′ > 0, j 6= k and k′ 6= k.

There is quasi-complete separation of the set of histograms s if for all k ∈ Ω, a b = (b1, . . . , bK),
bk ∈ RD, exists such that

(bk − bj)>x ≥ 0 for all x ∈ Υbk such that sbk > 0, j 6= k

(bk − bj)>x ≤ 0 for all x ∈ Υbk′ such that sbk′ > 0, j 6= k and k′ 6= k.

with equality for at least one point in the non-empty histogram bins for the k-th class.

Definition 4.3.2. (Histogram-based OvR model separation) There is complete separation
of the histogram for the kth class, sk, if a vector bk exists such that

b>k x > 0 for all x ∈ Υbk such that sbk > 0

b>k x < 0 for all x ∈ Υbk′ such that sbk′ > 0, k 6= k′.

There is quasi-complete separation of the histogram for the kth class if there exists a vector bk
such that

b>k x ≥ 0 for all x ∈ Υbk such that sbk > 0

b>k x ≤ 0 for all x ∈ Υbk′ such that sbk′ > 0, k 6= k′.

with equality for at least one point in the non-empty histogram bins for the k-th class, and
equality for at least one point in any non-empty histogram bin not in the k-th class.

Proposition 4.3.2. If the set of histograms s = (s1, . . . , sK) does not exhibit complete or quasi-
complete separation as described under Definition 4.3.1, then LSM(s;β) has a unique global
maximum. If the set of histograms does not exhibit complete or quasi-complete separation for any
class k ∈ Ω as described under Definition 4.3.2, then LSO(s;β) has a unique global maximum.
For a proof see Appendix A.1.2.

From Definitions 4.2.1–4.3.2 it can be seen that if there is separation of the histograms
then there also has to be separation of the underlying data. In this sense, the definitions of
complete and quasi-complete separation for random histograms (Definitions 4.3.1 and 4.3.2) are
stronger conditions than those for standard random vectors (Definitions 4.2.1 and 4.2.2). As a
result, from Proposition 4.3.2 this means that if no histogram-based MLE (β̂SM or β̂SO) exists,
then the equivalent standard multinomial model MLE (β̂M or β̂O) also does not exist. That
is, the standard MLE can’t exist without the histogram-based MLE also existing. Conversely,
however, it is possible to have separation of the underlying data but no separation in the derived
histograms. As a result it is possible that this histogram-based MLE exists without the standard
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multinomial model MLE existing. (In this particular setting we therefore have the interesting
case of the existence of an MLE for a given histogram converging to the non-existence of an
MLE in the limit as the number of histogram bins become large while the volume of each
bin approaches zero.). We also note that it is also possible for the histogram-based MLEs
to exist for one histogram derived from an underlying dataset, but not exist for a different
histogram (e.g. with different numbers of and/or locations of bins) derived from the same dataset.
Consequently, if the underlying classical data is available to the practitioner, the separation
conditions (Definitions 4.2.1 and 4.2.2) should be examined prior to aggregation, to ensure the
appropriateness of the multinomial model. Furthermore, if there is complete separation in the
underlying microdata, then it would be an interesting future research project to investigate the
utility of the histogram approach described above. Potentially binning the data is analogous to
adding a small term to the diagonal of an otherwise singular matrix, which might provide some
interesting benefits.

Assuming that the MLEs exist, the benefits of using histograms as data summaries for logistic
regression modelling are obvious in the presence of large amounts of data. The effective number
of likelihood terms in LSM(s;β) and LSO(s;β) is the number of histogram bins multiplied by
the number of classes. For very large datasets this can be much smaller than the N terms in
LM(x, y;β) and LSO(x, y;β), and so computing MLEs given the histogram summaries can be
much more efficient. The trade off is the loss of some accuracy due to the loss of information in
the binned data.

Despite its computational advantages, the above construction has some limitations. We now
discuss these and propose some statistical and computational improvements.

4.3.2 Using both classical data and histograms

When constructing histograms, for example using the method described in Section 4.3.1,
the number of observations sbk within each bin bk will typically vary widely over bins, from
very low to very high counts. Where bins have high counts, large computational efficiencies
are obtained in the evaluation of LSM (s;β) and LSO(s;β) over the standard logistic regression
likelihood functions. However, when a bin has low numbers of underlying data points, it may be
that the computational cost in evaluating the bin-specific integrals in (4.6) and (4.7) (such as
e.g.

∫
Υbk

PM(Y = k|X = x)dx) is just as high or higher than evaluating the standard likelihood
contributions (e.g. PM(Y = k|X = xn)dx) for each of the underlying datapoints in that bin.
Taken together with the loss of information in moving from the underlying data to a count of
datapoints in a bin, in this case it is obviously worse statistically (and perhaps also computa-
tionally) to work with the histogram bin rather than the original data in that bin. Creating
bins with low data counts becomes more likely as the dimension D of the predictors increases.

To avoid this situation, we introduce a lower bound, τk ∈ {1, . . . , Nk}, on the number of
underlying datapoints in a bin region Υbk that is required before these data can be summarised
into a histogram bin for their contribution to the likelihood function. When the number of
underlying datapoints is lower than τk, the original data xn are retained, and contribute to the
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likelihood in the standard way.
Under the assumption that the underlying data are available (which may not always be the

case), we therefore propose to use the modified aggregation function

Sk = π̃(X(k)) : RNk×D → {τk, . . . , Nk}u × Rv×D

x(k) 7→

 sbk =
∑Nk
n=1 1{x

(k)
n ∈ Υbk} if sbk ≥ τk

x
(k)
bk

= {x(k)
n : x(k)

n ∈ Υbk} otherwise
, bk = 1k, . . . ,Bk

 ,
where τk ∈ {1, . . . , Nk}, u ∈ [0, . . . , B1

k× . . .×BD
k ] is the number of histogram bins containing at

least τk observations, and v = Nk −
∑
sbk is the number of retained classical datapoints in bins

containing less than τk observations. That is, the resulting Sk is a mixture of those histogram
bins that contain at least τk observations, combined with any remaining predictor vectors Xn

that would otherwise be put into bins with less than τk observations.
In the context of logistic regression modelling, this mixture histogram construction produces

likelihood functions that are a mixture of the standard and histogram-based likelihood functions
given in Sections 4.2.1, 4.2.2 and 4.3.1. For example, we can construct the likelihood function
for a mixture of histogram and classical data under the multinomial logistic regression model as

LMM(s;β) ∝
∏
k∈Ω

Bk∏
bk=1k

(∫
Υbk

PM(Y = k|X = x)dx
)sbk

1{sbk
≥τk}

 ∏
x∈x(k)

bk

PM(Y = k|X = x)


1{sbk

<τk}

,

(4.8)
where MM denotes the multinomial mixture. A similar mixture-likelihood, LMO(s;β), can be
constructed for the OvR logistic regression model.

Because LMM(s;β) can be considered as a special case of LSM(s;β) (and LMO(s;β) a special
case of LSO(s;β)) in which the retained classical data vectors xn can be thought of as residing
in zero-volume bins, one for each retained vector, it is immediate that LMM(s;β)→ LM (x, y;β)
also approaches that classical data likelihood function as the number of bins becomes large and
the volume of each bin approaches zero (similarly LMO(s;β)→ LO(x, y;β)).

Similarly, by considering the obvious definition of complete and quasi-complete separation
for the mixture of histogram and retained classical data vectors as a combination of those in
Definitions 4.2.1 and 4.3.1 (for the standard multinomial regression model) and Definitions 4.2.2
and 4.3.1 (for the OvR regression model), similar statements to Proposition 4.3.2 about the
existence of the MLEs β̂MM = arg maxβ logLMM(s;β) and β̂MO = arg maxβ logLMO(s;β) can
be made. For example, if no full-histogram MLE exists (β̂SM or β̂SO) then no mixture-likelihood
MLE exists (β̂MM or β̂MO) and no standard likelihood MLE (β̂M or β̂O) exists. That is, the
standard MLE can’t exist without the mixture-likelihood MLE existing, which can’t itself exist
without the full-histogram MLE existing. However, the full-histogram model MLE can exist
without the mixture-likelihood MLE existing, and the mixture-likelihood MLE can exist without
the standard MLE existing.

The choice of τk, for all k ∈ Ω, controls the tradeoff between computational efficiency and
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information loss. On one hand, if τk is too large then we face the original issue of having a huge
number of terms slowing down evaluation of the likelihood function. On the other hand if τk is
too low then we risk a loss of efficiency (and perhaps higher computation) compared to higher
τk. As a result, one option is to set τk to be the value such that integrating e.g. PM over a bin
bk is less computationally expensive than evaluating it τk times. Some strategies along these
lines are explored in the simulations in Section 4.4.

4.3.3 Composite likelihoods for logistic regression models

Mixing histogram and micro data can lead to substantial statistical efficiency improvements,
but it does not address the issue of grid-based multivariate histograms becoming highly inefficient
as data summaries as the number of covariates (D) increases. In particular, the integrals required
to compute the likelihood function LSM (s;β) (4.6) have no analytical solution when the outcome
has more than two possible classes (K > 2) and there are more than two explanatory variables
(D > 2). Similarly the integrals in the likelihood function LSO(s;β) (4.7) have no analytical
solution when more than two explanatory variables are considered (D > 2). In all non-trivial
settings, then, these integrals must be computed numerically. This can be computationally costly
when D is large, which can then defeat the purpose (i.e. improved computational efficiency) of
using data aggregates.

To circumvent the issue of computing the probabilities of data falling in high-dimensional
bins, Whitaker et al. (2019) proposed implementing a composite likelihood approach. This con-
sisted of approximating the likelihood function of a high-dimensional histogram by the weighted
product of likelihood functions for lower-dimensional marginal histograms, which yielded asymp-
totically consistent likelihood-based parameter estimates (Lindsay, 1988, Varin et al., 2011).
Assuming all weights are equal for simplicity, a j-wise composite likelihood function can be
expressed as L(j)(θ) ∝

∏m
i=1 Li(θ), where Li(θ) is the likelihood function of one of m j-wise

marginal events for a given parameter vector θ. In the current context, Li(θ) corresponds to a
likelihood contribution based on the subset of covariates represented by a j-dimensional marginal
histogram, θ = β and m =

(D+1
j

)
.

However, omitting an important variable in probit and logistic regression analyses will de-
press the estimated vector of the remaining coefficients towards zero (Wooldridge, 2002, Cramer,
2007). It is therefore non-viable to directly apply a composite likelihood approach to logistic
regression problems. However, in the OvR setting and under the assumption that all predictors
are independent, Cramer (2007) showed that the non-omitted coefficients of a logistic regression
can be written as functions of the regression coefficients in the scenario that no regressor is
omitted. This result was primarily aimed at highlighting the effect of omitting variables in a
regression analysis context, and had no practical use for e.g. compensating for zero-depressed
parameter estimates, since the established correspondences required information about the vari-
ances of the omitted variables, which were unavailable. However, in the composite likelihood
setting such information about each covariate is available, and the result of Cramer (2007) can
therefore be implemented within each marginal likelihood contribution to compensate for the
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covariates that are omitted in that term. We implement this concept in Proposition 4.3.3 below.
In the remainder of this section we construct composite likelihoods for the OvR and histogram-

based OvR logistic regression model (the results of Cramer, 2007, do not hold for multinomial
logistic regression). Let i = (i1, . . . , iI) ⊆ {1, . . . , D}, where for convenience i1 < . . . < iI , and
define by Ij = {i : |i| = j} the set of all j-dimensional subsets of {1, . . . , D}. We adopt the
notation that that a vector with superscript i denotes the subvector containing those elements
corresponding to the index set i. For matrices with the superscript i, the operation is repli-
cated column-wise. E.g. for i ∈ Ij , X(k)i = (X(k)i

1 , . . . , X
(k)i
Nk

) ∈ Rj×Nk where X(k)i
n ∈ Rj is a

subvector of X(k)
n , n = 1, . . . , Nk. Then if Si

bi
k

is the random number of observed data points

in X(k)i that fall in bin bik, we may construct an I-dimensional random marginal histogram
Sik = (Si1i

k

, . . . , Si
Bi
k

) as the associated vector of random counts from the first bin 1ik = (1, . . . , 1)

to the last bin Bi
k = (Bi1

k , . . . , B
iI
k ). The vector Sik has length Bi1

k × . . . × B
iI
k and satisfies∑

bi
k
Si
bi
k

= Nk.
The following proposition establishes how to perform approximate composite likelihood es-

timation for the OvR and histogram-based OvR regressions models using the results in Cramer
(2007). As independence between predictors, as assumed by Cramer (2007), is unrealistic, the
Proposition also extends the results of Cramer (2007) to account for the correlation between
the included set of predictor variables within each composite likelihood term and the omitted
variables. Without loss of generality, consider a random vector X ∈ RD and for i ∈ Ij , let
Xi ∈ Rj represent the observed variables of X. Further let I−i1 = {1, . . . , D}\{i} such that for
all i′ ∈ I−i1 , Xi′ represents an omitted variable of X. Following Cramer (2007) we define the
omitted variables Xi′ to be a linear function of the observed variables via Xi′ = α>ii′X

i + εii′ ,
where αii′ = (αi1i′ , . . . , αiji′)> ∈ Rj and εii′ ∼ N(0, λ2

ii′). Denote Cov(εii′1 , εii′2) = λii′1i′2 .

Proposition 4.3.3. The j-wise approximate composite likelihood functions for the standard and
the histogram-based D-dimensional OvR logistic regression models are respectively given by

L
(j)
O (x, y;β) =

∏
i∈Ij

LO(xi, y; β̃i) and L
(j)
SO(s;β) =

∏
i∈Ij

LSO(si, y; β̃i),

where the lower dimensional regression observed coefficients are given by β̃i =
(
β̃i1, . . . , β̃

i
K

)
∈

R(j+1)×K where

β̃ik =
βik +

[
0,
(∑

i′∈I−i
1
βi
′
k αii′

)>]>
√

1 + π2

3
∑
i′1∈I

−i
1

[
(βi
′
1
k λii′1)2 + 2

∑
i′2∈I

−i
1 ,i′2 6=i′1

β
i′1
k β

i′2
k λii′1i′2

] ∈ R(j+1). (4.9)

If there is neither complete nor quasi-complete separation in the full D-dimensional dataset
x (Definition 4.2.1) for any binary logistic model, then L

(j)
O (x, y;β) will have a unique global

maxima. Similarly, if there is neither complete nor quasi-complete separation in any of the
sets of marginal histograms si, i ∈ Ij, then L

(j)
SO(s;β) will have a unique global maxima. See

Appendix A.1.3 for a derivation and proof.
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Note that L(j)
O (x, y;β) and L(j)

SO(s;β) are approximate composite likelihood functions rather
than true composite likelihood functions. The resulting maximum composite likelihood es-
timators (β̂(j)

O and β̂(j)
SO) are not unbiased or consistent. They are, however, reasonable pa-

rameter estimates if one is motivated to estimate logistic regression model parameters within
the composite likelihood framework (as is the case here), that are more accurate than those
estimated via a naive composite likelihood implementation (which we define here as simply
L̃

(j)
SO(s;β) =

∏
i∈Ij LSO(si, y;βi)). We numerically demonstrate the performance of these es-

timators against the naive implementation in the simulation study in Section 4.4.2. However,
when our primary aim is model predictive accuracy, we will demonstrate that the performance
of the fitted model using the approximate composite likelihood MLE (β̂(j)

O or β̂(j)
SO) is highly

competitive with using the full-data standard MLE, β̂O, while, in the case of β̂(j)
SO, being much

more computationally efficient to obtain.
Following similar arguments to before, it is clear that L(j)

SO(x, y;β)→ L
(j)
O (s;β) as the number

of histogram bins becomes large while the volume of each bin approaches zero. Whitaker et al.
(2019) proved the asymptotic normality and consistency of the histogram-based (true) composite
likelihood estimator, and highlighted that parameter variance consistency requires the number
of bins in each histogram to become large and the number of histograms representing the data
be close to N, the number of data points. While these results are not directly applicable under
the approximate composite likelihood of Proposition 4.3.3, we intuitively expect that that the
estimated variances of β̂(j)

O and β̂(j)
SO will be inflated compared to that of β̂O unless the same

conditions hold.
In specific cases we can obtain a closed-form approximate composite likelihood function for a

D-dimensional random histogram, LSO(s;β). In the particular case of a binary outcome (K = 2)
and using j = 1 to construct the composite likelihood from all univariate marginal events (the
set I1 = {1, . . . , D}), we have

L
(1)
SO(s;β) =

∏
i∈I1

2∏
k=1

Bik∏
bik=1

( 1
β̃ik1

)2

log

 1 + e
β̃ik0+β̃ik1y

i
bi

1 + e
β̃i
k0+β̃i

k1y
i
bi−1

 log

1 + e
−β̃ik0−β̃

i
k1y

i
bi−1

1 + e
−β̃i

k0−β̃
i
k1y

i
bi

s
i
bk

,

(4.10)

where β̃ik = (β̃ik0, β̃
i
k1) ∈ R2 and the bin indexed by bik = bik is constructed over the space

Υi
bik

= (yibi−1, y
i
bi

]. In all other cases, the integrals in LSO(s;β) (4.7) require numerical estimation.
Evaluating (4.9) within the approximate composite likelihood requires knowledge of αii′1 , λii′1

and λii′1i′2 for all i′1, i′2 ∈ I−i1 , i′1 6= i′2. The αii′1 terms are the coefficients explaining the variations
of an unobserved variable Xi′1 as a linear function of the observed variables Xi (i.e. Xi′ =
α>ii′X

i+εii′). In the case where i = i ∈ I1 (i.e. a simple linear regression with j = 1 as in (4.10)),
an estimate of αii′1 is Cov(Xi, Xi′1)/Var(Xi). In this context, rewriting εii′1 = Xi′1 − αii′1X

i, we
also have that

λ̂2
ii′1

= Var(Xi′1)− Cov(Xi, Xi′1)2

Var(Xi) and λ̂ii′1i′2 = Cov(Xi′1 , Xi′2)− Cov(Xi, Xi′1) Cov(Xi, Xi′2)
Var(Xi) .
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Knowledge of variances and covariances between the covariates X is similarly required when
two or more predictors are considered in each approximate composite likelihood contribution
i.e. when i ∈ Ij , for j ≥ 2. Ideally these variances and covariances should be computed and
stored prior to the data aggregation process i.e. on the full dataset, but if this information is
unavailable, variance and covariance estimates can be derived directly from the histograms ei-
ther with (Beranger et al., 2018) or without (Billard and Diday, 2003, Billard, 2011) parametric
assumptions. Clearly, the assumption that a missing variable can be written as a linear combina-
tion of observed variables may not hold. Where viable, transformations (e.g. Box-Cox) or more
flexible regression models can be applied to provide a more realistic model, either regressing on
the transformed covariates or modifying the form of β̃ik (4.9) as required.

Finally, suppose that we again consider the case j = 1 so that the approximate composite
likelihood is constructed with each term comprising each covariate separately (4.10). This is
the most computationally efficient histogram-based likelihood as it is based solely on univariate
histograms (and known covariances with the other covariates). This construction implies that
only univariate marginal histograms are required. Beranger et al. (2018) introduced two like-
lihood constructions for histogram-valued variables. The first, which we have used until now,
assumes that histogram bins are fixed and the corresponding counts are random, which works
straightforwardly in D-dimensions. The second construction is a quantile-based approach for
univariate variables only, where the bin locations are assumed random and the counts fixed.
Defining bin locations using quantiles can better describe the behaviour of the underlying data,
and also has the advantage of retaining some of the micro-data (at the observed quantiles) which
resembles the mixture of histogram and standard likelihood approach of Section 4.3.2.

In this setting, for each k ∈ Ω and each marginal component i ∈ I1, define a vector of
order statistics t = (t1, . . . , tB)> where 1 ≤ t1 ≤ . . . ≤ tB ≤ Nk, such that a quantile-based
histogram-valued random variable is obtained through the aggregation function

Sik = π̇(X(k)i) : R→ S = {(a1, . . . , aB) ∈ RB : a1 < . . . < aB} × N (4.11)

x(k)i 7→ sik =
(
x

(k)i
(t1), . . . ,x

(k)i
(tB), Nk

)
,

where x(k)i
(tb) denotes the tb-th order statistic of x(k)i ∈ R. (Note that to ease notation we

have omitted superscripts and subscripts related to i and k in the order statistics t.) The
b-th histogram bin is then defined over the range (sikb−1, s

i
kb] with fixed counts of underlying

datapoints tb−tb−1, for b = 1, . . . , B+1, where s0 = −∞, sB+1 = +∞, t0 = 0 and tB+1 = Nk+1.
If each covariate is aggregated via (4.11), then the resulting approximate composite likelihood
function is

L
(1)
OO(s;β) = L

(1)
O ({x(k)i};β)L(1)

SO(s;β),

where s = (s1, . . . , sK) and sk = (s1
k, . . . , s

D
k ) with sik defined in (4.11), and where L(1)

SO is the
likelihood shown in (4.10).
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4.4 Simulation studies

We now examine the parameter estimation and classification capabilities of the methods
developed in Section 4.3 based on simulated data. We consider both the statistical and com-
putational performance of the histogram-based analyses compared to the standard full-data
approach.

In the following we set the number of possible outcomes K to define Ω = {1, . . . ,K}, the
domain of the response variable Y . We obtain the (D×2N) matrix of covariatesX by generating
2N observations from a specified D-dimensional distribution. Given a fixed matrix of regression
coefficients β ∈ R(D+1)×K , for each n = 1, . . . , 2N we compute the probability of every outcome
in Ω using (4.1). These probabilities are then used to generate Y ∈ Ω2N from a multinomial
distribution. The dataset (Y ,X) is then split into equally sized training and test datasets,
and the estimates β̂M, β̂O, β̂MM, β̂O(j) and β̂SO(j) are obtained by maximising their respective
likelihood functions on the training dataset. Using the test dataset we compute the prediction
accuracy (PA) of a model (and estimation procedure) as

PA = 1
N

N∑
n=1

1{Y Pred
n = Yn}

where Y Pred
n = argmaxk∈Ω P (Y = k|X = Xn), n = 1, . . . , N , denotes the predicted outcome

under the model (multinomial or OvR model) with estimated coefficients β̂M, β̂O, β̂MM, β̂O(j)

or β̂SO(j). After repeating the above analysis 1 000 times we report the mean squared errors
(MSE) and mean prediction accuracies of the above estimators.

In Section 4.3.2 we proposed to improve the statistical and computational efficiency of the
MLE by retaining the data underlying a histogram bin, rather than using the bin itself, if the
number of underlying observations in the bin sbk is less than τk. Quadrature is utilised in order
to perform the integrations in (4.6). In order to perform this approximation, the number of
function evaluations used to approximate the integral needs to be specified. A simple method
of determining the minimum number of function evaluations required to obtain good results
is to iteratively increase the value until the change in results is negligible, thus indicating the
approximation of the integral is sufficient. Similar approaches can be utilised to determine the
minimum number of marginal bins B needed to obtain comparable results to the classical model
for the various histogram-based models described in Section 4.3, whereby increasing values of
B are iteratively investigated until the change in results is negligible. This approach is used
to indicate convergence to the classical results in the real data analyses in Section 4.5. We
note that it would be an interesting future research project to explore potentially more rigorous
methods of determining the optimal values of these parameters. Through experimentation we
determined that using 2j function evaluations for each integral globally produced small enough
approximation errors when integrating over j-dimensional bins to obtain comparable results
to the classical model. As this implies the minimum number of evaluations necessary for a
reasonable approximation of the integrals across all bins, we set τk = 2j .
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4.4.1 Varying the number of bins, B

We specify (training and test) datasets each comprising N = 20 000 observations for which
the response variable Y can take values in Ω = {1, 2, 3} (K = 3) conditional on D = 5 explana-
tory variables. The true vector of regression coefficients βtrue has entries randomly drawn from
a U [−5, 5] distribution. The explanatory variables are drawn from D-dimensional normal and
skew-normal distributions, with correlation matrices containing zero correlations (the identity
matrix) or correlations drawn from U [−0.75, 0.75]. The elements of the skew-normal slant vector
are drawn from U [−7, 7]. While the correlation parameter of the skew-normal distribution is
not equivalent to the correlation matrix of the associated random variable, skew-normal data
simulated using the identity matrix as the correlation parameter typically have low correlations.
When aggregating the design matrix X into a histogram through (4.5), an equal number B of
bins is set for each margin and each outcome k, i.e. Bk = (B,B,B,B,B,B) for all k ∈ Ω.

We use both the full multinomial regression (M) model fit using (4.2) and the OvR (O) model
fit using the full likelihood (4.3) as reference fits. We also fit the multinomial mixture (MM)
model of histogram and underlying classical data (4.8), and the univariate approximate com-
posite likelihood L(1)

O (see Proposition 4.3.3). For the histogram-based, univariate approximate
composite likelihood (4.10) we make the assumption that the covariates are either independent
(αii′ = 0 and λii′1i′2 = 0 in (4.9)) or that the variance-covariances of the covariates are to be
estimated.

Figure 4.1 illustrates the mean prediction accuracies (over 1 000 replicates) as a function of
the number of bins B, obtained for each of the above models and estimation procedures. For the
full dataset, using an approximate composite likelihood approach to fit the OvR model (dashed
grey line) yields comparable prediction accuracies to the full likelihood approach (solid grey
line), in particular when the covariates are independent of each other (left panels).

When the empirical variance-covariance matrix is used, the histogram-based OvR model
fitted using the L(1)

SO approximate composite likelihood (grey dotted line) is able to obtain com-
parable prediction accuracies to the L(1)

O full-data approximate composite likelihood OvR model
(solid grey line), for a reasonable (≈ 10 marginal bins) level of data aggregation, and for any
covariate distribution (rows). This clearly demonstrates that L(j)

SO(x, y;β) → L
(j)
O (s;β) as dis-

cussed in Section 4.3.3. It also performs well compared to the analysis on the full data (solid
black line) when the covariates are independent (left panels; note the small y-axis scale).

When the empirical variance-covariance matrix is unavailable and the correlations between
explanatory variables are assumed to be independent (αii′ = 0 and λii′1i′2 = 0), the histogram-
based approximate composite likelihood model (dot-dashed grey line) still produces reasonable
prediction accuracies. However, as should be expected, there is a clear loss in performance
compared to when the covariances are known, for densities with high covariate correlations
(right panels) and asymmetric distributions (bottom panels).

The prediction accuracies obtained from the multinomial model (dashed black line) have
converged relatively quickly to its classical equivalent (solid black line) requiring only around
B = 5 bins per margins. The multinomial model gives higher overall prediction accuracies
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Figure 4.1: Average prediction accuracy (P.A.) computed over 1 000 replications for the multino-
mial model using full likelihood (solid black), mixture multinomial model (dashed black), OvR
model using full likelihood (solid grey) and approximate composite likelihood (dashed grey),
histogram-based OvR model using approximate composite likelihood assuming independence of
the covariates (dot dashed grey) and using additional covariate assumption (dotted grey). Top
panels consider covariates simulated from the multivariate normal distribution and bottom pan-
els using the skew normal distribution. Left panels assume the covariates have zero correlation
parameter, and right panels use non-zero correlations.

than the OvR model in each case, however recall that the data were simulated according to the
multinomial model, giving it a natural advantage. While the multinomial model is generally
preferred over the OvR model here, in practice the One-vs-Rest approach can outperform the
multinomial model for some datasets, and can give almost as good results in many other cases
(e.g. Eichelberger and Sheng, 2013).

Figure 4.2 illustrates the mean computational efficiency of fitting each model. It highlights
the computational superiority of the histogram-based OvR model when univariate components
are included in the likelihood (L(1)

SO(s;β); grey lines) against the full data multinomial model
(black lines). The computation time increases as the number of bins increases when L(1)

SO(s;β)
is used, however comparable predictions to the full multinomial model are achieved for B ≈ 10
(c.f. Figure 4.1) at a significantly cheaper computational cost. For the mixture multinomial
model (black dashed lines), the computation time increases strongly with increasing B. This
phenomena is due to the intractability of the integrands in (4.6) requiring numerical integration,
and our choice of τk. However, for this setup B ≈ 5 is sufficient to provide comparable predic-
tions to the multinomial model (Figure 4.1), and with lower computational overheads than the
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Figure 4.2: Average computation time (in CPU seconds) over 1 000 replications for the multi-
nomial model using full likelihood (solid black), mixture multinomial model (dashed black),
histogram-based OvR model using approximate composite likelihood assuming independence
of the covariates (dot dashed grey) and using additional covariate assumption (dotted grey).
Top panels consider covariates simulated from the multivariate normal distribution and bottom
panels using the skew normal distribution. Left panels use covariates from a zero correlation
parameter, and right panels use non-zero correlations.

complete data case.
Even though the L(1)

SO(s;β) and LMM (s;β) likelihood approaches for histogram-valued data
increase in computational intensity with increasing B, relative to the classical M model, we
need to keep in mind that N = 20 000 observations are considered. Increasing N will directly
increase the computational time of the classical approach (solid black line), while computational
overheads will remain relatively unchanged for the histogram-based methods (where computation
is proportional to the number of bins, not datapoints within bins). Consequently, there are clear
computational benefits to employing a histogram likelihood approach when analysing extremely
large datasets. We explore this in Section 4.4.2.

4.4.2 Varying the number of underlying observations, N and comparison with
subsampling

Aggregating data into summaries and performing an analysis on these new “datapoints”
seems a good strategy when the sample size is large. It is natural to compare this approach to
other popular techniques for downsizing data volume, such as subsampling algorithms. We use
the two-step subsampling scheme given by Wang et al. (2018) for logistic regression modelling,
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Figure 4.3: Mean prediction accuracies (P.A.) using the multinomial model on the full data (solid
black line), subsampled data (dashed black line) and the histogram-based OvR model using L(1)

SO
with independence assumption (dashed grey line), L(1)

SO with correlations (solid grey line), L(2)
SO

(dotted black line) and the naive composite likelihood model (dotted grey line) as a function
of the number of datapoints N . The covariates are generated from 8-dimensional skew-normal
distributions, considering zero (left) and non-zero (right) correlation parameters. The responses
have two possible outcomes (K = 2). Results are based on 1 000 replicate analyses.

which first uniformly draws a subsample of size r0 = 1 000 from the dataset to produce an MLE
estimate β̂0, and uses this to produce an optimal weight for each datapoint. The second step
then draws with replacement a subsample of size r = 1 000 using the optimal weights, and then
determines the final estimate of β using the total subsample of size r0 + r.

In the following binary response (K = 2) experiment each element in the true vector of
regression coefficients is generated from U [−1, 1], and the number of observations, N , varies
between 5 000 and 100 000. The explanatory variables are drawn from 8-dimensional skew-
normal distributions (D = 8), with either zero correlations (identity matrix) or correlations
drawn uniformly on [0, 0.75]. The slant vector of the skew-normal distribution is drawn from
U [−10, 10]. (Recall that the identity correlation matrix for the skew-normal distribution does
not lead to independent covariates, but rather low correlations between the covariates.) Note
that in the case of binary responses the multinomial and OvR models are identical. After
aggregating the covariates into histograms with B = 15 bins for each margin, the histogram-
based OvR model is fitted using L(1)

SO and L(2)
SO (univariate and bivariate marginal histograms),

including covariate correlations. The L(1)
SO model is also fitted assuming independence between

covariates.

Figure 4.3 shows that the mean prediction accuracies obtained by each method are increasing
functions of the sample size N . Overall the symbolic based methods yield higher prediction
accuracies than the subsampling approach when the covariate correlations are incorporated, and
the more informative bivariate histogram setup L(2)

SO will outperform the univariate histogram-
based L

(1)
SO. When the covariates exhibit low correlations, the L(1)

SO model provides significant
improvements over the naive composite likelihood analysis, regardless of whether correlations
are incorporated. When there are correlations between the covariates, the L(1)

SO model only
provides significant improvements over the naive composite likelihood analysis if the covariate
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Figure 4.4: Mean total computation times (in CPU seconds) for the multinomial model on the
full data (solid black line), subsampled data (dashed black line) and the histogram-based OvR
model using L(1)

SO with independence assumption (dashed grey line), L(1)
SO with correlations (solid

grey line), L(2)
SO (dotted black line) and the naive composite likelihood model (dotted grey line)

as a function of the number of datapoints N . The covariates are generated from 8-dimensional
skew-normal distributions, considering zero (left) and non-zero (right) correlation parameters.
Results are based on 1 000 replicate analyses.

correlations are included. The magnitude of the variations in the prediction accuracy confirms
that the extra efforts to use L(2)

SO are not justified in this case, and that univariate marginal
histograms provide enough information and produce comparable results to a classical full data
analysis.

Figure 4.4 supports these conclusions by providing the overall computation times (including
aggregation and optimisation) for each model in Figure 4.3. We observe that the mean com-
putational time required for the univariate symbolic model is significantly lower than for the
multivariate model with full data, with an increasing disparity as the sample size N increases,
as the number of terms in the histogram-based OvR model depends on the histogram construc-
tion and not N (and so is constant in these plots). In addition to its prediction superiority,
L

(1)
SO also computationally outperforms the subsampling approach of Wang et al. (2018). Note

that Figure 4.4 indicates that L(2)
SO (dotted black line) is computationally more demanding than

using the full data (solid black line), making it superfluous in this setting. However note that
as computation for L(2)

SO is constant in N , there is some value N0 such that if N > N0 then the
computational overheads for L(2)

SO will be more efficient than for the full data analysis.

Figure 4.5 explores parameter estimator performance via the mean mean squared error
(MMSE) of a model’s MLE, θ̂Model, defined as MMSE(θ̂Model) = S−1∑S

s=1 ‖θ̂Model
s − θtrue

s ‖2,
where ‖ · ‖ denotes the Euclidean norm, θtrue

s is the true parameter vector, and S = 1 000 the
number of replicate analyses. Figure 4.5 demonstrates that subsampling methods perform better
than the histogram-based methods if a low MMSE is desired. Using L(1)

SO instead of the naive
composite likelihood analysis leads to a lower MMSE, with the results further improving if the
covariate correlations are included.

Figure 4.6 explores parameter estimate accuracy further, displaying the mean estimates for
a selection of the regression parameter over the 1 000 replicate analyses. The estimates obtained
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Figure 4.5: MMSE for the multinomial model on the full data (solid black line), subsampled
data (dashed black line) and the histogram-based OvR model using L

(1)
SO with independence

assumption (dashed grey line), L(1)
SO with correlations (solid grey line), L(2)

SO (dotted black line)
and the naive composite likelihood model (dotted grey line) as a function of the number of
datapoints N . The covariates are generated from 8-dimensional skew-normal distributions,
considering zero (left) and non-zero (right) correlation parameters. Results are based on 1 000
replicate analyses.

from L
(1)
SO are much closer to those of the full model analysis than that of the naive composite

likelihood analysis, with accuracy improving if covariate correlations are incorporated into the
model. While the subsampling method provides more accurate parameter estimates, the better
performance of the histogram-based models for predictions can potentially be explained by the
fact that the histogram-based models incorporate the entire dataset, whereas a subsampling
scheme can still potentially omit important observations. For predictions and the binary model,
an observation xn is assigned to class 1 if β>xn < 0, and class 2 otherwise. Consequently,
the same predictions are obtained from any parameter vector mβ, m > 0 for any dataset. In
this case, the histogram-based models are more accurately estimating the model parameters to
proportionality compared to the subsampling scheme, despite having a larger MSE.

In summary, this experiment suggests that if predictions are desired for logistic regression
models, histogram-based solutions can be more accurate and computationally more efficient than
subsampling-based methods, such as that in Wang et al. (2018). The use of bivariate histograms
to represent the covariate information improves the prediction of the response outcomes, but
at an often impractical computational cost compared to univariate histograms. This simulation
study suggests that marginally aggregating the covariates into univariate histograms, in com-
bination with knowledge of covariate correlations, provides the best trade off between accuracy
and speed.

4.5 Real data analyses

We illustrate the applicability of our proposed methodology to two real data problems. We
first consider a logistic regression problem where the goal is to distinguish between a process
where new supersymmetric particles are produced and a background process. Secondly we tackle
a multinomial regression problem which consists of predicting crop types based on satellite-based
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Figure 4.6: Mean MLEs using the multinomlial model on the full data (solid black line), sub-
sampled data (dashed black line) and the histogram-based OvR model using L(1)

SO with indepen-
dence assumption (dashed grey line), L(1)

SO with correlations (solid grey line), L(2)
SO (dotted black

line) and the naive composite likelihood model (dotted grey line) as a function of the number
of replicates N . The covariates are generated from 8-dimensional skew-normal distributions,
considering zero (left two columns) and non-zero (right two columns) correlation parameters.
Results are based on 1 000 replicate analyses.

pixel observations.

4.5.1 Supersymmetric benchmark dataset

The Supersymmetry dataset (SUSY) is available from the Machine Learning Repository (Dua
and Graff, 2017) and comprises 5 million Monte Carlo observations generated by Baldi et al.
(2014). The binary response variable (K = 2) discriminates a signal process which produces
supersymmetric particles from a background process which does not. There are 18 features
(D = 18); the first 8 are low-level features representing the kinematic properties measured
by the particle detectors, while the remaining 10 are high-level features derived as function of
the previous 8 by physicists to help discriminate between the two outcomes. This dataset was
analysed by Wang et al. (2018) to test their optimal subsampling scheme for logistic regression.
Following Wang et al. (2018), we consider a training dataset of 4 500 000 randomly chosen
observations, and a test dataset with the remaining 500 000 observations.

Following the conclusions from Section 4.4, we fit the histogram-based OvR model using uni-
variate marginal histogram aggregates (L(1)

SO). While until now the focus has been on histograms
with random counts (fixed bins), here we fit L(1)

OO to explore the performance of using random
bin (fixed counts) histograms. For an integer B, we construct histograms for each covariate
by partitioning the data into B bins with roughly equal counts. For example, for B = 4 we
would use the 0.0, 0.25, 0.5, 0.75 and 1.0 empirical quantiles to construct the histogram for each
covariate.

The likelihood functions are optimised using ridge regularisation with 10-fold cross-validation
and, for L(1)

OO, for a range of values of B. Prediction accuracies obtained on the test dataset
and the optimisation times (in seconds) on the training dataset are reported in Table 4.1. For
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Bins
Likelihood 6 8 10 12 15 20 25

L
(1)
OO 74.9 75.9 76.6 77.7 78.1 77.9 78.1

(11.7) (14.5) (12.2) (15.0) (18.9) (21.3) (27.6)
L

(1)
SO 74.4 73.5 75.8 77.8 77.4 78.0 78.0

(13.3) (12.6) (11.5) (13.9) (16.8) (18.0) (21.4)
Subsampling 78.2

Wang et al. (2018) (86.1)

Table 4.1: Percentage prediction accuracy with computing time (in seconds) for the Supersym-
metry dataset, using histograms with B bins per margins, and the subsampling approach of
Wang et al. (2018).

the histogram-based models, there is an increase in prediction accuracy as the number of bins
increases, which is as expected since these are more informative summaries. The improvement
in prediction accuracy slows down at around the B = 12 bin mark, whereas the computation
time naturally increases with the number of bins. The performance when B = 12 reaches only
slightly inferior levels than those in Figure 10(b) in Wang et al. (2018) when r0 = 200 and
r = 1 000 with various subsampling probabilities. When replicating this method for comparison,
we obtain a prediction accuracy of 78.2% with a computation time of 86.1 seconds i.e. about
3–4 times more computation than for the histogram-based models with B = 25. That is, the
histogram-based methods offer as good prediction accuracy with much smaller computational
overheads compared to state-of-the-art subsampling approaches.

4.5.2 Crop type dataset

We examine a crop type dataset (QUT, 2016) which consists of 247 210 observations, each
representing a 25×25m2 pixel located over farmland across the state of Queensland, on the east
coast of Australia (Figure 4.7). For each pixel the ground-truth crop type is available (observed
at one of three possible times) as well as numerous vegetation indices, based on reflectance data
taken from a LANDSAT 7 satellite. The aim of this analysis is to predict the crop type based on
the vegetation indices. After selecting the most meaningful covariates by iteratively removing
variables with correlations greater than 0.85, we retained D = 7 variables corresponding to
various colour reflectances measured by the satellite and functions of these indicators.

As poor prediction accuracy of classes with low numbers of observations is a well known
issue, we only retain crop types that are observed more than 10 000 times, reducing the dataset
to 234 485 observations. The set of possible outcomes of our multinomial response variable Y =
“Crop type” is then Ω = {Bare soil,Cotton,Maize,Pasture natural,Peanut,Sorghum,Wheat}
and thus K = 7. The resulting dataset is identical to the one used in a previous analysis in
QUT (2016) which used the standard multinomial model LM(x, y;β).

As the approximate composite likelihood relies on the assumption of a linear relationship
between the predictor variables, we use the R package bestNormalize to select the best transfor-
mation to achieve approximate predictor Gaussianity, according to the Pearson P-test statistic.
The dataset is randomly partitioned into a training dataset of size 200 000 used for parameter
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Bins
Crop type Nk 6 8 10 12 15 20 LM(x, y;β)
Cotton 72 450 90.5 90.6 92.8 93.6 94.0 94.1 92.2
Sorghum 66 751 74.6 74.8 75.7 76.4 76.2 76.3 80.3

Pasture Natural 27 479 75.7 75.4 76.0 76.8 77.0 77.1 77.6
Bare Soil 26 173 88.0 89.6 89.2 90.0 89.5 90.1 91.0
Peanut 17 868 81.2 81.3 81.5 81.5 81.9 81.6 82.9
Maize 12 986 9.7 9.9 10.2 10.4 10.3 10.4 14.2
Wheat 10 778 3.4 4.0 4.8 5.0 5.2 5.7 10.3
Overall 234 485 74.6 75.5 76.4 77.1 77.2 77.2 78.1

(164) (162) (221) (229) (276) (508) (6071)

Table 4.2: Crop specific and overall prediction accuracies (%) using univariate marginal his-
tograms with B bins. The likelihood optimisation times (in seconds) are reported in the last
row. The full model is the standard multinomial likelihood LM(x, y;β) (4.2) with LASSO reg-
ularisation, as implemented by QUT (2016).

estimation and a test dataset with the remaining 34 485 observations to evaluate the prediction
accuracy. We perform constrained likelihood optimisation with a LASSO regularisation, and
use 10-fold cross validation to determine the best regularisation parameter.

Table 4.2 presents the prediction accuracies for the L(1)
SO model for each crop type and the

overall prediction accuracy when the covariate information is collapsed into univariate marginal
histograms with B = 6, 8, 10, 12, 15 and 20 bins. The last column of Table 4.2 provides a compari-
son with the full data multinomial likelihood (LM(x, y;β)) using the same LASSO regularisation,
as implemented in the original analysis by QUT (2016). The overall and crop-specific prediction
accuracies have achieved good predictive performance compared to the full data multinomial
model analysis using only B ≈ 10–12 bins. Two particular crops produce notable results. The
prediction accuracies for Wheat are around 5% for the histogram-based analysis compared to
the ∼10% accuracy of the full-data analysis. While both of these are low due to this crop being
the least well represented of all crops in the study (less than 5% of all observations), and perhaps
lowly informative vegetation indices for this crop, the 50% predictive underperformance for the
histogram-based analysis suggests that categories with less data in a model are more sensitive to
the degree of binning than those categories with larger representation in the dataset (although
this is less apparent for Maize).

In the case of Cotton, which is the largest representative category (at ∼31%), the histogram-
based prediction accuracies are even higher (at ∼94%) than for the full data analysis (92.2%).
While this is not immediately understandable intuitively, in that by constructing histograms
information in the dataset is certainly being lost and so performance should perhaps always be
worse, the difference is only 2%, and moreover the likelihoods are not directly comparable in
the sense that the limit of the approximate composite likelihood L

(j)
SO(s;β) as B → ∞ is not

the full data multinomial model LM(x, y;β) as used in QUT (2016). So here the discrepancy
is that the two likelihoods simply have different performances for these data. This argument
notwithstanding, proponents of symbolic data analysis sometimes ascribe to the idea that in-



90 CHAPTER 4. LOGISTIC REGRESSION MODELS FOR AGGREGATED DATA

Figure 4.7: The crop type dataset with different colours for each crop. Left: Location of the study area
in the state of Queensland on the east coast of Australia. Right: farm location and crop type detail.

ference using the ‘shape’ of the data may sometimes be more useful than an analysis of the full
underlying dataset (Edwin Diday, personal communication).

Overall, while the histogram-based analysis gives comparable prediction accuracies to the
full data analysis, the real gains are in the computational overheads required for each model.
The full multinomial analysis takes considerably longer (more than 25× the B = 12 analysis) to
implement than the histogram based analysis. Finally, note that while the computational savings
here are substantial, this dataset only contains N = 234 485 observations. For larger datasets
the computational overheads will skyrocket for the standard multinomial model analysis (where
computation is proportional to N), and yet will remain roughly constant for the histogram-based
approach (where computation is proportional to B).

4.6 Discussion

In this article, we have developed a novel approach for classifying binary and multinomial ran-
dom variables that alleviates the computational bottleneck that arises with very large datasets.
The strategy relies on concepts from the field of symbolic data analysis (Beranger et al., 2018),
aggregating the covariate data into histogram-valued random variables which have lower compu-
tational overheads to analyse and store, albeit with some loss of information. When computation
for any histogram bin is larger than that for the standard likelihood contribution of the data-
points within that bin, the standard likelihood contribution for these datapoints can be used
instead. However, because high-dimensional histograms are not efficient distributional sum-
maries, we additionally introduced an approximate composite likelihood methodology, which
quantitatively builds on the qualitative results of Cramer (2007). The individual components of
the approximate composite likelihood are constructed from marginal histograms derived from
the full D-dimensional histogram. This concept of approximate composite likelihoods for logistic
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regression does not solely apply to aggregated data and can be used in more general settings.
We have demonstrated through simulation studies and real data analyses that these histogram-

based strategies can produce fitted models that have comparable prediction accuracies to the
standard full data analysis, but at a much lower computational cost, even compared to state-
of-the-art computational techniques for logistic regression such as subsampling (Wang et al.,
2018). On the down side, the resulting parameter estimates are biased, though not as much as
for naive composite likelihood-based approaches.

One aspect of implementing histogram-based inference that we have not explored is principled
ways of constructing the histograms for subsequent analysis. If the number of bins is too low
then important information in the data will be lost and model predictions may be poor (see
e.g. Figure 4.1). In contrast, as the number of bins becomes large then inferential accuracy
can approach the level of the full data analysis (within the context of the inferential model
being used). However, the price of more accurate inference is an increase in the computational
costs. A simple approach was used in the real data analyses in Section 4.5, in which increasing
values of B were investigated until the change in results was negligible, thus demonstrating
convergence to the comparable classical model. A downside of this approach is that it requires
the optimisation of multiple likelihood functions until convergence is reached, whereas an ideal
method would be to determine the optimal value of B prior to any aggregation. We note however
that for huge datasets like those analysed in Section 4.5, there are still significant computational
gains associated with the use of the models presented in this paper, despite this drawback. An
‘optimal’ approach could therefore consider balancing computational complexity and inferential
accuracy, or alternatively by minimising a loss function constructed over some useful criterion.
This is clearly an important component of the current methodology, and is the focus of current
research.
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Chapter 5

Non-Parametric Estimating
Equations for symbolic data

5.1 Introduction

Symbolic Data Analysis (SDA) is a branch of statistics that has been introduced to deal
with some of the issues associated with the growing size and complexity of modern datasets
(see Billard and Diday (2003, 2006), Bertrand and Goupil (2000)), with applications in vari-
ous fields such as environmental and climate sciences, economics and medicine. Large datasets
are summarised into non-standard observations such as distributions, intervals and histograms,
which can contain qualitative and quantitative data of a manageable size. When classical data
is aggregated into a non-standard form, knowledge of the underlying data is generally lost. Fur-
thermore, classical statistical techniques are often not appropriate due to the internal variation
associated with symbolic objects, meaning new methods of analysis and inference need to be
developed.

An important distinction between classical and non-standard data is that non-standard data
possess internal variation, whereas classical data does not. An analysis of symbolic data must
therefore account for the variation of the underlying microdata within a symbolic object, as
well as the variation between symbolic observations (Billard, 2011), which isn’t possible with
existing classical methods of analysis due to the lack of internal variation within classically ob-
served pointwise data. With the exception of a small number of works (e.g. see Le Rademacher
and Billard (2011) and Beranger et al. (2018)), most of the existing literature focuses on ex-
ploratory analyses of symbolic observations without a connection to the underlying microdata
from which the symbols arose. Bertrand and Goupil (2000), Billard and Diday (2003), Billard
(2011) proposed estimates for the sample symbolic mean, variance and correlations for interval
and histogram valued datasets, which we will show in this paper is equivalent to the classical
results if the microdata is uniformly distributed within each symbol. Oliveira et al. (2018) de-
scribe the various definitions of symbolic variances and correlations that have been proposed in
recent years, and derive the conditions on the underlying microdata that are required for the
symbolic estimates to be equivalent to the classical case. These estimates are limited to assump-
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tions that in practise are often violated, such as the aforementioned uniformity assumption or
the assumption of normality within each symbol.

Non-parametric estimating equations were defined by Godambe (1990) as a method of ob-
taining estimates for non-parametric statistics (i.e. means, variances, skewness, quantiles etc.)
of a classical dataset without the need for a parametric assumption. Parametric methods of
estimation, such as Maximum Likelihood Estimation, can be considered a special case in which
a parametric density is assumed for the observed dataset. Various methods have been devel-
oped for obtaining variances and confidence intervals for these estimates, such as the bootstrap
(Efron, 1979) and more recently, Empirical Likelihood (EL) (Owen, 1988, 1990). Empirical
Likelihood has emerged as an effective means of obtaining confidence intervals for quantities of
interest, without making distributional assumptions on the data. Some common applications
include the EL analysis of econometric data (Bravo, 2004), censored survival data (Zhou and
Li, 2008, Zhou, 2015) and time series data (Nordman and Lahiri, 2014, Piyadi et al., 2017).
Qin (2017) provide some examples of simple applications of EL analysis. While these methods
are well developed for classical-valued datasets, they need to be extended to the non-standard
case so that variances and confidence intervals can be obtained for symbolic-valued datasets.
Elashoff and Ryan (2004) propose an EM algorithm for estimating equations for missing data,
whereby the expected values of the estimating equations for the missing data are obtained using
the observed data, and substituted into the usual estimating equations. Wang and Pepe (2000)
proposed an expected estimating equations approach to accomodate error in the measurement of
covariates, whereby the error is modelled via an assumed parametric density. This methodology
was extended to accomodate missing data and missclassification by Wang et al. (2008). In some
cases these methods are insufficient for data arriving in a non-standard form however, as they
either require some classical data to be observed or the assumption of some parametric structure
which may not be verifiable or reasonable. As a result, new methods need to be developed to
accomodate the case whereby data arrives in a non-standard form (e.g. intervals, histograms,
distributions, etc.) and for which we don’t want to (or can’t) assume a parametric form for the
complete underlying density or the distribution within each symbol.

There has been much work done on the estimation of non-parametric densities from non-
standard data. The simplest example is the often utilised histogram density estimator (Silver-
man, 1986), which is easily derived from any observed histogram. Minnotte (1996) proposed
the ‘bias-optimized frequency polygon’, which is an extension of the frequency polygon (Oliver,
2014) with preserved bin probabilities for each histogram bin. Scott and Sheather (1985) and
Hall (1996) provide theoretical results for the errors involved in performing a Kernel Density Es-
timation (KDE) analysis on the midpoints of binned data, weighted by their respective counts.
Blower and Kelsall (2002) improve on this by constructing a smooth kernel density estimator
through the integration of the classical KDE over the domain of the underlying microdata.
Minnotte (1998) and Koo and Kooperberg (2000) estimate the underlying density from binned
data using splines fitted to the observed proportions, although it is shown in Minnotte (1998)
with a real histogram dataset that this can lead to negative density estimates at some points
if low count bins are sandwiched between two high count bins. Yongho et al. (2015) develop
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a method of non-parametric density estimation for intervals by using weighted local Gaussian
Kernels. Conditional means and variances of each interval are estimated using weighted sums of
the same quantities from neighbouring intervals, where the weight is determined by the distance
between each interval, and the distances are calculated according to either midpoints or edges
of each interval. Each of these methodologies are effective in estimating the underlying density
of the microdata, however require extra decisions from the practioner, such as kernel choice,
bandwidth selection, number of splines in the case of Minnotte (1998) and Koo and Kooperberg
(2000), and distance metric in the case of Yongho et al. (2015). Furthermore, the main objective
of these works revolve around the estimation and visualisation of an underlying classical data
density, and not of the values estimating equations would take from that underlying density.

Le Rademacher and Billard (2011) utilise the empirical densities derived by Bertrand and
Goupil (2000) and Billard and Diday (2003) to derive a likelihood-based approach for interval-
valued symbolic data, from which a histogram symbolic likelihood function is a simple extension.
These likelihood functions are effective in deriving the internal statistics of a symbol given an
assumed parametric distribution, however there is no mechanism for understanding the structure
of the underlying data from which the symbolic data arose. Heitjan (1989) explored the use of
Sheppard’s correction in the estimation of a sample variance from rounded data, which states
that if a random variable X is i.i.d. normally distributed, and instead of observing X, we
observe rounded values Y , then V ar(X) = V ar(Y ) − δ2

12 , where
δ
2 is the degree of rounding.

This can be generalised to any parametric framework, but provides no mechanism of estimating
variance if the underlying parametric family is unknown. Furthermore, Sheppard’s correction
is restricted in that it is unreliable for datasets that are non-symmetrical, multimodal, and of a
low sample size. Beranger et al. (2018) proposed a general symbolic likelihood function whereby
Maximum Likelihood Estimators (MLEs) for the underlying classical data can be obtained from
the symbolic data. This construction automatically assumes a non-uniform truncated parametric
density within each symbol, therefore removing the unreliable uniformity assumption previously
utilised. While these models are effective in estimating an underlying microdata parametric
density, they provide no mechanism for modelling the underlying data and obtaining estimates
for parameters if we don’t assume a parametric form.

In this paper we propose a methodology for obtaining non-parametric estimates for statis-
tics from symbolic datasets that are comparable to that of a classical analysis of the original
microdata for a certain level of information retention/data aggregation. These estimates do not
require the assumption of a uniform within-symbol distribution, and in fact can be obtained
for any symbolic dataset for which we can estimate the internal structure of the microdata.
Furthermore, our model does not require a parametric assumption on the underlying data or
a uniformity assumption, which is of particular significance in the estimation of confidence in-
tervals for quantiles from symbolic data. We show that for statistics that follow the concept
of sufficiency derived by Elashoff and Ryan (2004), estimates can be written as a function of
estimates of the same statistics for each individual symbol. The symbolic mean, variance and
covariance proposed by Billard and Diday (2003), Bertrand and Goupil (2000), Billard (2011),
Oliveira et al. (2018) can be considered a special case of these results whereby the microdata
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is assumed to follow independent uniform distributions within each symbol. Furthermore, we
extend the EL methodology proposed by Owen (1988) to the symbolic setting, enabling us to
obtain variances and confidence intervals for the symbolic estimates. We then develop specific
methodologies to estimate the within-symbol structure of the microdata for each symbol in
interval and histogram-valued datasets by utilising information in neighbouring symbols, thus
allowing more accurate estimation of within-symbol statistics such as the within-symbol mean,
variance and skewness. The idea behind these constructions is that if the classical underlying
data is generated from the same underlying process, then we can utilise the information in all
the symbols to estimate the individual parameters for each symbol, instead of just treating each
within-symbol distribution as independent.

The structure of this paper is as follows. In Section 5.2 we provide the necessary back-
ground information on Estimating Equations, Empirical Likelihood and SDA. In Section 5.3
we derive the general form for symbolic estimating equations such that the estimates obtained
are comparable to those obtained from the underlying classical dataset for a certain level of
data aggregation, and show that EL can be used to obtain variances and confidence intervals
for these parameters. We then derive the general symbolic estimating equations for specific
statistics, such as quantiles, means, variances, skewnesses, etc. In Section 5.4 we then derive
specific methodologies to estimate the within-symbol structure of the microdata for each sym-
bolic observation using the entire symbolic dataset for interval and histogram valued datasets,
allowing better estimates for statistics of the underlying data such as mean, variance, skewness
and in particular quantiles. In Section 5.5 we then illustrate the increased efficiency of these
constructions compared to previous results through the use of various simulation studies, and
in Section 5.6 we then apply these methodologies to real datasets.

5.2 Background Information

In this section we first provide a brief overview of the theory of estimating equations and
then define a framework that allows for statistical analysis of data summaries. This sets the
foundations to develop estimating equations for aggregated data in the following section.

Consider a random vector X = (X[1], . . . , X[D]) ∈ DX ⊂ RD with unknown distribution func-
tion FX and let X = (X1, . . . , XN ) be the collection of N i.i.d. replicates of X with realisation
given by x = (x1, . . . , xN ). Without any parametric assumption about FX we are interested in
making statistical inference on the parameter vector θ ∈ Dθ ⊂ RM , using R ≥ M functionally
independent estimating equations (EE) defined through g(X, θ) = (g1(X, θ), . . . , gR(X, θ))> ,
with the condition

EFX [gr(X, θ)] = 0, for all r = 1, . . . , R (5.1)

uniquely at θ0 the true parameter value, ensuring unbiasedness.
Because we do not wish to make assumptions about distribution function FX and the dataset x
is available, we consider an empirical alternative. The empirical likelihood (EL) associated with
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the observed sample x is given by

L(FX ;x) =
N∏
n=1

dFX(xn) =
N∏
n=1

P (X = xn), (5.2)

meaning that only the distributions that put an atom of probability on each xn are considered.
In other terms F can be seen as a discrete distribution on {x1, . . . , xN} with probability vector
p = (p1, . . . , pN ) defined such that (C1): pn = P (X = xn) > 0, n = 1, . . . , N and (C2):∑N
n=1 pn = 1. If no other conditions on x are imposed other than (C1) and (C2), then the EL

likelihood (5.2) is maximised by the empirical distribution, i.e. p̂n = 1/N , for all n and from
(5.1) an estimate of θ is given by

1
N

N∑
n=1

gr
(
xn, θ̂

)
= 0, for all r = 1, . . . , R. (5.3)

In the empirical setting described above, the EE condition (5.1) can be used to define the addi-
tional condition (C3):

∑N
n=1 pngr(xn, θ) = 0 for all r = 1, . . . , R. Then, letting λ = (λ1, . . . , λR)

be the vector of Lagrange multipliers associated with (C3), constraint maximisation of (5.2)
gives

p̂n = 1
N{1 + λ>g(xn, θ)}

.

Plugging the above expression in (C3) allows to determine λ as a function of θ. Owen (1990)
showed that for the true parameter θ0, −2

∑N
n=1 log(Np̂n) ∼ χ2

R, allowing to construct hypoth-
esis testing and confidence intervals for θ. As an example, suppose θ = (µ, σ2) = (E(X),V(X)),
a natural choice of estimating function with R = 2 is then g(X, θ) =

(
X − µ, (X − µ)2 − σ2) ,

which, from (5.3), gives the estimates µ̂ = 1
N

∑N
n=1 xn and σ̂2 = 1

N

∑N
n=1 (xn − µ̂)2.

The notions presented until now evidently rely on the data being available. We now introduce
a framework where only summaries of the information contained in the data are available. For
c = 1, . . . , C, let X(c) = {X(c)

1 , . . . , X
(c)
nc } denote the c-th subset of X of size nb such that⋃C

c=1X
(c) = X and

∑C
c=1 nc = N which can be interpreted as the set of members belonging to a

class c (e.g. Billard and Diday, 2003). The so-called symbolic object Sc ∈ DSc is a summary of the
information contained inX(c) obtained through an aggregation function π(·) which may contain
some deterministic elements ϑ. For observations given by x(c), the information is summarised
in sc = {nc,Υc, αc}, where Υc = D(X(c)) and αc contains the summary statistics specific to the
aggregation function π(·).

If a parametric assumption is made on the underlying data is made with likelihood function
L(x(c); θ) =

∏nc
i=1 fX(x(c)

i |θ), then the likelihood of the symbol sc is given as

L(sc; θ, ϑ) =
∫

(DX)nc
L
(
x(c); θ

)
fSc|X(c)

(
sc|x(c), ϑ

)
dx(c). (5.4)

(see Beranger et al., 2018). For example, aggregating nc univariate (D = 1) observations x(c) into
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an interval defined by some l-th and u-th order statistics, i.e. for ϑ = (l, u) taking αc = (αc,l, αc,u)
where αc,l = x

(c)
(l) and αc,u = x

(c)
(u), gives

L(sc; θ, ϑ) ∝ FX (αc,l|θ)l−1 (FX (αc,u|θ)− FX (αc,l|θ))u−l−1 (1− FX (αc,u|θ))nc−u fX (αc,l|θ) fX (αc,u|θ) .

The advantage of this construction is the ability to go beyond the omnipresent assumption that
data are uniformly distributed within a symbol and to draw conclusions at the data level. Max-
imum likelihood estimation is a particular case of estimating equations where for the parameter
vector θ = (θ1, . . . , θR) we have gr(xn, θ) = ∂/∂θr log fX(xn|θ). The aim of this paper is to
define a framework for estimating equations constructed from data aggregates where the within
symbol distribution does not require a uniformity assumption.

5.3 Estimating Equations using data summaries

If the data were available then the estimating equations would be those defined in (5.1) but if
only summaries of the data are accessible, then a new set of equations is considered. These new
equations are a transformation of the original ones which depends on the aggregation procedure.

Let φc := fX|Sc=sc denote the density of the underlying random variable X given an observed
summary sc which is linked to φ := fX|S=s, its equivalent when a set of summaries s is observed,
through

φc(x) = 1(x ∈ sc)φ(x)
P(sc)

, (5.5)

where the indicator restricts to the c-th symbol and the denominator corresponds its probability
of occurrence P(sc) =

∫
φ(y)1{y ∈ sc}dy. If the symbols are assumed independent then we can

take Psc = nc
N such that

∑C
c=1 Psc = 1 which yields

φ(x) =
C∑
c=1

nc
N
φc(x) (5.6)

and for ease of notation let also φ(x) =
∏N
n=1 φ(xn). The intuition behind these density will

be studied in the following section with some detailed examples. Using the above we define the
estimating equations for symbolic inputs as

EFS [g′r(S, θ, ϑ)] = 0, for all r = 1, . . . , R (5.7)

where g′r result from the aggregation on the original gr functions and FS is the symbolic distri-
bution function. Before explicitly defining the functions g′r we derive the FS in the empirical
context as follows.

Let’s assume a discrete distribution on the symbols s1, . . . , sC with probabilities p1, . . . , pC ,
such that (C4): pc = P(Sc = sc) > 0, c = 1, . . . , C and (C5):

∑C
c=1 pc = 1. Each observation

x
(c)
n , n = 1, . . . , nc, c = 1, . . . , C aggregated into a symbol sc has probability q(c)

n = pc
nc
, meaning
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that
∑C
c=1

∑nc
n=1 q

(c)
n = 1. The equivalent of (5.2) for data aggregates s is thus

L(FS ; s) =
C∏
c=1

P(S = sc) =
C∏
c=1

nc∏
n=1

q(c)
n , (5.8)

which is maximised, under (C4) and (C5), for q̂(c)
n = 1

N and implies p̂c = nc
N for c = 1, . . . , C.

As a consequence an estimate of θ using data aggregates is

C∑
c=1

nc
N
g′r(sc, θ̂, ϑ) = 0, for all r = 1, . . . , R. (5.9)

In the empirical setting described above, the EE condition (5.7) can be used to define the addi-
tional condition (C6):

∑C
c=1 pcg

′
r(sc, θ) = 0 for all r = 1, . . . , R. Then letting λ = (λ1, . . . , λR)

be the vector of Lagrange multipliers associated with (C6), constraint maximisation of (5.8)
gives

q̂(c)
n = 1

N{1 + λ>g′(sc; θ)}
, c = 1, . . . , C,

refer to Appendix B.1.1 for a proof. Setting T (θ; s) = L(q̂;s)
L(q;s) with q the vector of prob-

abilities, then variances and confidence intervals for θ̂ are establish using 2 log(T (θ; s)) =
−2
∑C
c=1 nc log(Nq̂(c)

n )→ χ2
R.

The symbolic estimating equations (5.7) are obtained by integrating the estimating equation
(5.1) over all the data points x from which the symbols s are produced with their corresponding
weights, i.e.

EFS [g′r(S, θ, ϑ)] =
∫
DNX

EFX [gr(X, θ)]fS|X(s|x, ϑ)φ(x)dx.

Noting that fS|X(s|x, ϑ) = 1
{
π
(
x(c)

)
= sc; c = 1, . . . , C

}
and using (5.3) yields

EFS [g′r(S, θ, ϑ)] =
∫
DNX

1
{
π
(
x(c)

)
= sc; c = 1, . . . , C

}{ 1
N

N∑
n=1

C∑
c=1

1{xn ∈ x(c)}gr(xn; θ)
}
φ(x)dx

= 1
N

N∑
n=1

C∑
c=1

1{xn ∈ x(c)}
∫
DNX

1
{
π
(
x(c)

)
= sc

}
gr(xn; θ)φ(x)dx

=
C∑
c=1

nc
N

∫
Υc
φc(x)gr(x; θ)dx,

from which we conclude that g′r(sc, θ, ϑ) =
∫

Υc φc(x)gr(x, θ)dx for all r = 1, . . . , R and c =
1, . . . , C. The symbolic estimating function g′ for sc corresponds to the average of the regular
estimating function g weighted by the density φc.

If a parametric assumption is made then φc corresponds to the model density restricted to
Υc and it is easy to show that g′(sc, θ) = ∂

∂θ log{P(X ∈ Υc|θ)} and that for θ = (θ1, . . . , θR) the
solution of (5.9) is equivalent to maximum likelihood estimator of (5.4). Considering the exam-
ple of intervals constructed from l-th and u-th order statistics given at the end of Section 5.2, it
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is straightforward that these can be re-written as the product of five “sub-symbols” and fit in
the context of (5.9).

The notion of sufficiency for estimating equations is described in Elashoff and Ryan (2004) as
follows. Consider a vector-valued function βc(x) =

(
βc1

(
x(c)

)
, . . . , βcR

(
x(c)

))
and two distinct

datasets x and x′ with c-th subsets indicated by x(c) and x′(c). If βc(x) = βc(x′) for all
c = 1, . . . , C, then using the empirical likelihood we obtain

1
nc

nc∑
n=1

g(x(c)
n ; θ) = 1

nc

nc∑
n=1

g(x′(c)n ; θ) = A(θ) +
R∑
r=1

kr(θ)βcr(x)

for some functions A(θ), kr(θ), r = 1, . . . , R and an estimate of θ can be obtained by solving

EFX
[
g
(
X, θ̂

)]
=

C∑
c=1

nc
N

(
A(θ) +

R∑
r=1

kr(θ)βcr(x)
)

= 0.

We now show give an analog definition of sufficiency for symbolic estimation equations. Since
we have shown that g′(sc, θ, ϑ) = Eφc [g(X, θ)] for all r = 1, . . . , R, we can easily show that

g′(sc, θ, ϑ) = A(θ) +
R∑
r=1

kr(θ)β
′c
r (s),

where β′cr (s) = Eφc [βcr(X)], using the relationship Eφc [g(X, θ)] = Eφc [EFX [g (X, θ)]]. As a re-
sult, if two distinct sets of symbols yield to the same value for all β′cr then the same estimates
of θ are obtained from solving the symbolic estimating equations (5.9). Furthermore if, for all
c = 1, . . . , C, there exist a function qc(s) = (qc1(sc), . . . , qcR(sc)) such that qc(s) = βc(x) then it
implies β′c(s) = βc(x). As a consequence the both estimates from full and aggregated data are
equal since EFX

[
g
(
X, θ̂

)]
= EFS

[
g′
(
S, θ̂, ϑ

)]
= 0.

Returning to the example where θ = (µ, σ2), let’s assume that βc(x) = (µc, σ2
c ) is the vector

of sample mean and sample variance from the subset x(c). We can write

EFX
[
g
(
X, θ̂

)]
=
(

1
N

C∑
c=1

nc(µc − µ̂), 1
N

C∑
c=1

nc((µc − µ̂)2 + σ2
c − σ̂2)

)
= 0

Thus θ can be estimated from a set of symbolic data through the evaluation of µ̂c = Eφc(X)
and σ̂2

b = Vφc(X), the expected value and variance of the observations that were aggregated
into the c-th symbol, under some hypothetised distribution. If µc and σ2

c were recorded in the
aggregation process then using complete or aggregated data would obviously lead to the same
estimates.

In the following sections we will make use of µc, σ2
c but also the skewness γc = EFXc [((X(c)−

µb)/σb)3] and correlation between the d-th and e-th components ρcde = EFXc [(X
(c)
[d] −µc[d])(X

(c)
[e] −

µc[e])]σ−2
c[d]σ

−2
c[e], where FXc defines the empirical distribution restricted to the c-th symbol. This



5.4. ESTIMATING THE WITHIN-SYMBOL DENSITY 101

quantities will be estimated by taking expected values with respect to φc for which we propose
a novel estimation procedure.

5.4 Estimating the within-symbol density

In the previous section the construction of estimating equations has been shown to depend on
φc the density of the underlying (unobserved) random variable given some observed summary of
a group c. In this section we focus on estimating these densities for classes c where c = 1, . . . , C
with summaries taking the form of intervals or histograms. In particular information about the
splitting process into subsets is incorporated. The key idea is that if the attribution to a class
c is done completely at random then a point in class c could have been attributed to a different
class c′, leading to different aggregates s and s′ and consequently the density φc should not only
rely on the symbol sc.

The most popular approach to estimate φ, the density of the underlying random variable
given a set of summaries, does not take into account any information about the class allocation
process and assumes the summaries to be independent as in (5.6). Bertrand and Goupil (2000),
Billard and Diday (2003), Le Rademacher and Billard (2011) and Oliveira et al. (2018) utilise
this approach to estimate symbolic means, variances and covariances from interval or histogram-
valued observations, assuming φc to be a uniform distribution. We will refer to this methodology
as the symbolic independent uniforms model (SIU). For each class c = 1, . . . , C and dimension
d = 1, . . . , D we have a αc = (αc,l, αc,u) defining the upper and lower bounds of an interval or the
range of a histogram bin which gives the estimates µ̂c = αc,l+αc,u

2 , σ̂2
c = (αc,u−αc,l)2

12 , γ̂cd = 0 and
ρ̂cde = 0. Oliveira et al. (2018) and Le Rademacher and Billard (2011) extend this methodology
to other distributions such as independent triangular distributions or Dirac distributions centred
on the midpoints or endpoints of each summary.

We consider that the attribution of a realisation to a class is random, i.e. that there is a
discrete random variable Λx taking values in {1, . . . , C} indicating the list of symbols in which an
observation x could have been aggregated in. We assume Λx has distribution function Hx. We
introduce a share of the information by re-defining φ, the density of a point given the observed
set of symbols s, as the integral of the density fX|S weighted by the density of H, i.e.

φ(x) =
∫
D(Λx)

fX|S=s′(x)dHx(λ)dλ (5.10)

where s′ denotes the set of symbols given that the observation x is assumed to be grouped in
the λ-th class. It can be noticed that if an observation x can only be associated to a unique
symbol sc then Hx is a Dirac delta function at the correct allocation of an observation to a class
c then (5.10) reduces to φ(x) = fX|S=s′(x). The density of an observation given a symbol sc is
given by

φc(x) = 1{x ∈ sc}φ(x)
P scH

, (5.11)

where the normalising term P scH =
∫
Υc φ(x)dHx(c)dx is an integral with respect to all points that
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could have been aggregated into sc. Because this construction of φ and φc relies on borrowing
information from adjacent symbols we refer to this model as the symbolic dependent distributions
(SDD).

Note that in the literature there is a prevalence of models assuming uniformity over a sum-
mary which, in the current context, translate to fX|S=sc = |Υc|−1. It is worth highlighting
that it may not always be a good strategy to borrow information from neighbouring summaries.
For example in the mushroom dataset analysed by de A Lima Neto et al. (2011), each group
corresponds to different species with possibly very different characteristics.

The following subsections will focus on the specific cases where data are aggregated into
intervals and histograms with the uniformity assumption within the summary and where it
is justified to borrow information with adjacent symbols. We will show that for independent
intervals the distribution Hx is a discrete distribution whereas histograms can be interpreted as
a set of deterministic intervals and in that case Hx is continuous.

5.4.1 Interval-valued data

In this subsection subsets x(c) of x are aggregated into D-dimensional intervals resulting in
the summaries sc with αc = (αc,l, αc,u) where αc,l and αc,u are D-dimensional vectors denoting
the lower and upper bounds, and the region Υc = [αc,l, αc,u]. For an observation x, if it belong to
a region where some intervals from the set s overlap then the random variable Λx has a discrete
outcome λ in the form of a list of two or more values in {1, . . . , C} with non-zero probability.
For all x ∈ RD the distribution Λ is discrete and we propose its weights to be defined as

Hx(λ, c) = nc∑
a∈λ na

, for all c ∈ λ,

meaning that the probability that an observation would have been aggregated into a symbol sc
is proportional to the number of points in this symbols.

In order to incorporate the information about Hx in the estimation of φ(x) and φc(x) the
range of x is split into a grid of subintervals denoted by υb with b = (b1, . . . , bD) and bd =
1, . . . , (2C+1); d = 1, . . . D. The subinterval υb defines the region (z1

b1−1, z
1
b1

)× . . .× (zDbD−1, z
D
bD

)
where zd0 , . . . , zd2C+1 is the ordered sequence of the d-th component of (αc,l, αc,u), c = 1, . . . , C.
The density φ given in (5.10) simply reduces to

φ(x) =
C∑
c=1

nc
N |Υc|

1{x ∈ Υc},

while the normalising term in (5.11) is P scH = mc(1) where the functionmc(f(x)) =
∫

Υc f(x)φ(x)dHx(c)dx
is given by

mc(f(y)) = 1
N

C∑
c′=1

nc′

|Υc′ |

(∑
b

1{υb ⊂ Υc′}Hb(λ, c)
∫
υb

f(y)dy
)
,

using the notation Hb(λ, c) = Hy(λ, c) for y ∈ υb and λ = {c = 1, . . . , C s.t. υb ⊂ Υc}.
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Proposition 5.4.1. The estimates of the mean, variance, skewness and correlation within an
interval c are obtained using the density φc and are given as follows

µ̂cd = mc(x[d])
mc(1) , σ̂2

cd =
mc

(
x2

[d]

)
mc(1) − µ̂

2
cd, γ̂cd =

mc

(
x3

[d]

)
mc(1)σ̂3

cd
− µ̂3

cd

σ̂3
cd
− 3 µ̂cdσ̂cd

, ρ̂cde = mc(x[d]x[e])
mc(1)σ̂cdσ̂ce −

µ̂cdµ̂ce
σ̂cdσ̂ce

,

for d = 1, . . . , D.

Appendix B.1.2 provides the technical details for the evaluation of the integral in mc.

5.4.2 Histogram-valued data

Suppose now that x is aggregated into a D−dimensional histogram s = (s1, . . . , sC) where
sc = (nc,Υc, αc) is a summary of the information in the bin c = (c1, . . . , cD) with cd = 1, . . . , Cd

and d = 1, . . . , D. For a deterministic bin locations Υc =
(
(y1
c1−1, y

1
c1)× · · · × (yDcD−1, y

D
cD

)
)
we

define nc = αc =
∑N
n=1 1{xn ∈ Υc}. Assume the marginal bin width to be equal and given by

δd = ydcd−y
d
cd−1 for all cd and d such that the area of each bin is |Υc| =

∏D
d=1 δd. This histogram

construction can be thought as C1×· · ·×CD non-overlapping histograms and as a consequence
P scH =

∫
Υc φ(y)dHy(c)dy =

∫
Υc φ(y)dy since y can only belong to sc.

The choice of the bin locations Υc is arbitrary and thus, keeping their width constant, other
histograms could have arisen by shifting the bin locations by up to half of their width to the
left or to the right. We define new bin locations Υ′ = Υ + u where u = (u1, . . . , uD) and ud

is a realisation from a uniform distribution on
(
− δd

2 ,
δd
2

)
. The random variable Λx representing

the bin Υ in which x could have been aggregated to is now a continuous as the set of outcomes
contains all the shifted bins Υ′ that will include x. Because of Υ is fixed and the shift is uniformly
distributed we can write

Hx(Υ′c) = 1∏D
d=1 δd

1{x ∈ Υ′c}

Assuming that histogram bins can be shifted relates to the ideas of Heitjan and Rubin (1991)
who described the conditions in which a parametric analysis of coarsened data remains the
same regardless of whether the likelihood of the coarsening process itself was incorporated. As
a result, no additional attention needs to be paid to the coarsening process for binned data,
which in practise is equivalent to assuming a uniform distribution for all possible coarsening
configurations, given the fixed parameters such as number of bins, their locations and width.
We now use this concept in a non-parametric setting to determine within-symbol quantities such
as means, variances, etc.

First, from there the density φ given in (5.10) simply reduces to

φ(x) = 1∏D
d=1 δ

3
d

C∑
c′=1

c′+1∑
c′′=c′−1

nc′′

N
Jc′,c′′(x), (5.12)



104 CHAPTER 5. SYMBOLIC NON-PARAMETRIC ESTIMATING EQUATIONS

while the normalising term in (5.11) is P sc
H = mc(1) where the function mc(f(x)) is given by

mc(f(x)) = 1∏D
d=1 δ

3
d

c+1∑
c′=c−1

c′+1∑
c′′=c′−1

nc′′

N

∫
Υc

f(x)Jc′,c′′(x)dx.

Refer to Appendix B.1.3 for technical details to obtain (5.12) and a definition of Jc′,c′′(x).

Proposition 5.4.2. The estimates of the mean, variance, skewness and correlation within a
histogram bin c are given as follows

µ̂cd = mc(x[d])
mc(1) , σ̂2

cd =
mc

(
x2

[d]

)
mc(1) − µ̂

2
cd, γ̂cd =

m

(
x3

[d]

)
mc(1)σ̂3

cd
− µ̂3

cd

σ̂3
cd
− 3 µ̂cd

σ̂cd
, ρ̂cde = m(x[d]x[e])

mc(1)σ̂cdσ̂ce
− µ̂cdµ̂ce

σ̂cdσ̂ce
,

for d = 1, . . . , D.

The necessary integrals to evaluate mc require tedious but straightforward calculations that
can be found in the Supplementary Material.

5.5 Simulations

The aim of the experiments presented in this section is to demonstrate that symbolic es-
timating equations have the ability to give good estimates of some statistics of interest. In
particular we focus on the scenario where simulated data are aggregated into symbolic objects
taking the form of intervals or histograms. Furthermore the interest is in measuring the impact
of the level of aggregation on the precision of the estimates since symbolic and classical methods
are expected to provide identical results in the limiting case where a symbolic object collapses
to a single datum.

5.5.1 Univariate examples

We generate N = 2 000 observations from a standard normal distribution, a standard skew-
normal with shape α = 20 (implying that γ = 0.99) and a mixture of three skew-normal
with location µ = −3, 0, 3, variance σ2 = 1, 1, 2, shape α = −10,−20,−50 respectively, and
probabilities 1/14, 4/14 and 9/14. In order to make comparisons between summary functions,
the simulated data is aggregated under two scenarii: first into a histogram with C equally spaced
bins and second into C minimum/maximum intervals. The performance of the naive but widely
used SIU approach is compared to the proposed SDD approach with respect to their ability to
estimates various statistics such as the mean, variance, skewness and some quantile levels. A
comparison to the classical counterparts is also made to measure the effect of information loss
and to assess the effectiveness of both aggregation functions. Experiments are repeated 1 000
times.

Billard and Diday (2003) proposed a histogram estimator of a set s of intervals by partition-
ing the domain of the underlying process into R subintervals Ir, r = 1, . . . R representing the
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histogram bins and defining the respective probabilities by

pr =
C∑
c=1

nc
N

|Ir ∩Υc|
|Υc|

, r = 1, . . . , R, (5.13)

where |A| denotes the area of the region A. Both SIU and SDD approaches will also be applied
to these histogram estimate with R = 30 equally spaced bins.
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Figure 5.1: Estimates and 95% confidence intervals of the mean (left), variance (centre) and
skewness (right) as function of C the number of symbols when the aggregates take the form of
intervals (top) or histograms (bottom). Classical estimates are given by black horizontal lines,
SIU estimates by dotted black lines, SDD estimates by solid grey lines and rounded analysis with
Sheppard’s correction by dashed black lines. Estimates obtained from the estimated histogram
(5.13) are given in the top row respectively by dashed and dotted grey lines for the SIU and
SDD approaches. Original data were simulated from the skew-normal distribution.

Figure 5.1 illustrates the ability of both interval- (top) and histogram- (bottom) based
methodologies to recover the classical estimates (solid black line) as the number of aggregates
(i.e. the level of information retained) increases. Each line corresponds to the mean and 95% con-
fidence interval for a fixed number of aggregates, calculated from 1 000 replicates. The following
conclusions drawn from Figure 5.1 focus on the scenario of skew-normal underlying data, how-
ever similar conclusions can be made for the normal and mixture of skew-normal distributions
as per Figure B.1 and B.2 in Appendix B.1.4. Comparing the different estimation procedures
it is obvious that the SDD approach consistently provides the most accurate results for all each
statistic studied here and in particular for low numbers of symbols (up to 50 for intervals and
up to 10 for histograms). Unsurprisingly histograms provide better estimates than intervals
when comparing estimation procedure since, by construction, they retain a greater amount of
information. For example, comparing the solid grey lines between the top and bottom panels
highlights that the SDD approach yields estimates and confidence intervals much closer to the
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classical ones using histograms rather than intervals. For ≈ 20 histogram-valued symbols the
estimates and confidence intervals can barely be dissociated from their classical counterparts
whereas ≈ 20 interval-valued symbols give a much rougher approximation. The dashed black
lines represent estimates where a Sheppard’s correction has been applied, to the estimated his-
tograms obtained from (5.13) (top row) or to the midpoints of the bins (bottom row). These
estimates are often not as accurate as the SDD estimates and in most cases are only similar to
those obtained through the SIU approach. The exception is noted for the variance of the normal
distribution when a low number of symbols are used (see Figure B.1). Overall the approaches
investigated here have different levels of over-estimation of the true statistics which is expected
since some information has been lost in the aggregation procedure. However we note that for
histogram-valued data the variance is under-estimated (bottom middle panels), a phenomena
that can be observed for the estimation of all statistics when the data are drawn from a mixture
of skew-normal distributions (see Figure B.2). These results are influenced by the estimation
of the densities φ and φc, c = 1, . . . , C and their estimation. We have shown that considering
dependence between classes/symbols in the symbolic estimation setting significantly improves
the current methods available in the literature (SIU approach), in particular for small symbolic
sample sizes (C) and skewed, multi-modal distributions.

5.5.2 Bivariate intervals simulations

The aim of the following experiments is to assess the ability of the proposed SSD methodology
to estimate statistics from bivariate aggregated data. We generate N = 2 500 observations from
two bivariate normal distributions with marginal means µ1 = −1, µ2 = 1, marginal variances
σ2

1 = σ2
2 = 1 and respective correlations ρ = −0.2 and 0.9, and two bivariate skew-normal

distributions with the same mean and covariance matrices as above and respective skewness
α = (α1, α2) = (1, 0.5) and (6, 3). The simulated data is aggregated into C minimum/maximum
rectangles. Similarly to the previous section, the experiment is repeated 1 000 times to allow for
a comparison of the SIU, SDD and classical approaches which also includes a naive approach
that consists in a classical analysis performed on the midpoints of each observed rectangle.
The statistics of interest are the marginal means and variances as well as the covariance which
can be calculated from Proposition 5.4.1. Figure 5.2 illustrates the ability to estimate some
statistics of interest, µ2, σ

2
1, σ12 and µ2, γ1, σ12 respectively using data drawn from a normal (top

row) and skew-normal (bottom row) distribution and aggregated into rectangles. Figure B.3
provides similar results for the remaining two distributions. The estimates obtained using the
underlying data are used as reference and are represented by a solid black line. It appears
that the SDD estimates (solid grey line) provide the best estimates of the marginal means,
variances and skewnesses and of the covariance for larger number of symbols (> 150). For small
numbers of symbols, the naive estimator calculated from the midpoints seems to yield estimates
closer to the classical results than the SDD approach for the marginal variance σ2

1 of the normal
distribution and marginal skewness γ1 of the skew-normal distribution. Convergence towards
the empirical covariance appears very slow for the naive estimator whereas the SDD estimates
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converge at a much faster rate. To conclude we observe an increase in the number of symbols
from the univariate experiments in order to obtain comparable results than an analysis on the
full data and overall the SDD methodology provides a clear improvement in the evaluation of
some statistics when only aggregates are available.
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Figure 5.2: Estimates and 95% confidence intervals for some of the statistics of interest as a
function of C the number of rectangles. Classical estimates are given by black horizontal lines,
SIU estimates by dotted black lines, SDD estimates by solid grey lines and estimates using
solely the midpoints of each rectangles by a black dashed line. Original data were simulated
from a normal distribution with correlation ρ = 0.9 (top row) and skew-normal distribution with
α = (6, 3).

5.6 Real Data Analyses

Through the analysis of several datasets with non-standard (i.e. not pointwise) observations
we now demonstrate the utility of the symbolic estimating equation framework developed in this
paper. These analyses are performed in the context where the underlying data are not available
and the only information given is the result of some aggregation function. The first two datasets
are respectively sets of observed intervals and histograms from which simple statistics such as
means and variances are estimated. The third example focuses on estimating quantile levels
from a histogram.

5.6.1 Soccer Dataset

In this analysis, we investigate the weight, height and age of 531 soccer players from 20 of the
French Football Professional Championship. The dataset is freely available from the R package
iRegression and consists in the minimum and maximum records for each team. This interval-
valued dataset has been studied by de A Lima Neto et al. (2011) where the authors aimed to
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predict the weight of soccer players as a function of height and age. In this particular example,
the assumption that a point (player) can contribute to multiple intervals (team) seems reasonable
given that players are allowed to move between teams during or in between Championship
seasons. Additional information about the number of players per team was also retrieved from
the SODAS software. These range from 22 to 30 players, weakening the assumption of equal
number of players per team used by de A Lima Neto et al. (2011). Table 5.1 gives the estimates
and 95% confidence intervals of the marginal means and variances as well as correlations using
the SIU and SDD approaches on the 20 observed 3-dimensional hyperrectangles. Note that
the confidence intervals are computed using the asymptotic distribution linked to the symbolic
empirical likelihood as seen in Section 5.3. We can observe that some of the 95% confidence
intervals from the SIU and SDD methods barely overlap or not at all, in particular for the
variances and correlations. For example the SIU approach gives a 95% confidence interval for
ρ13 that contains 0 whereas the SDD approach yields and interval only defined on the negative
part. Based on the conclusions of Section 5.5 we believe the SDD estimates to be the closest to
the truth. Such discrepancies in the estimation of the correlation coefficients can have a major
impact on the estimates of linear regression coefficients and thus lead to incorrect prediction
errors.

Statistic SIU SDD
µ1 73.340 ( 73.965, 74.506) 74.313 ( 74.056, 74.504)
µ2 180.685 ( 179.759, 180.275) 180.005 ( 179.756, 180.210)
µ3 25.269 ( 26.199, 26.432) 26.201 ( 26.094, 26.298)
σ2

1 47.844 ( 45.812, 50.355) 44.487 ( 42.704, 46.238)
σ2

2 48.590 ( 46.490, 50.692) 45.221 ( 43.452, 46.974)
σ2

3 20.666 ( 20.067, 21.244) 20.214 ( 19.697, 20.815)
ρ12 0.049 ( 0.043, 0.065) 0.057 ( 0.044, 0.069)
ρ13 -0.003 ( -0.009, 0.006) -0.006 ( -0.011, 0.000)
ρ23 0.017 ( 0.011, 0.022) 0.013 ( 0.007, 0.016)

Table 5.1: Estimates and 95% confidence intervals for the means, variances and correlations of
the weight, height and age of soccer players using the SIU and SDD methodologies.

5.6.2 Weight Dataset

Billard and Diday (2003, Table 7) uses a weight (kg) dataset in histogram form to illustrate
their proposed methodology to compute the mean and variance from data aggregates. This
histogram is obtained by combining histograms from seven age groups using (5.13) with R = 10.
Through the SIU approach we estimate a symbolic mean of 143.9, symbolic variance of 485.4 and
symbolic skewness of −0.272 whereas for the SDD approach these quantities refer directly to the
underlying data and are respectively estimated as 143.9, 453.9 and −0.295. As expected, both
approaches yield comparable estimates for the mean, however there is a significant difference in
the variance and skewness estimates. While the authors in Billard and Diday (2003) do not claim
that their method estimates these quantities at the underlying data level, and instead define their
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estimates as symbolic equivalents of the classical versions, we have shown in Section 5.3 that
their formulas are equivalent to the sample mean and variance of the microdata if it uniformly
distributed within each bin. Given the continuous nature of the weight variable, we expect this
assumption to be violated and thus our estimates to be closer to the truth. Furthermore, using
the far more informative set of underlying histograms per age group(Billard and Diday, 2003,
Table 6), the authors show that estimates of the mean and variance are 143.9 and 447.5 which
implies that the variance estimate obtained from the SDD approach performed on the aggregated
histogram is significantly more accurate than the SIU. In the previous section we have shown
that the symbolic estimating equations depend on the symbolic empirical distribution which is
given here through the bin proportions, however the sample sizes required for the computation
of confidence intervals aren’t available.

5.6.3 Protein solubility dataset

Assuming independent uniform distributions Dedduwakumara and Prendergast (2018) illus-
trate the ability to estimate quantiles from histogram-valued data on the protein solubilities (in
%) dataset analysed in Niwa et al. (2009). It is worth noting that the original microdata is
freely available at http://www.taguchi.bio.titech.ac.jp/eng/paper-e/paper-e.html and
that three extra low count bins weren’t included in the original analysis of (Niwa et al., 2009),
and subsequently in Dedduwakumara and Prendergast (2018), yielding us to expect slightly dif-
ferent results from theirs when considering the SIU approach. Figure 5.3 presents the estimates
(solid lines) and 95% confidence intervals (dashed lines) for the 10, 50, 75 and 90% quantiles us-
ing the microdata (black) and histogram data (SIU in blue and SDD in red) for various number
of bins C. Refer to the Supplementary Material for technical details about estimating equa-
tions for quantiles. Figure 5.3 shows convergence, as the number of bins (C) increases, of the
SDD quantile estimates to the classical ones, at a faster rate than the SIU estimates. From
C = 15, the estimates from the SDD method appear to be similar than when using the full
information. For example, an estimate of the median using all the data is 42.48 (40.41, 44.72)
and for histograms with C = 15 the SIU approach gives 42.64 (40.32, 44.9), the SDD approach
42.43 (40.29, 44.60), while Dedduwakumara and Prendergast (2018) report an estimate of the
median of 41.83 (39.56, 44.10). Similarly an estimate of the 75% quantile using all the data is
78.65 (77.14, 80.39) and for histograms with C = 15 the SIU approach gives 78.51 (76.78, 80.28.9),
the SDD approach 78.58 (76.91, 80.28), while Dedduwakumara and Prendergast (2018) report a
lower estimate of 77.83 (75.982, 79.674) implying some difficulties in the tail. Overall the SDD
approach provides the best surrogate to the classical estimate in the case where only a histogram
summary of the data is available.

5.7 Discussion

In this research paper we have defined a framework for non-parametric estimating equations
where data summaries are observed rather than the data itself. This extends the work of Be-

http://www.taguchi.bio.titech.ac.jp/eng/paper-e/paper-e.html
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Figure 5.3: Estimates (solid lines) and 95% confidence intervals (dashed lines) for the 10, 50, 75
and 90% quantiles of the protein solubility dataset using the microdata (black) and histogram
data (SIU in blue and SDD in red) for various number of bins C.

ranger et al. (2018) which allows for parametric inference on such type of non-standard data
and interpretation at the original microdata level. Estimating equations are commonly used
to estimate means, variances, and other statistics. In the context of aggregated data, which
we call “symbol”, we show that our general methodology recovers the results of Bertrand and
Goupil (2000) and Billard and Diday (2003) as special case when summaries are assumed inde-
pendent with data uniformly distributed over the summary (interval or histogram). The latter
uniformity assumption is over-prevalent in the symbolic data analysis literature despite being
consistently violated due to the continuous nature of the underlying density of the microdata.
We provided confidence interval for our estimates and have showed through synthetic and real
examples that both estimates and confidence intervals converge as the summary collapses into
a pointwise observation, to those in the classical setting. Furthermore we have highlighted that
our proposed methodology is more flexible and consistently yields accurate estimates since it
allows for information to be transmitted between summaries.

For interval-valued symbols, the major assumption made in the proposed (SDD) approach
approach is that every classical latent observation could have possibly been aggregated into any
of the intervals. For example, the soccer dataset considered in Section 5.6.1, it seems reasonable
that a player from a particular team could have played for any other team and therefore could
have contributed to this team’s summary. An example of where this assumption might fail
is in the mushroom dataset analysed in de A Lima Neto et al. (2011). There each group
of observations correspond to a specific species and a mushroom from one species could not
possibly have contributed to another summary.

As much as maximum likelihood estimation can be recovered from estimating equations, the
symbolic likelihood function derived by Beranger et al. (2018) can be recovered as a special case
of the symbolic estimating equations introduced in this article. If a parametric assumption is
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undesirable then the SDD approach allows to estimate within-symbol statistics which are then
used to obtain population level statistics. In order to do so we propose an estimation procedure
for the within-symbol density without any distributional assumption about the underlying data.
The main focus has been on non-parametric data summaries such as intervals and histograms.

Additionally to proposing better non-parametric estimates than the references in the litera-
ture, the setting described in this paper opens the door to the use of more flexible summaries.
Indeed distributional-valued symbols can easily be used as estimates of the underlying data
distribution for a particular class.



112 CHAPTER 5. SYMBOLIC NON-PARAMETRIC ESTIMATING EQUATIONS



Chapter 6

Parameter estimation in Generalized
Linear Models for rounded discrete
data, with an application to the
Athena SWAN award dataset.

6.1 Introduction

This paper is motivated by the evaluation of a diversity initiative in the UK, in which
the effect of various variables on the proportion of females in various academic positions in
different fields at university is investigated. There are two main questions which are being
explored. The first question concerns the significance of various variables in the prediction of
the number and proportions of females for various departments around universities in England,
Scotland, Ireland and Wales, and the second question aims to determine the effect of these same
variables, along with the proportions/counts of females, on the outcome of the Athena SWAN
rating of these departments, which is an ordinal categorical rating assigned based on various
factors revolving around the progressiveness and diversity of that department. Details of the
Athena SWAN rating can be found at the Athena SWAN charter webpage https://www.ecu.

ac.uk/equality-charters/athena-swan/. Due to data confidentiality reasons, rather than
actual proportions, the number of males, number of females and total department sizes for each
department at various employment levels are reported rounded to the nearest 5. We wish to
apply a generalized linear model (glm) framework to this non-standard rounded dataset, with
the aim of determining the useful predictors in the above questions.

Generalized Linear Models were first proposed by Nelder and Wedderburn (1972), and are
now a well developed methodology for modelling the effect of covariate data on a broad range of
types of response variables, such as continuous, ordinal, categorical and count data. As the name
suggests, glm’s are a generalisation of ordinary linear regression whereby the distribution of the
differences between the predicted and observed response data is not restricted to the gaussian
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family. McCullagh and Nelder (1989), Dunteman and Moon-Ho (2006) and Faraway (2010) all
provide a good overview of the theory and application of glm’s. Estimates for the regression
coefficients in these models are generally obtained using maximum likelihood estimation, however
unlike ordinary linear regression there usually isn’t a closed form solution to the optimisation
of the likelihood for glm’s. As a result, maximum likelihood estimates (MLEs) are obtained via
algorithms such as iteratively reweighted least squares (Nelder and Wedderburn, 1972) and the
Newton-Raphson method (Jennrich and Sampson, 1976). These approaches are well developed
for the case where the response and predictor variables are fully observed, i.e. they arrive in
the form of standard pointwise data. However, it is becoming increasingly common for the
practitioner to observe data (either predictor or response) in non-standard forms, due to reasons
such as computational savings or privacy. Examples of these non-standard forms include the
coarsening or rounding of some variables (Schneeweiss et al., 2010, Heitjan and Rubin, 1991) due
to reasons such as privacy (Willenborg and de Waal, 1996, 2001) or a natural grouping of the
observations (Haitovsky, 1983), or when the underlying classical data (microdata) is aggregated
into distribution-valud objects such as intervals or histograms (Billard and Diday, 2000, Billard,
2011, Billard and Diday, 2003).

Armstrong (1985) consider the case where a single covariate is measured with error, and
the distribution of the coarsened value, given the true latent observation can be assumed. The
likelihood contribution of each coarsened observation is then calculated as the integral of the
classical glm density over the domain of the latent value. Johnson (2006) assume Gaussian
distributions for coarsened covariates and utilise this assumption to model their likelihood within
the glm framework. Lee et al. (2018) consider the case where only a subset of observations are
subject to coarsening, and assume a Bahadur type multivariate distribution for the modelling
of whether a given observation is coarsened. These models require the specification of the
distribution of the latent data given the coarsened observation, and as a result run into problems
if these distributional assumptions are violated, or if not enough information is available from
which parametric assumption can be made. Little (1993) develop a likelihood-based approach
for the modelling of masked data, given a parametric assumption and fully observed additional
variables. Lipsitz et al. (2004) propose a method for implementing a generalized linear model
when one of the covariates is coarsened (binned) for only a subset of observations, whereby
the contribution of each observation towards the likelihood is the integral of the glm density
over all possible values that variable could have taken weighted by a density that is dependent
on the uncoarsened fully observed variables. Estimates for glm coefficients are then obtained
via the EM algorithm. Johnson and Wiest (2014) propose a simulated Bayesian approach for
coarsened covariates in glm’s in which a prior distribution is placed on the model parameters,
and a distribution is assumed for the coarsened covariates, given the uncoarsened data.

These methods rely on the occurence of uncoarsened fully observed additional regression
covariates, or that not every observation is subject to coarsening for the variables of interest,
so that a distribution of the underlying latent microdata for the coarsened/rounded data can
be fit using available classically observed data. However, these methods are not designed to
accomodate situations for which it isn’t possible to assume a parametric form for the coars-
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ened/rounded data, or covariate or predictor data is coarsened for every observation and there
are no appropriate additional classically observed variables from which the practitioner can fit
a distribution for the underlying classical data to.

It is not possible to fit a model (parametric or otherwise) to the underlying values of the
rounded observations of the Athena SWAN dataset, given every observation is subject to the
rounding mechanism and the additional predictor variables are all categorical observations with
small numbers of distinct categories, meaning any distribution fit using these covariates will
likely not be very informative. In this paper we address these problems with the applied anal-
ysis described above by developing a methdology of estimating the parameters of glm’s for
rounded discrete data that incorporate additional variables not included in the original analysis.
Estimates are obtained for various glm models by solving a set of estimating functions in which
the contribution of each observation is calculated as the average of the estimating equation over
all sets of underlying observations that could have occured, given the rounded observations. By
using the rounded values for the numbers of males and total department size, as well as some
available proportions for large departments, the domain of the underlying microdata for the
rounded numbers of females and total department sizes can be greatly restricted.

As a simple example, if we observe values of 5, 5 and 15 respectively for the rounded numbers
of females, males and people in a given department, and only the number of females is included
in the original analysis, then without any additional thought the log-likelihood contribution for
that observation reduces to a uniform summation over the set {3, 4, 5, 6, 7} for that variable,
with each possible underlying value is assigned a weight of 1

5 . However, if we utilise the fact
that the numbers of females and males must sum up to the total department size, then the
possible complete sets for that observation become {(6, 7, 13), (7, 6, 13), (7, 7, 14)}, and as a result
a uniform summation over these sets within the likelihood for that observation leads to a only
the values 6 and 7 being included for the numbers of females, with given weights 1

3 and 2
3

respectively. Given the misspecified nature of these log-likelihoods, the Godambe information
matrix (Godambe, 1960) is used instead of the usual Fisher information matrix to determine
the variances of the parameter estimates obtained from this analysis, allowing the evaluation of
confidence intervals for each parameter, and subsequent inference to be performed.

This paper proceeds as follows. In Section 6.2 we describe the motivating dataset and define
the relevant variables, taking note of which are subject to a rounding mechanism. In Section
6.3 we provide a brief overview of glm theory, including methods of estimation and inference.
In Section 6.4 we provide the general framework for obtaining glm parameter estimates from
rounded discrete data, with a focus on the utilisation of additional variables not originally
included in the classical glm model that we wish to approximate. In Section 6.5 we then provide
the specific models for the applied data analyses motivating this paper, along with simulations
demonstrating their utility and results for the real data analyses. In Section 6.6 we conclude
with a brief discussion of the impacts of this work, as well as potential extensions and directions
for future work.



116 CHAPTER 6. GLMS FOR ROUNDED DISCRETE DATA

6.2 The Athena SWAN dataset

We will now describe the motivating dataset for this paper. We focus on data from the
academic fields of Psychology and Physics, for the years 2012 and 2016, however similar analyses
described in this paper can be performed for the greater dataset containing all academic fields.
Each observation in each dataset represents a university cost centre that has engaged with
the Athena SWAN process. We are interested in determining what variables are predictive
of both the ordinal-valued Athena Award Status (Gold, Silver, Bronze or None) and also the
number/proportion of females in a given academic cost centre. Given some of the observed
count variables are subject to rounding, a classical glm analysis is insufficient. We now describe
the dataset, along with the rounding procedures for some of the variables.

6.2.1 Data Description

For an observation x subject to rounding, denote x as the true underlying value, and x∗ as
the rounded observation, i.e. x → x∗. For each observation n = 1, . . . , N , every count variable
is rounded to the nearest R = 5. The variables included in the dataset for each field and year
are as follows.

— Athena SWAN award status : an ∈ {None, Bronze, Silver, Gold}

— Country: ln ∈ {England (1), Scotland (2), Wales (3), Northen Ireland (4)}

— Research Intensity REF rating: rn ∈ {1, 2, 3}, with higher values representing a more
intense research rating

— Length of engagement with Athena SWAN process (months): tn ∈ N

— Total number of people: nn ∈ N→ n∗n

— Proportion of females, unknown if nn < 22.5: pn ∈ {[0, 1], ∅}

— wni ∈ N → w∗ni, i = 1, . . . , 4: Number of females for the ith employment level, i ∈
{fixed term, professor, research, teaching}

— Number of males for the ith employment level: vni ∈ N→ v∗ni, i = 1, . . . , 4:

— Proportion of females for the ith employment level, unknown if wni + vni < 22.5.: pni ∈
{[0, 1], ∅}

Figure 6.1 shows histograms of the rounded total number of females and males for each depart-
ment, constructed respectively as the rounded sums of the number of females and males in each
employment level. Clearly the psychology datasets exhibit much higher proportions of females,
while the physics datasets have a much higher prevalence of males. Furthermore, let lni = 1 if
and only if ln = i and lni = 0 otherwise, i = 1, . . . , 3, meaning Northern Ireland is used as the
reference category. This allows regression coefficients to be obtained that describe the effect of
belonging to each country. For each dataset, there is a maximum of 1 ‘Gold’ Athena SWAN
award status, making the fit obtained from an ordinal regression model unreliable. To rectify
this, we group the ‘Gold’ and ‘Silver’ awards together, denoted simply as ’Silver+’ and leaving
us with K = 3 response categries. Only cost centres that have engaged with the Athena SWAN
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process were included in each analysis, leaving N = 104 and N = 58 observations respectively
for the academic fields of psychology and physics for each year. Each proportion value is only
reported if the relevant group has a total size greater than τ = 22.5, i.e. pni = ∅ if wni + vni < τ

and pni = wni
wni+vni otherwise, i = 1, . . . , 4, and pn = ∅ if wn + vn < τ and pn = wn

nn
otherwise,

where wn represents the total number of females for the nth department.

Figure 6.1: Histograms of the total (rounded) number of females and males for each dataset.

6.3 Generalized linear models for rounded discrete data

We now provide a brief overview of glm theory for classically observed variables originally
proposed by Nelder and Wedderburn (1972), followed by a description of some specific examples.
An overview of the available methodologies for the dataset analysed in this paper is then given.
The theory described and examples listed are motivated by the real data analyses undertaken in
Section 6.5, in which we wish to approximate the classical glm models by equivalent expressions
for rounded discrete data.

6.3.1 Generalized Linear Models

Denote Yn ∈ DYn as a random response variable and Xn = (Xn1, . . . , XnD)>, n = 1, . . . , N as
N D−dimensional i.i.d. vectors of covariates from which we want to predict Y , withXnd ∈ DXnd ,
n = 1, . . . , N . We assume the response Yn is distributed according to some distribution in the
exponential family, with the mean µ of the distribution depending on Xn via the link function
g such that E(Yn) = µn = g−1(β>Xn), for some function b, where β = (β1, . . . , βD)> ∈ RD is a
vector of regression parameters. This can be expressed as

f(yn;xn, β) = exp
{
yng(µn)− b(µn)

a(τ) + c(yn, τ)
}
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for some known functions a(·), b(·) such that E(Yn) = ∂
∂xb(β

>Xn), where τ is a dispersion
parameter. The variance of the response is then related to the mean through the variance
function V (·) such that Var(Yn) = V (µn)a(τ). Note that an intercept term β0 can easily be
added, by setting Xn0 = 1, n = 1, . . . , N . Denote the N i.i.d. realisations of (X, Y ) as
x = (x1, . . . , xn) and y = (y1, . . . , yn) respectively. The likelihood of the responses y given the
observed covariates x and parameter vector β is given as

L(x,y;β) =
N∏
n=1

f(yn;xn, β). (6.1)

The log-likelihood is therefore given as

logL(x,y;β) =
N∑
n=1

log f(yn;xn, β) =
N∑
n=1

yng(µn)− b(µn)
a(τ) + c(yn, τ). (6.2)

Classical maximum likelihood estimates (MLE’s) for β (denoted as β̂c) based on the observed
sample (x,y), n = 1, . . . , N can be obtained via the maximisation of (6.2) or alternatively, by
finding the solution with respect to β to the following set of estimating functions.

U(x,y, β) = 1
N

N∑
n=1
∇β log f(yn;xn, β) =

N∑
n=1

xn
yn − µn

V (µn)g′(µn) = 0. (6.3)

Fahrmeir and Kaufmann (1985) showed that under mild regularity conditions, β̂c is is asymp-
totically normally distributed, i.e.

β̂c ∼ N(β, I(βc)−1), (6.4)

with covariance matrix given by the inverse of the Fisher information matrix I(β), with the (i, j)
element denoted as

I(β)ij = E
{

(∇β log f(y;x, β)) (∇β log f(y;x, β))>
}
. (6.5)

The fisher information matrix can be estimated via its empirical estimator Î(θ), i.e.

Î(β) = 1
N

N∑
n=1

(∇β log f(yn;xn, β)) (∇β log f(yn;xn, β))> .

Typically no analytical solution for the maximisation of (6.2) exists, meaning numerical
methods are required. Various iterative procedures are readily available that allow the evaluation
of the MLE for glm’s, such as the Newton-Raphson method (Jennrich and Sampson, 1976), or
iteratively re-weighted least squares based methods (Nelder and Wedderburn, 1972).
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6.3.2 Existing methodologies for glm’s for rounded discrete data

Lipsitz et al. (2004) proposed the following methodology for fitting glm models to data
where some covariates are rounded to a known degree. Assume the covariate xnD ∈ {1, . . . ,K}
is discrete and possibly coarsened, n = 1, . . . , N , meaning that instead of observing the exact
value of xnD, we observe a (possibly) coarse value zn such that we only know from zn that
xnD can take some subset sn of values in {1, . . . ,K}. As an example, suppose xnD represents
a count, and that each count has been rounded to the nearest 5. Then observing zn = 5M for
some M tells us that xnD ∈ sn = {5M − 2, 5M − 1, 5M, 5M + 1, 5M + 2}. The likelihood of the
regression coefficients is then given as

L(β, θ) =
N∏
n=1

∑
z∈sn

f(yn;x−Dn , zn, β)h(zn;x−Dn , θ),

where
f(yn;x−Dn , zn, β) = f(yn; (xn1, . . . , xnD−1, zn), β)

is the classic glm exponential density with zn substituted in for xnD, h(zn;x−Dn , θ) is an assumed
distribution of the coarsened covariate given the observed covariates and a parameter θ, and x−Dn
represents the covariate vector xn minus the Dth element. Continuing the above example where
xnD represents a count and has been coarsened, we could propose a poisson distribution for
xnD = zn given the observed covariates x−Dn , such that

h(z;x−Dn , θ) = λzn exp−λn
z! ,

where log(λn) = θ0 + θ1xn1 + . . .+ θD−1xnD−1.

The above methodology relies on the condition that there are additional fully observed
covariates included in the model from which the practitioner can use to fit a distribution for the
underlying classical data. This approach is unsuitable for the dataset described in Section 6.5, as
the fully observed variables (e.g. country, REF rating, etc. ) only take a small number of distinct
categorical values, meaning it isn’t clear how they could be used to determine a distribution
for the underlying microdata, given the fully observed covariates and rounded observations.
Furthermore, the above methodology requires the specification of a parametric distribution for
the coarsened values, given the observed covariates, leading to the requirement that the likelihood
is optimised over additional nuisance parameters θ and the potential for a poor model fit if the
distributional assumption is violated.

A similar methodology is employed by Johnson and Wiest (2014), who instead employ a
simulation-based Bayesian approach and assume that not every observation is subject to the
coarsening mechanism, meaning a distribution can be fit to the observations exhibiting coars-
ening using the fully observed observations. They define the probability model for a coarsened
covariate zn in terms of a posterior distribution π(β,z;y) for the glm parameter β and the
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missing values of the covariate zn = xnD, n = 1, . . . , N as follows.

π(β,z;y) ∝ m(β)
N∏
n=1

f(yn;x−Dn , zn, β)h(zn;x−Dn )1{zn ∈ sn},

where m(β) is the assumed prior distribution for the regression parameter β, and 1{zn ∈ sn} is
the indicator function taking the value 1 if the simulated value zn belongs to the set of possible
underlying values for xnD, and 0 otherwise. In this setting, h(zn;x−Dn )1{zn ∈ sn} can be thought
of as a prior distribution for the coarsened value. Inferences for β are then obtained from the set
of realisations from simulations in a typical Bayesian framework. This approach is unsuitable
for the applied analyses described in Section 6.5, as every observation is subject to rounding
for the covariates of interest. Furthermore, the practitioner may wish to avoid a Bayesian or
simulation based approach, meaning this methodology might not be appropriate. In the next
Section we propose a methodology in which additional rounded variables not used in the glm
analysis can be utilised in the glm framework for data of this nature.

6.4 Estimating glm parameters from discrete rounded data

We now propose a general framework from which estimates for the parameters of a glm model
can be obtained from data where either the response or some covariate data is discrete and
subject to rounding for every observation, and the additional covariates included in the model
are not informative enough to use in the fittting of a distribution to the underlying microdata for
the rounded variables. Our aim is to approximate the log-likelihood of the classical glm model by
averaging the contribution of each observation over the log-likelihoods of all underlying values
the rounded value could have arisen from, such that parameter estimates obtained from the
’approximate’ log-likelihood are comparable to that of the complete analysis. We conclude this
section with a description of the Godambe Information matrix (Godambe, 1960) that is used to
obtain variances and subsequent inferences for the MLEs obtained from this model, given the
misspecified aspect of the log-likelihood.

6.4.1 Overview

Suppose some of the covariates and/or the response variable are integer valued variables,
and also only observed in rounded form. Denote R(A) as the function with domain Z+, where
A is an integer random variable and R(A) = k if A is rounded to the nearest kth integer. Note
that for an unrounded integer variable Xd, R(Xd) = 1. Furthermore, for ease of notation, for a
fully observed non-integer variable Xd, let R(Xd) = 1. Denote y∗n and x∗n as the observed data,
with y∗n = yn iff R(Y ) = 1 and x∗nd = xnd iff R(Xd) = 1, n = 1, . . . , N , d = 1, . . . , D. Denote

φ(a) = 1(P (A = a|·) > 0)
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as the identity function taking the value 1 if the value a is possible for the random variable A,
given additional variables and/or information, and 0 otherwise, and let

γ(a∗) = {a∗ − dR(A)
2 − 1e, . . . , a∗ + bR(A)

2 c}

represent the set of all possible underlying values the rounded observation a∗ could have arisen
from, given the degree of rounding and no additional constraints, where dxe and bxc represent the
integer ceiling and floor functions respectively. Note that for unrounded observations, γ(a∗) =
{a∗}. Let x∗ = (x∗1, . . . , x∗N ) and y∗ = (y∗1, . . . , y∗N ) represent the complete rounded dataset.
Uniformly integrating the classical glm log-likelihood (6.2) over all possible underlying datasets
yields the following log-likelihood:

logL(x∗,y∗;β) =
N∑
n=1

∑
yn∈γ(y∗n)

∑
xn1∈γ(x∗n1)

. . .
∑

xnD∈γ(x∗nD)

Φ(xn, yn)
An

log f(xn, yn;β), (6.6)

where Φ(xn, yn) = φ(yn)×
∏D
d=1 φ(xnd) and

An =
∑

yn∈γ(y∗n)

∑
xn1∈γ(x∗n1)

. . .
∑

xnD∈γ(x∗nD)
Φ(xn, yn)

is the total number of distinct multivariate values the nth underlying observation could have
taken. Note that Φ(xn, yn) is the indicator function that takes the value 1 if the potential
underlying observation (xn, yn) being plugged into (6.6) is possible (i.e. a non-zero probability
of occuring given the observed rounded data), and 0 otherwise, and that each summation only
has one term (the observation) if the corresponding covariate is unrounded. This leads to
the assumption that the possible underlying multidimensional values are uniformly distributed,
given the rounded observation, however the marginal distributions of the univariate values are
not necessarily uniform. Note therefore that Φ(xn, yn) can possibly be better defined through
the use of additional arguments, as seen in Section 6.4.2. Estimates for β can then be obtained
via the solution to the following set of estimating functions.

U ′(x∗,y∗, β) = 1
N

N∑
n=1

∑
yn∈γ(y∗n)

∑
xn1∈γ(x∗n1)

. . .
∑

xnD∈γ(x∗nD)

Φ(xn, yn)
An

∇β log f(yn;xn, β) = 0, (6.7)

where ∇β log f(yn;xn, β) = xn
yn−µn

V (µn)g′(µn) .
Each term within the summation over n in (6.7) can be described as the average of the

contributions to the classical glm estimating functions of all possible multidimensional observa-
tions which could have led to the observed value. Note that when there are constraints on the
underlying data, such as when covariates are functions of each other (i.e. sums), some covariates
end up having differently weighted underlying marginal values, due to the exclusion of some
’impossible’ underlying observations.

Example. Suppose Xd is a count variable rounded to the nearest 5, i.e. R(Xd) = 5. If x∗nd = 5,
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then xnd ∈ γ(5) = {3, 4, 5, 6, 7} and φ(k|·) = 1, k = 3, 4, 5, 6, 7. However, if x∗nd = 0, then
xnd ∈ γ(0) = {0, 1, 2} and φ(k|·) = 0 for k = −2,−1. Clearly the potential underlying datapoints
below the rounded observation (i.e. x∗nd − 2 and x∗nd − 1) are possible for x∗nd ≥ 5, but not for
x∗nd = 0. As a result, φ(xnd|·) = 1(xnd > 0).

6.4.2 Utilising additional information

Suppose zn ∈ R+, is an integer realisation of a random variable Z comprising of additional
information for the nth observation, such that zn can be included in the function φ for some
rounded variables to better specify the probability of the underlying classical observation, given
the rounded realisations. Suppose also that zn can be potentially rounded to the nearest kth

integer, i.e. R(Z) = k. This additional information can be incorporated into the estimating
equations (6.7) as follows.

For ease of notation, first denote
∑

Γ(x∗n,y∗n,...) as the summation over all included and addi-
tional information variables for the given model, such that

∑
Γ(x∗n,y∗n,z∗n)

=
∑

zn∈γ(z∗n)

∑
yn∈γ(y∗n)

∑
xn1∈γ(x∗n1)

· · ·
∑

xnD∈γ(x∗nD)
.

The ’averaged’ glm estimating function for a rounded sample with additional information incor-
porated in z∗ is then given as

U ′(x∗,y∗, β) = 1
N

N∑
n=1

∑
Γ(x∗n,y∗n|z∗n)

Φ(xn, yn, zn)
An

∇β log f(yn;xn, β) = 0. (6.8)

where Φ(xn, yn, zn) = φ(zn|xn, yn)φ(yn|xn, zn)×
∏D
d=1 φ(xnd|xn, yn, zn) and

An =
∑

Γ(x∗n,y∗n,z∗n)
Φ(xn, yn, zn).

Once again this leads to the assumption that the possible underlying multidimensional values
for each rounded observation are uniformly distributed, albeit without necessarily leading to
uniform distributions for each marginal underlying value.

Example. Suppose the sum of some subset d = (d1, . . . , dP ), dp ∈ 1, . . . , D, p = 1, . . . , P ,
P ≤ D of the included covariates might be known to be zn, such that

∑
d∈d xnd = zn. In the

context of the analysis conducted in this paper, this is comparable to the restrictions that the
sums of the males and females for each university cost centre must be equal to the total number
of people, i.e.

∑4
i=1wni + vni = nn. As a result,

Φ(xn, yn, zn) = φ(zn|xn, yn)φ(yn|xn, zn)×
D∏
d=1

φ(xnd|xn, yn, zn)

= 1(
∑
d∈d

xnd = zn)× φ(yn)×
D∏
d=1

φ(xnd).
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Only values for xn for which the sum of the covariates indexed by d is equal to the additional
observation zn are then included in the estimating equation (6.8).

6.4.3 Variances

The asymptotic distribution of the classical MLE θ̂c shown in (6.4), and subsequent covari-
ance matrix, denoted as the Fisher information matrix and shown in (6.5), are specific cases
of a general theory outlined by Godambe (1960), which states that the MLE is asymptotically
distributed with covariance matrix given as the inverse of the Godambe Information matrix

G(β) = H(β)J(β)−1H(β), (6.9)

such that
β̂c ∼ N(β,G(β)−1),

where ∇θ and ∇θ2 represent respectively the gradient and matrix of second derivatives for a
given parameter θ, and H(β) = −E(∇2 logL(x,y;β)) and J(β) = Var(∇ logL(x,y;β)) are
respectively the sensitivity and variability matrices. For regular likelihoods, H(β) = J(β) and
as a result, G(β) = H(β) = J(β), however, when the model is misspecifed, or if there are
correlations between the observations, then H(β) 6= J(β) (White, 1982) and the variance must
be obtained by the complete Godambe information matrix.

Given we have a misspecified log-likelihood, and the Godambe information matrix shown
in (6.9) must be used to obtain variances for the estimates, denoted as θ̂s. We now present
formulae for the estimators of H(β) and J(β), respectively denoted as Ĥ(β̂)) and Ĵ(β̂)). The
hessian and jacobian estimators are then respectively given as

Ĥ(β̂) =
N∑
n=1
∇2
β logL(x∗n, y∗n; β̂) =

N∑
n=1

∑
Γ(x∗n,y∗n,z∗n)

Φ(xn, yn, zn)
An

∇2
β log f(xn, yn; β̂) (6.10)

Ĵ(β̂) =
N∑
n=1

(∇β logL(x∗n, y∗n;β))
(
∇β logL(x∗n, y∗n; β̂)

)>

=
N∑
n=1

 ∑
Γ(x∗n,y∗n,z∗n)

Φ(xn, yn, zn)
An

∇β log f(xn, yn; β̂)

 ∑
Γ(x∗n,y∗n,z∗n)

Φ(xn, yn, zn)
An

∇β log f(xn, yn; β̂)

> .
(6.11)

Note that∇β log f(xn, yn; β̂) and∇2
β log f(xn, yn; β̂) are simply the classical gradient and hessian

formulae. For fully observed data, Ĥ(β̂) = Ĵ(β̂), and Ĝ(θ) = Î(θ)

6.5 Data Analyses

We now undertake the real data analysis of the Athena SWAN dataset to determine which
variables are predictive of the ordinal-valued Athena Award Status and the number/proportion
of females in a given academic cost centre. As previously stated, the rounded nature of some of
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the observed count variables result in the unsuitability of classical glm models, leading to the
necessity of the glm framework proposed in this paper. We first outline the desired analyses for
each model, and then illustrate their utility with some simulation studies. The actual analyses
are then performed to conclude this section.

6.5.1 Data Analyses Description

In each of the real data analyses, the non-standard EE methodology (6.8) is compared to
a naive classical analysis of the rounded data, with MLE variances for both methods obtained
using the Godambe information matrix. For the classical rounded analysis, we are forced to
set pn =

∑4
i=1 w

∗
ni

n∗n
and pni = w∗ni

w∗ni+v
∗
ni
, i = 1, . . . , 4, for observations with respective counts less

than τ = 22.5. Furthermore, denote wn and vn as the total number of females and males
respectively for each observation. For the rounded classical analysis, we are therefore also forced
to set wn =

∑4
i=1w

∗
ni and vn =

∑4
i=1 v

∗
ni. Let ε = 10−3. For (6.8), when pn is included in the

estimating equations, we set pn = wn
nn

.

For the non-standard EE methodology (6.8), there are various constraints on the underlying
data for the count variables, which we can exploit for better parameter estimates. For example,
every underlying count observation can’t be negative, and the counts of the males and females
for each employment level must add to the relevant total count for that level. For observations
where some proportions of females for each level are available, further conditions can be imposed.
Utilising all the available information yields the following identity functions

φ(nn) = 1(nn > 0)

φ(wn, vn) = 1(wn ≥ 0 ∩ vn ≥ 0)

φ(wni, vni) = 1(wni ≥ 0, vni ≥ 0)

φ(wn|{wni}) = 1(
4∑
i=1

wni = wn),

φ(vn|{vni}) = 1(
4∑
i=1

vni = vn),

φ(nn|wn, vn) = 1((wn + vn) = nn),

φ(pn|nn, wn, vn) = 1((nn < 22.5) ∪ (|wn
nn
− pn)| < ε),

φ(pni|{wni, vni}) = 1((wni + vni < 22.5) ∪ (| wni
wni + vni

− pni)| < ε),

such that

Φ(wn, vn, nn|{wni, vni, pni}, pn) =φ(nn)φ(wn, vn)φ(wni, vni)φ(wn|{wni})φ(vn|{vni})

× φ(nn|wn, vn)φ(pn|nn, wn, vn)φ(pni|{wni, vni}) (6.12)



6.5. DATA ANALYSES 125

and

An =
∑

nn∈γ(n∗n)

∑
wn1∈γ(w∗n1)

· · ·
∑

wn4∈γ(w∗n4)

∑
vn1∈γ(v∗n1)

· · ·
∑

vn4∈γ(v∗n4)
Φ(wn, vn, nn|{wni, vni, pni}, pn).

These expressions are then included in the estimating functions (6.8), with variances obtained
using the components of the Godambe information matrix shown in (6.10) and (6.11).

For each analysis, we define the response observation and covariate vector for the nth obser-
vation as yn and xn respectively. Expressions for the log-likelihood, estimating functions and
components of the estimated Godambe information matrix (6.10) and (6.11) are given for each
model, so that estimates and variances can be obtained for each parameter vector.

Poisson Regression Analysis

For predicting the number of females wn for each observation (university cost centre) using
the other covariates, a poisson regression is appropriate. Denote the response variable yn = wn,
the predictor variables xn = (1, an, tn, rn, ln1, ln2, ln3)> and the vector of regression coefficients
as β = (β0, β1, β2, β3, β41, β42, β43)>. The classical glm likelihood is given as

L(x,y;β) =
N∏
n=1

P (Yn = yn|xn, β),

where
P (Yn = y|xn, β) = 1

y! exp
(
y(β>xn)− exp(β>xn)

)
.

The classical poisson log-likelihood can therefore be expressed as

logL(x,y;β) =
N∑
n=1
{yn(β>xn)− exp(β>xn)− log(yn!)},

with the gradient for the variance calculation and estimating function (6.8) given as

∇β logL(x,y;β) =
N∑
n=1

xn(yn − exp(β>xn)).

Binomial Regression Analysis

For predicting the proportion of females pn for each university cost centre using the other co-
variates, a binomial regression model can be used, with the counts of females wn and total size nn
included in the response matrix. Denote the predictor observations as xn = (1, nn, an, tn, rn, ln1, ln2, ln3)>

and the vector of regression coefficients as β = (β0, β1, β2, β3, β4, β51, β52, β53)>. The classical
glm likelihood can be expressed as

L(x,y;β) =
N∏
n=1

exp(wnβ>xn)
(1 + exp(β>xn))nn .
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The classical poisson log-likelihood can therefore be expressed as

logL(x,y;β) =
N∑
n=1
{wnβ>xn − nn log(1 + exp(β>xn)},

with the gradient given as

∇β logL(x,y;β) =
N∑
n=1

xn

(
wn −

nn exp(β>xn)
1 + exp(β>xn)

)
.

Ordinal Logistic Regression Analysis

An ordinal logistic regression model can be used to predict the Athena SWAN award status
an for each university cost centre using the other covariates. Denote the response as yn = an, the
predictor observations as xn = (nn, pn, tn, rn, ln1, ln2, ln3)>, the vector of regression coefficients
as β = (β1, β2, β3, β4, β51, β52, β53)> and an ordered vector of threshold parameters as α =
(α1, α2)>, α2 > α1. The classical ordinal logistic log-likelihood we want to approximate can be
expressed as follows.

L(x,y;β, α) =
N∏
n=1

P (Yn = yn|xn, β, α),

where

P (Yn = k|xn, β, α) = P (Yn ≤ k|xn, β, α)− P (Yn ≤ k − 1|xn, β, α), (6.13)

P (Yn ≤ k|xn, β, α) = exp(αk + β>xn)
1 + exp(αk + β>xn) . (6.14)

Note that this model has no intercept term. The classical ordinal logistic regression log-likelihood
can therefore be expressed as

logL(x,y;β, α) =
N∑
n=1

logP (Yn = yn|xn, β, α).

The gradient of the log likelihood, which is dependent on the constraints of the threshold pa-
rameter α, is given by Kim (2004).

∇β logL(x,y;β, α) =
N∑
n=1

K∑
k=1

xn1(yn = k) (1− P (Yn ≤ k|xn, β, µ)− P (Yn ≤ k − 1|xn, β, α))

∇α logL(x,y;β, α) =
N∑
n=1

K∑
k=1

1(yn = k)
{
eyn

(
1− P (Yn ≤ k|xn, β, α)− 1

1− exp(αk−1 − αk)

)
+

eyn−1

(
1− P (Yn ≤ k − 1|xn, β, α)− 1

1− exp(αk − αk−1)

)}
,

where ek is the kth canonical vector, k = 1, . . . ,K.
As noted by McCullagh (1980), when estimating the parameters of the ordinal logistic regres-
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sion models, the actual quantities being estimated for the regression and threshold parameters
are respectively α

ε and β
ε , where ε is a scale parameter. As a result, there is an identifiability issue

with the model, in that there are infinitely many sets of parameters (β, α) which will achieve
the same log-likelihood score, given adjustments to the scale parameter ε. One solution is to fix
α1, ensuring there is a unique solution. This approach is used in the simulations and real data
analyses seen later in this paper.

6.5.2 Simulations

We consider some synthetic examples for the poisson, binomial and logistic ordinal regression
analyses to illustrate the advantages of using the glm estimating function methodology outlined
in Section 6.4 over a naive classical analysis of the observed rounded data. For each of the fol-
lowing analyses, N observations are simulated, with the covariates in each observation designed
to mimic the covariates in the motivating dataset described in Section 6.2. The numbers of
females wn and males vn for each cost centre are simulated directly, rather than from the sum-
mation of simulated values for wni and vni respectively. For each simulated dataset, the count
observations are rounded to the nearest R = 25, 20, 15, 10, 5, 1 integers, with R = 1 representing
the complete classical analysis of the underlying dataset. For each setup, realisations of tn, rn
and ln, n = 1, . . . , N , are simulated as

tn ∈ {1, . . . , 20}, where P (tn = k) ∝ 1
k
, k = 1, . . . , 20

rn ∈ {1, 2, 3}, where P (Xn3 = k) = 1
3 , k = 1, 2, 3

ln ∈ {1, 2, 3, 4}, where P (Xn4 = k) = 1
4 , k = 1, 2, 3, 4.

MLE’s for β (and µ for the ordinal model) for each analysis are obtained for each degree of
rounding (R) using a naive classical analysis of the rounded dataset, with variances obtained
using the estimated Godambe information matrix. MLE’s are then obtained using (6.8) for each
degree of rounding, with varying degrees of additional information incorporated. The following
functions Φ are used to incorporate varying amounts of additional information for the estimating
functions in (6.8).

Φ(xn, yn) = φ(nn)φ(wn, vn) (6.15)

Φ(xn, yn) = φ(nn)φ(wn, vn)φ(nn|wn, vn) (6.16)

Φ(xn, yn|pn, τ) = φ(nn)φ(wn, vn)φ(nn|wn, vn)φ(pn|nn, wn, vn). (6.17)

Note that these functions Φ represent the incoporation of an increasing amount of additional
information, ranging from only the conditions that each count is non-negative, and the total size
is also not zero (6.15), to the inclusion of the condition that wn + vn = nn (6.16), as well as the
proportions of females conditions (6.17). Each analysis is then replicated 1000 times, so that the
average estimates and average estimated Godambe variances can be presented. The Godambe
variances are also compared to the observed variance of the MLEs across the 1000 replications,
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to establish whether good estimates for the variances are obtained.
For the binomial and ordinal logistic regression simulation studies, the degree of rounding

for all observations is then fixed at R = 5. The mean of the process used to simulate nn is then
varied inversely proportionally to the regression coefficient associated with that covariate, such
that the effect on the other regressors should be minimal. Varying the total size nn with a fixed
degree of rounding allows us demonstrate the point at which the cost centre sizes are so big that
the differences between the approaches are negligible.

Poisson Regression simulations

For the poisson regression synthetic example, N = 100 observations are simulated, with
realisations for an ∈ {0, 1, 2}, n = 1, . . . , N , simulated by sampling from {0, 1, 2}, with P (an =
k) = 1

3 , k = 0, 1, 2.. A corresponding poisson response wn is then simulated from each xn and
βtrue = (0.8, 0.2, 0.2, 0.2, 0.3, 0.5, 0.4). For each observation, the number of males vn is then
simulated from an poisson distribution with mean 3β>xn

2 , and the total cost centre size nn then
follows as vn + yn = zn. Univariate histograms of nn, wn and vn, n = 1, . . . , N are shown in
Figure 6.2. Figure 6.3 presents the mean estimates (top row) and standard deviations (middle
row) for a subset of the parameters for varying degrees of rounding and additional information
incorporation. Results for all parameters are shown in Figures C.1 and C.2 in the Supplementary
material in C.1. The bottom row of figure 6.3 presents the observed standard deviation across
the 1000 simulation replicates along with the mean estimated Godambe standard deviation for
the complete model and the model represented by (6.15).

We see from Figure 6.3 that as we decrease the degree of rounding (i.e. R→ 1), the results
of each model converge towards the classical results due to the increasing retention in informa-
tion about the underlying data. The newly developed EE approach (6.8) gives closer estimates
and variances to the complete analysis compared to the naive classical analysis of the rounded
data (which performs the worst by far) when no additional information is included (6.15), and
increasingly outperforms the rounded analysis when additional information is included (6.16)
and (6.17). Additionally, the standard deviation plots on the bottom row in Figure 6.3 demon-
strate that the Godambe information matrix is able to effectively estimate the standard error of
each parameter from the estimating function (6.8), as the mean estimated standard errors are
comparable to the observed sample standard deviations, albeit with a slight underestimation of
the variance of each parameter.

Binomial Regression simulations

For the binomial regression synthetic example, N = 100 observations are simulated, with
realisations of nn and an generated as

nn ∼ exp(50) + 5 (rounded to the nearest integer)

an ∈ {0, 1, 2}, where P (an = k) = 1
3 , k = 0, 1, 2
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Figure 6.2: Histograms from one replication for the poisson synthetic analysis of the total size
(left), number of females (middle) and number of males (right).
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Figure 6.3: Mean estimates (top row), mean estimated standard deviations (middle row) and
mean estimated and observed standard deviations (bottom row) for a subset of the parameters
(columns) in the poisson regression synthetic analysis. For the top two rows, Classic results are
shown in solid black, classical analysis of the rounded data in dashed black, EE results with
no additional information in dotted black (6.15), EE results with additional totals information
utilised in solid grey (6.16) and EE results with additional proportions information in dashed
grey (6.17).. For the bottom row, observed standard deviations are shown with dashed lines,
with mean estimated Godambe standard deviations shown in solid lines.

Using a pre-specified parameter vector βtrue = (−0.5, 0.001, 0.05, 0.05,−0.1, 0.1, 0.2,−0.3)>, the
number of females wn is then simulated for each group, such that wn ∼ Bin(nn, pn), where
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pn = β>xn, and from these we have the numbers of males for each group vn = nn − wn, as
well as the true proportions of females (wnnn ) for groups with total sizes nn > τ , where τ = 22.5.
Univariate histograms of nn, wn and vn, n = 1, . . . , N are shown in Figure 6.4. Figure 6.5
presents the mean estimates (top row) and standard deviation (middle row) for a subset of the
parameters for varying degrees of rounding and additional information incorporation, with the
complete results shown in Figures C.3 and C.4 in C.1. The bottom row of figure 6.5 presents the
observed standard deviation of the estimates across the 1000 simulation replicates along with
the mean estimated Godambe standard deviation for the complete model and (6.15). Figure 6.6
shows the effect of the change in mean of the total size nn on the differences in the estimated
variances between the complete classical model, and the various models investigated for a subset
of the parameters, with the complete results shown in Figure C.5 in C.1.

Figure 6.5 demonstrates that as the degree of rounding decreases (i.e. R→ 1), the results of
each model converge towards the results of the complete classical analysis due to the increasing
retention in information about the underlying data. The newly developed EE approach gives
closer results to the complete case (in terms of mean estimates and variances) compared to the
classical binomial regression performed on the rounded data for the predictor variables (which
provides by far the worst results), and when additional information is incorporated into the
model, the estimating function results improve in that they are closer to the complete classical
results for all parameters. Furthermore, the standard error plots on the bottom row in Figure
6.5 show that good estimates can be obtained for the standard error of each parameter via the
estimated Godambe information matrix, as the mean estimated standard errors are comparable
to the observed sample standard deviations, albeit slightly underestimated. Figure 6.6 illustrates
that that when additional information is utilised, the estimating function methodology (6.8)
perform better than the classical model performed on the rounded data for all predictor means,
although this improvement gets comparably smaller as the magnitude of the department sizes,
numbers of females and numbers of males increases.
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Figure 6.4: Histograms from one replication of the binomial synthetic example of the total
size (top left), number of females (top right), number of males (bottom left) and proportion of
females (bottom right.
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Figure 6.5: Mean estimates (top row), mean estimated standard deviations (middle row) and
mean estimated and observed standard deviations (bottom row) for a subset of the parameters
(columns) in the binomial regression synthetic analysis. For the top two rows, Classic results
are shown in solid black, classical analysis of the rounded data in dashed black, EE results with
no additional information in dotted black (6.15), EE results with additional totals information
utilised in solid grey (6.16) and EE results with additional proportions information in dashed
grey (6.17).. For the bottom row, observed standard deviations are shown with dashed lines,
with mean estimated Godambe standard deviations shown in solid lines.

Ordinal Logistic Regression simulations

For the ordinal logistic regression synthetic example, N = 100 observations are simulated,
with realisations of nn and pn simulated as

nn ∼ exp(50) + 5 (rounded to the nearest integer)

pn ∼ U(0.2, 0.75).

The number of females and males can then be obtained, such that wn = pnnn (rounded) and
vn = nn −wn. K = 3 classes are used for the ordinal categorical response variable Y , which we
simulate as follows. Two equally spaced thresholds αtrue = (α1, α2)> = (0, 3)> and a parameter
vector βtrue = (0.01,−0.5,−0.01,−0.2,−0.5,−1, 0.5)> are chosen, and class probabilities are
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Figure 6.6: Difference between the estimated variances of the complete classical analysis and
various models for a subset of the parameters for the binomial regression synthetic example.
Classic results are shown in solid black, classical analysis of the rounded data in dashed black, EE
results with no additional information in dotted black (6.15), EE results with additional totals
information utilised in solid grey (6.16) and EE results with additional proportions information
in dashed grey (6.17).

then calculated using (6.13) and (6.14). Each Yn is then simulated according to the class
probabilities. Univariate histograms of nn, wn and vn, n = 1, . . . , N for one replication are
shown in Figure 6.7. Due to the identifiability issues associated with the threshold parameter
α, we fix α1 = 0 for each optimisation. Figure 6.8 presents the mean estimates (top row)
and standard deviation (middle row) for a subset of the parameters for varying degrees of
rounding and additional information incorporation, with the complete results shown in Figures
C.6 and C.7 in C.1. The bottom row of figure 6.8 presents the observed standard deviation of
the estimates across the 1000 simulation replicates along with the mean estimated Godambe
standard deviation for the complete model and (6.15). Figure 6.9 shows the effect of the change
in mean of the total size nn on the differences in estimated variances between the complete
classical model, and each model for a subset of the parameters, with the complete results shown
in Figure 6.9 in C.1.

Figure 6.8 shows that as the degree of rounding decreases (i.e. R→ 1), the results for each
model for the regression and threshold parameters (β and α) converge towards the classical
results. The naive classical analysis of the rounded data outperforms (6.15) for a large degree of
rounding for some parameters, however both analyses obtain comparable results for lower values
of R. When additional information is incorporated, i.e. (6.16) and (6.17), closer results to the
complete classical case are produced than a naive classical analysis of the rounded data, with
more additional information leading to an improvement in results. Unlike the other glm models
previously investigated, the variances of each parameter were lower than that of the classical
case, with convergence to the classical results from below with decreasing degrees of rounding R.
The standard error plots on the bottom row of Figure 6.8 show that the Godambe information
matrix provides good estimates for the standard error of each parameter from the estimating
functions 6.8, as the mean estimated standard errors are comparable to the observed sample
standard deviations. Figure 6.9 illustrates that that the estimating functions (6.8) produce
closer estimates to the complete case when additional information is utilised, and perform better
than the naive classical analysis of the rounded data for all predictor means, although this
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improvement gets comparably smaller as the magnitude of the department sizes, numbers of
females and numbers of males increases.
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Figure 6.7: Histograms from one replication of the ordinal logistic synthetic example of the total
size (top left), number of females (top right), number of males (bottom left) and the ordinal
response variable (bottom right)

6.5.3 Analyses of the Athena SWAN dataset

We now estimate the glm parameters for the poisson, binomial and ordinal logistic regression
models applied to the datasets described in Section 6.2 using both a naive classical analysis of
the rounded datasets and the estimating function methodology outlined in Section 6.4. For the
estimating function methodology, Φ(wn, vn, nn|{wni, vni, pni}, pn) (shown in (6.12)) was used to
restrict the domain of the underlying dataset. For the ordinal logistic regression analyses, we set
α1 = 0 and estimate α2 to avoid the identifiability issues associated with completely unrestricted
threshold parameters (McCullagh, 1980). Denote the estimates obtained via a naive classical
analysis of the rounded data as β̂yearr , and the estimates obtained via the estimating function
methodology shown in (6.8) by β̂years for each year. Standard deviations for each parameter are
estimated using the estimated Godambe information matrix obtained from (6.10) and (6.11).
Tables 6.1, 6.2 and 6.3 respectively show the MLEs and estimated standard deviations for the
parameters of the poisson, binomial and ordinal logistic regression analyses of the Psychology
(top) and Physics (bottom) data. Important predictors (large estimates compared to small
standard deviations) are indexed by ∗. When referencing traditional hypothesis testing in the
following description of the results, we assume 5% as the significance level

The poisson regression models fit to Psychology datasets for the years 2012 and 2016 yield
estimates and standard deviations that suggest that the most important predictor of the number
of females wn for each cost centre is the location ln. Being located in England (ln1 = 1) has
a significant positive effect on the number of females for the Psychology 2012 dataset, yielding
a low p-value in a traditional hypothesis test. The estimating function methodology yields a
higher estimate for β41 than the naive classical analysis of the rounded data, with a comparable
standard deviation. For the Psychology 2016 dataset, the estimates for β43 have significantly
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Figure 6.8: Mean estimates (top row), mean estimated standard deviations (middle row) and
mean estimated and observed standard deviations (bottom row) for a subset of the parameters
(columns) in the ordinal logistic regression synthetic analysis. For the top two rows, Classic
results are shown in solid black, classical analysis of the rounded data in dashed black, EE
results with no additional information in dotted black (6.15), EE results with additional totals
information utilised in solid grey (6.16) and EE results with additional proportions information
in dashed grey (6.17).. For the bottom row, observed standard deviations are shown with dashed
lines, with mean estimated Godambe standard deviations shown in solid lines.

increased when compared to the 2012 dataset, such that the resultant hypothesis yields suggests
that being located in Wales (ln3 = 1) is an important predictor of the number of females in the
traditional hypothesis testing setting.

There are noticeable differences between the MLE’s obtained from the poisson estimating
function methodology (6.8) and the poisson naive classical analysis. Estimates for β0 and β1

obtained from the estimating function analysis (6.8) of the 2012 dataset are noticeably different
than that of the naive classical analysis, however in 2016 both methods obtained similar results
for these coefficients. Consequently, for the 2012 analysis, a naive classical analysis of the
rounded data estimates a significantly different effect of the Athena SWAN Award status on the
number of females for each cost centre, which is one of the questions of interest.

The poisson regression analyses of the Physics datasets for 2012 and 2016 suggest that the
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Figure 6.9: Difference between the estimated variances of the complete classical analysis and
various models for a subset of the parameters in the ordinal logistic regression synthetic analysis.
Classic results are shown in solid black, classical analysis of the rounded data in dashed black, EE
results with no additional information in dotted black (6.15), EE results with additional totals
information utilised in solid grey (6.16) and EE results with additional proportions information
in dashed grey (6.17).

Athena SWAN status an and being located in England (ln1 = 1) or Scotland (ln2 = 2) are
useful predictors of the number of females wn, yielding comparably large (in magnitude) MLE’s
compared to their estimated standard deviations for β1, β41 and β42. Furthermore, a higher
Athena SWAN status an is found to have an important positive effect on the number of females
for a given cost centre. The significance and magnitude (in a traditional hypothesis testing
setting) of all three country coefficient estimates (β41, β42, β43) increases in the 2016 analysis,
compared to 2012. Furthermore, the estimating function methodology (6.8) estimates larger
coefficients with smaller standard deviations for the location coefficients for 2012 and 2016.
Consequently, a naive classical analysis of the rounded data underestimates the importance of
each location in the prediction of the number of females for each cost centre.

The binomial regression analyses of the Psychology 2012 dataset yield significant predictors
(in the traditional hypothesis testing sense) for β1, β3 and β51 for both models, suggesting that
the cost centre size (nn), the length of engagement (tn) and being located in England (ln1 = 1)
are useful in predicting the proportion of females pn for a given cost centre. The cost centre size
is determined to have a important positive effect on the proportion of females. For the analysis
of the 2016 version, the binomial regression analyses yield significant estimates for β1, β3 and
β4, suggesting the predictive ability of ln has diminished, while the research intensity rn now
has a significant positive effect on the proportion of females. There are noticeable differences
between the estimating function (6.8) and naive classical analyses in the results obtained for β0

for both Psychology datasets, with the estimating function methodology (6.8) yielding different
MLE’s with significantly lower standard deviations.

The binomial regression models fit to the Physics datasets yields few significant predictors.
For the 2012 dataset, apart from the intercept term β0, only the estimate for β51 yields a sig-
nificant p-value for the estimating function analysis (6.8), however this significance is lost in the
naive classical analysis of the rounded data, with a much smaller estimate with a larger standard
deviation being estimated. As a result, the estimating function (6.8) and naive classical method-
ologies yield different hypothesis test conclusions in determining the importance of being located
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Psychology
β̂2012
r β̂2012

s β̂2016
r β̂2016

s

β0 2.645 (0.440)∗ 2.797 (0.445)∗ 2.935 (0.337)∗ 2.925 (0.350)∗
β1 0.237 (0.145) 0.129 (0.165) 0.108 (0.151) 0.095 (0.151)
β2 0.000 (0.003) 0.001 (0.003) 0.000 (0.003) 0.000 (0.003)
β3 -0.029 (0.207) -0.057 (0.202) -0.126 (0.137) -0.131 (0.137)
β41 0.632 (0.273)∗ 0.639 (0.274)∗ 0.830 (0.189)∗ 0.875 (0.215)∗
β42 -0.077 (0.356) -0.008 (0.347) 0.269 (0.269) 0.288 (0.293)
β43 0.491 (0.493) 0.528 (0.502) 0.838 (0.278)∗ 0.909 (0.293)∗

Physics
β̂2012
r β̂2012

s β̂2016
r β̂2016

s

β0 0.063 (0.726) -0.106 (0.834) -0.801 (0.601) -0.717 (0.752)
β1 0.566 (0.199)∗ 0.637 (0.207)∗ 0.727 (0.183)∗ 0.704 (0.187)∗
β2 0.007 (0.004) 0.007 (0.004) 0.009 (0.004)∗ 0.009 (0.003)∗
β3 -0.165 (0.310) -0.300 (0.324) -0.025 (0.226) -0.180 (0.293)
β41 1.168 (0.165)∗ 1.313 (0.158)∗ 1.528 (0.121)∗ 1.703 (0.129)∗
β42 0.982 (0.267)∗ 1.161 (0.228)∗ 1.568 (0.235)∗ 1.717 (0.222)∗
β43 0.624 (0.927) 0.747 (0.683) 1.489 (0.942) 1.753 (0.746)∗

Table 6.1: MLEs with standard deviations in parentheses for the Poisson regression analyses.

in England as a predictor of the proportion of females for a given cost centre. The analysis of
the 2016 Physics dataset gives larger estimates with smaller standard deviations (compared to
2012) for the location coefficients, again with larger estimates and smaller standard deviations
obtained for the estimating function methodology (6.8), compared to the naive classical analy-
sis, meaning a naive classical analysis underestimates the importance of these variables in the
prediction of the proportion of women. The significance of the estimates for β2 and β4 also
increases in 2016 for both methodologies, meaning the Athena SWAN status an and research
intensity rn are increasingly predictive of the proportion of females for the Physics dataset.

The ordinal logistic regression models fit to the Psychology datasets for each year illustrate
that the length of engagement tn and research intensity rn are the most useful predictors of the
Athena SWAN status, yielding MLE’s with large magnitudes when compared to their standard
deviations. Similar estimates are obtained for the threshold parameter α2 for both the estimating
function (6.8) and naive classical analyses, with the estimating function methodology (6.8)
yielding lower standard deviations for µ2 in each year. None of the locations were found to be
a significant predictor of the award status in these analyses.

The ordinal logistic analysis of the Physics 2012 dataset yields high MLE’s with comparably
low standard deviations for β3, β51 and β53, suggesting that the length of engagement tn and
location ln are the most useful predictors of the Athena SWAN status. The significance of β3

decreases in 2016, while the results for the other covariates remain largely similar. In both
years, the estimating function methodology (6.8) estimates lowest standard deviations for the
threshold parameter α2.
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Psychology
β̂2012
r β̂2012

s β̂2016
r β̂2016

s

β0 -0.009 (0.205) -0.134 (0.202) 0.287 (0.210) 0.277 (0.160)
β1 0.001 (0.000)∗ 0.001 (0.000)∗ 0.001 (0.000)∗ 0.001 (0.000)∗
β2 0.053 (0.065) 0.025 (0.065) 0.020 (0.070) -0.009 (0.064)
β3 -0.004 (0.001)∗ -0.004 (0.001)∗ -0.004 (0.001)∗ -0.005 (0.001)∗
β4 0.126 (0.065) 0.119 (0.061) 0.165 (0.053)∗ 0.127 (0.046)∗
β51 0.212 (0.080)∗ 0.343 (0.089)∗ -0.076 (0.140) 0.020 (0.076)
β52 -0.020 (0.145) 0.144 (0.141) -0.006 (0.176) -0.001 (0.110)
β53 0.016 (0.270) 0.134 (0.259) -0.268 (0.213) -0.081 (0.170)

Physics
β̂2012
r β̂2012

s β̂2016
r β̂2016

s

β0 -2.025 (0.478)∗ -2.325 (0.397)∗ -3.278 (0.398)∗ -3.099 (0.364)∗
β1 0.001 (0.001) 0.000 (0.001) 0.000 (0.001) 0.000 (0.001)
β2 0.049 (0.129) 0.106 (0.108) 0.262 (0.098)∗ 0.202 (0.079)∗
β3 -0.003 (0.003) -0.002 (0.003) 0.002 (0.002) 0.001 (0.002)
β4 0.164 (0.186) 0.198 (0.135) 0.293 (0.142) 0.252 (0.149)
β51 0.176 (0.215) 0.406 (0.185)∗ 0.681 (0.137)∗ 0.868 (0.119)∗
β52 -0.054 (0.231) 0.171 (0.220) 0.583 (0.216)∗ 0.665 (0.210)∗
β53 -0.481 (0.643) -0.244 (0.442) 0.561 (0.572) 0.843 (0.373)∗

Table 6.2: MLEs with standard deviations in parentheses for the Binomial regression analyses.

6.6 Discussion

In this article, we have developed a methodology for obtaining estimates of glm parameters
from datasets with rounded count variables, with the aim of improving upon the results of
a naive classical analysis of the rounded dataset. The estimating function methodology (6.8)
’averages’ out the contribution of each observation towards the log-likelihood across all possible
underlying multivariate values that the observation could have taken before it was subjected to
rounding, rather than just treating the rounded observation as the true underlying value, as per
the naive classical analysis. Additional information concerning the summation of some variables
and the availability of the proportion of females for some observations can then be included to
further restrict the domain of the underlying latent dataset, and more accurately approximate
the classical log-likelihood. Although they aren’t directly included in the underlying classical
glm log-likelihood that we want to approximate, the counts of the males for each employment
contract vni can be considered additional information that allows better MLE’s to be obtained
from the estimating function methodology (6.8).

The estimating function methodology was utilised in the estimation of glm parameters for
a poisson, binomial and ordinal logistic analyses of the Athena SWAN data, with the aim of
determining the importance of each covariate in the prediction of the Athena SWAN award
status, and also the number/proportion of women for a given university cost centre. Each
analysis yielded important predictors, with noticeable differences emerging for some parameters
between the estimating function methodology and naive classical analysis of the rounded data.
Consequently, ignoring the rounding mechanism and performing a naive classical analysis of the
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Psychology
β̂2012
r β̂2012

s β̂2016
r β̂2016

s

β1 -0.003 (0.004) -0.002 (0.007) -0.001 (0.006) -0.001 (0.008)
β2 -0.031 (1.527) 2.168 (1.832) 0.373 (1.818) 0.076 (2.132)
β3 -0.062 (0.011)∗ -0.062 (0.014)∗ -0.060 (0.010)∗ -0.060 (0.013)∗
β4 0.967 (0.371)∗ 0.665 (0.377) 0.809 (0.410) 0.841 (0.434)
β51 0.793 (0.840) -0.241 (0.956) 0.569 (0.986) 0.680 (1.218)
β52 -0.262 (0.833) -0.931 (1.052) -0.275 (1.047) -0.151 (1.291)
β53 0.443 (0.904) -0.194 (1.051) 0.375 (1.085) 0.467 (1.348)
α2 3.331 (0.641)∗ 3.247 (0.600)∗ 3.156 (0.583)∗ 3.157 (0.533)∗

Physics
β̂2012
r β̂2012

s β̂2016
r β̂2016

s

β1 -0.030 (0.010)∗ -0.027 (0.009)∗ -0.030 (0.012)∗ -0.028 (0.008)∗
β2 3.411 (4.141) 1.169 (1.760) -9.936 (5.387) -1.879 (1.088)
β3 -0.027 (0.012)∗ -0.028 (0.012)∗ -0.016 (0.013) -0.024 (0.013)
β4 -0.155 (0.487) 0.034 (0.433) -0.387 (0.669) -0.006 (0.454)
β51 2.268 (1.117)∗ 2.320 (1.025)∗ 4.799 (2.188)∗ 3.101 (1.063)∗
β52 1.953 (1.450) 1.682 (1.361) 4.036 (2.230) 2.585 (1.468)
β53 12.055 (1.055)∗ 5.668 (0.857)∗ 13.758 (2.374)∗ 6.314 (0.986)∗
α2 1.539 (0.449)∗ 1.568 (0.386)∗ 1.707 (0.549)∗ 1.638 (0.445)∗

Table 6.3: MLEs with standard deviations in parentheses for the Ordinal logistic regression
analyses.

rounded data will lead to innacurate conclusions regarding the importance of various covariates
for the research questions posed.

Simulation studies were considered to demonstrate the utility of our estimating function (6.8)
construction for datasets of the nature studied in this paper. The simulations showed a conver-
gence of both the estimating function (6.8) and naive classical results towards that of the true
underlying dataset with a decreasing degree of rounding. Furthermore, for the poisson, binomial
and ordinal logistic regression models investigated, the estimating function methodology (6.8)
with the most additional information incorporated provides the best parameter estimates. The
ordinal logistic regression synthetic example highlighted a tendency of the estimated parameter
standard deviations to converge to the classical results from below, rather than from above as
per the other models investigated. As a result, it seems the estimating function (6.8) and naive
classical methodologies underestimate the variance of each parameter, with the difference to the
true results decreasing with decreasing degrees of rounding.

For classical glm’s, the Fisher information matrix is sufficient for obtaining estimates for
the variance of each MLE. However, due to the misspecified nature of the estimating function
approximation developed in this paper, we obtain variances for both the estimating function (6.8)
and naive classical methods through the inverse of the Godambe information matrix, which is
equivalent to the Fisher information matrix for correctly specified log-likelihoods. Evaluation of
the Godambe information matrix requires the evaluation of two matrix components, the jacobian
and the hessian, which are also equal when the log-likelihood is properly specified. The variances
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obtained from the Godambe information matrix allow inferences to be made on each parameter,
allowing us to determine which covariates are significant predictors of the Athena SWAN award
status and the number/proportion of females for a given cost centre.

The function Φ(xn,yn|·)
An

acts as a weighting function that ensures the sum of the weights of
the contributions towards the estimating equation for each possible underlying value for a given
observation is equal to 1. In this paper, we focus only on the case where Φ(xn, yn|·) is the product
of identity functions, taking the value 1 if the potential underlying value (xn,n ) is possible for the
nth observation, and 0 otherwise. This results in a summation of the estimating equations over
all the possible underlying multivariate values wn, vn, nn that were possible, given the rounded
observations w∗n, v∗n, n∗n, where each possible underlying value receives an equal weight. If more
information is available, this density could be better specified. For example, if it known that
some underying values are more likely than others, then the weights can be adjusted accordingly
by a different choice of Φ(xn, yn|·).
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Chapter 7

Discussion and Future Work

Symbolic data analysis provides tools to deal with data that takes a non-standard (symbolic)
form, such as intervals or histograms. Such constructions are often useful in reducing the
computational burden associated with the storage, transmission and analysis of the dataset,
given the size and dimension of a symbolic dataset is usually less than that of the underlying
classical dataset from which it was aggregated. Furthermore, it is often necessary for data
to arrive in a non-standard form, due to reasons such as privacy, or a natural aggregation
that occurs during observation. Classical methods of analysis are often unsuitable for symbolic
datasets, as they fail to take into account the inherent variability that occurs within each symbol,
a property not present in classical pointwise observations. Most existing SDA methods focus
on an exploratory or descriptive analysis of symbolic datasets, and are often dependant on an
assumed uniform within-symbol distribution. These methods are effective if results are desired
that are interpretable at the symbolic level, however if a classical framework is required for the
output of the analysis then these methods are often unsuitable.

When data arrives in a non-standard form, an analysis is often required that delivers results
comparable to that of a classical analysis of the underlying classical dataset from which the
symbolic dataset was constructed. There are some examples of methodologies for non-standard
data that accomplish this. Heitjan (1989) calculates variances from a binned dataset, and
examines the differences between raw midpoint estimates, Sheppard’s corrected estimates and
estimates obtained from weighted parametric binned model, assuming a normal distribution
for the underlying dataset. Beranger et al. (2018) provided a parametric framework in which
a classical parametric model can be fit to a symbolic dataset. The results of the symbolic
parametric model converge towards that of the corresponding classical analysis with increasing
information retention in the data aggregation process. Parzen (1962) constructed a kernel density
estimator for histogram data as the classical density estimator for the set of midpoints, each
weighted by the counts for their respective bins. There are also parallels that exist between SDA
and existing methodologies for missing data, however these methods often require the occurrence
of classical-valued observations, from which a density for the missing data can be fit.

In Chapter 3, the parametric framework of Beranger et al. (2018) was extended to the field of
composite likelihood (Cox and Reid, 2004, Lindsay, 1982, Varin, 2008) to address the computa-
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tional issues associated with the analysis of large-dimensional histograms. A symbolic composite
likelihood function was developed, with multivariate histograms used as the motivating example.
It was demonstrated that the symbolic composite likelihood function obtains comparable mle’s
to a classical analysis of the complete microdata, if a certain amount of information is retained
during the data aggregation process. Results were also obtained that show the loss in efficiency
of these estimates that occurs as less temporal information is retained. Extensive simulation
studies were performed to demonstrate the convergence of the symbolic results towards the clas-
sical results through the varying of the number of bins and temporal blocks, and the utility of
this methodology was demonstrated via the analysis of several datasets consisting of historical
and future simulated temperature observations from various climate scenarios.

In Chapter 4 a logistic regression model was developed that can accommodate covariates
that take the form of marginal histograms. This analysis was not previously possible. By
making certain assumptions about the relationship between the underlying classical covariates,
estimates for the complete classical logistic regression model can be obtained from the optimi-
sation of a set of lower-dimensional likelihoods. This method also allows the logistic regression
analysis of large-dimensional multivariate covariate histograms, which cannot be analysed using
the Beranger et al. (2018) approach due to the computational burden associated with estimating
the large-dimensional integrals within the likelihood. Two real datasets were analysed using this
construction, for which classical results were previously provided. In each case, the newly devel-
oped marginal histogram logistic regression model was able to obtain almost as good predictions
as the classical analyses of the complete microdata at vastly cheaper computational cost.

Often a parametric analysis of symbolic datasets is unsuitable for the same reasons as it might
be for a classical dataset. That is, the practitioner is unable to assume a parametric density for
the classical data. In Chapter 5 we developed a non-parametric framework for the analysis of
non-standard data that can be used to obtain non-parametric estimates for various statistics,
such as means, variances, correlations and quantiles. Specific methodologies were developed for
intervals and histograms, in which additional information available in surrounding symbols is
utilised to estimate these quantities for each symbol. Empirical likelihood (Owen, 1988, 1990) has
emerged in recent years as a highly effective method of estimating the variance of these quantities,
without the need for an underlying parametric assumption. We extended the classical empirical
likelihood methodology to the scenario where non-standard data is observed, whereby estimates
for variances of parameters can be obtained from symbolic datasets that are comparable to
those of the classical empirical likelihood methodology performed on the underlying microdata.
The utility of these constructions was demonstrated via simulation studies and analyses of real
datasets.

The work in Chapter 6 was motivated by the rounding that occurs in data collection during
the creation of the Athena SWAN dataset. Counts for the numbers of men, women and people
in each department are rounded to the nearest 5 for privacy reasons, leading to the occurence
of a non-standard dataset. An analysis was desired that determined the importance of various
variables in the prediction of the number/proportion of women and the Athena award status
for each department. Ideally, a classical GLM model would be fit to the data. However, the
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rounding mechanism means that this approach will deliver innaccurate results. In Chapter 6
we performed a GLM analysis of this dataset using symbolic methods, and have shown that
we are able to improve the results by utilising some key relationships between the rounded
covariates, such as the fact that the true underlying number of men and women must add up
to the number of people. The subsequent likelihood is misspecified, and so estimates for the
variances of the regression parameters are obtained through the estimated Godambe information
matrix Godambe (1960).

In this thesis, methods of analysis for non-standard data were developed that obtain results
which possess a classical interpretation. Furthermore, if a certain amount of information is
retained during the aggregation process, these methods provide results that are comparable to
that of the corresponding classical analysis of the latent microdata. The amount of information
retention required to obtain comparable results is shown to be reasonable for the examples looked
at in this thesis. For example, for the analyses of various histogram datasets, convergence to the
classical results tended to occur with less than B = 30 marginal bins. Much of the work in this
thesis focused on developing methods that utilise available additional information accompanying
the symbols to account for the information loss associated with the data aggregation. This leads
to each symbolic analysis providing closer parameter estimates to the analysis of the underlying
microdata.

Throughout this thesis, the focus has mainly been on data exhibiting the i.i.d. (identically
and independently distributed) property, which was appropriate for the various applications in-
vestigated here. However, there are instances in which data arises for which the i.i.d. assumption
is not valid. In many cases, where the data can be considered exchangeable but not i.i.d., a hier-
archical representation along the lines of that in Zhang et al. (2019) would be possible, directly
extending the work in this thesis. In other cases, for example, in time series data, the ordering
of the underlying data affects the subsequent analyses, and the simple time-aggregation of the
data into symbolic objects such as histograms will lead to the loss of this information. There are
also instances where the parameter values are expected to change over time. An example of this
could be a different analysis of the millennial scale climate extremes to that seen in 3.5, where
instead of assuming the marginal GEV parameters vary through space, they could be modelled
as linear functions of time. In this model, it would be necessary to retain as much temporal
information as possible within the marginal histograms in order to obtain comparable composite
MLE’s via the symbolic likelihood to the classical case, meaning a different construction may
need to be considered. One potential construction that could address these concerns could be the
aggregation of the data into separate multi-dimensional symbols for each time point. Of course,
this construction would present its own challenges in the derivation of a likelihood function, and
would be an interesting area of future work.

An area for expansion for the field of SDA that can further improve the effectiveness of the
methods developed in this thesis that is mentioned but not developed is the question of symbol
design. If the practitioner is aware of the models they want to fit prior to the aggregation of
the classical data into a set of symbols, then an optimal symbol design could potentially be
constructed that leads to more accurate results from fewer numbers of symbols, with obvious
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benefits in computation. For example, for interval-valued data a better construction could be an
optimal choice of end points, instead of the usual min-max construction. For histogram-valued
observations, the usual choice is to construct each symbol using B equally-spaced bins. One
potential expansion is to allow for uneven bins, and develop methodologies that determine the
optimal location of the B + 1 histogram break points. The development of such methodologies
that determine the optimal symbol construction for specific classical analyses is therefore a
potentially highly significant future direction for SDA.



Appendix A

Chapter 4 Supporting information

A.1 Appendices

A.1.1 Proof of Proposition 4.3.1

We utilise the arguments presented in Beranger et al. (2018) to derive of Proposition 4.3.1.
Note that if the underlying microdata X = (X1, ..., XN ) are i.i.d. then theK subsets X(1), . . . ,X(K)

are similarly i.i.d. For histogram-valued data,

f(s|x, y, ϑ) =
K∏
k=1

f(sk|x(k), ϑ),

where

f(sk|x(k), ϑ) =
Bk∏

bk=1k

1


Nk∑
n=1

1{x(k)
n ∈ Υbk} = sbk

 .
For the symbolic, histogram-based model, we therefore obtain

LSM (s;β) =
∫
DX

LM (x, y;β)f(s|x, y, ϑ)dx

=
∏
k∈Ω

∫
DX(k)

LM (x(k), y;β)f(sk|x(k), ϑ)dx(k)

=
∏
k∈Ω

Nk∏
n=1

Bk∏
bk=1k

∫
D
X

(k)
n

LM (x(k)
n , yn;β)dx(k)

n

1{x(k)
n ∈Υbk

}

∝
∏
k∈Ω

Bk∏
bk=1k

(∫
Υbk

PM (y = k|X = x)dx
)sbk

.
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Similarly, for the histogram-based OvR model, we obtain

LSO(s;β) =
∫
DX

LO(x, y;β)f(s|x, y, ϑ)dx

=
∏
k∈Ω

∫
DX(k)

LO(x(k), y;β)f(sk|x(k), ϑ)dx(k)

=
∏
k∈Ω

Nk∏
n=1

Bk∏
bk=1k

∫
D
X

(k)
n

LO(x(k)
n , yn;β)dx(k)

n

1{x(k)
n ∈Υbk

}

∝
∏
k∈Ω

Bk∏
bk=1k

∫
Υbk

PO(Y = k|X = x)dx
∏

k′∈Ω\{k}

∫
Υbk

PO(Y 6= k′|X = x)dx

sbk

.

A.1.2 Proof of Proposition 4.3.2

We now show that if there is neither complete nor quasi-complete separation of the set
of histograms s, then LSO(s;β) and LSM (s;β) have unique global maxima. The following
arguments are analogous to those proposed by Albert and Anderson (1984). Suppose that
there is complete separation exhibited by the histogram dataset for the kth class, according to
Definition 4.3.2.

As a result, the complete separation property holds for all vectors βk = akbk for ak > 0. We
now examine the behaviours of the integrals of the PO(Y = k|X) and PO(Y 6= k|X) terms in
the likelihood functions (4.6) and (4.7). Using the mean value theorem, and given akb>k x∗bj > 0
if j = k and akb>k x∗bj < 0 if j 6= k for all non-empty bins and ak > 0, we obtain

lim
ak→∞

∫
Υbk

PO(Y = k|x)dx = lim
ak→∞

∫
Υbk

eakb
>
k x

1 + eakb
>
k
x

dx ∝ lim
ak→∞

e
akb
>
k x
∗
bk

1 + e
akb
>
k
x∗

bk

= 1

lim
ak→∞

∫
Υbk

PO(Y 6= k|x)dx = lim
ak→∞

∫
Υbk

1
1 + eakb

>
k
x

dx ∝ lim
ak→∞

1

1 + e
akb
>
k
x∗

bk

= 1,

where x∗bk is some point inside Υbk . Each integral therefore approaches a constant for all bins as
ak increases, meaning the maximum value of each likelihood function is attained at the boundary
of the parameter space, i.e. β̂k =∞.

Now suppose there is quasi-complete separation exhibited by the histogram dataset, accord-
ing to Definition 4.3.2. Continuing with the previous notation, denote AD+1

k as the set of all
vectors bk that satisfy the complete separation condition, meaning that AD+1

k is a convex set.
Denote the parameter vector αk(ak) = ck + akbk, where ak > 0 and ak ∈ AD+1. Consequently,

PO(Y = k|x) = eαk(a)>x

1 + eαk(ak)>x .

The log-likelihood for the component of the OvR model (4.7) estimating the parameters for the
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kth class, βk, can therefore be expressed as

logLkSO(s;βk) =
Bk∑

bk=1k

sbk log
∫

Υbk

PO(Y = k|x)dx+
∑

k′∈Ω\{k}

Bk′∑
bk′=1k′

sbk′ log
∫

Υbk′

PO(Y 6= k|x)dx

=
Bk∑

bk=1k

sbk log
∫

Υbk

ec
>
k x+akb>k x

1 + ec
>
k
x+akb>k x

dx+
∑

k′∈Ω\{k}

Bk′∑
bk′=1k′

sbk′ log
∫

Υbk′

1
1 + ec

>
k
x+akb>k x

dx.

Given that b>k x > 0 for all x ∈ Υbk such that sbk > 0, the function e
c>
k
x+akb

>
k
x

1+ec
>
k
x+akb

>
k
x
is monotonically

increasing with ak for all x ∈ Υbk such that sbk > 0. Consequently,

Bk∑
bk=1k

sbk log
∫

Υbk

ec
>
k x+akb>k x

1 + ec
>
k
x+akb>k x

dx

is monotonically increasing with increasing ak. Similarly, given that b>k x < 0 for all x ∈ Υbk′

such that sbk′ > 0 and k′ 6= k

∑
k′∈Ω\{k}

Bk′∑
bk′=1k′

sbk′ log
∫

Υbk′

1
1 + ec

>
k
x+akb>k x

dx

is monotonically increasing with increasing ak. Therefore the log-likelihood function logLkSO(s;β)
is monotonically increasing with ak, and the maximum value is attained at the boundary of the
parameter domain, i.e. β̂k =∞.

The above arguments show that if there is complete or quasi-complete separation for any
class k ∈ Ω, then there is no unique MLE for the symbolic OvR model. Using similar arguments,
it can be shown that the maximum value for the symbolic multinomial likelihood logLSM (s;β)
is attained at β̂ = (∞, . . . ,∞)> if there is either complete or quasi-complete separation in the
data.

By the mean value theorem,

LSM (s;β) ∝
∏
k∈Ω

Bk∏
bk=1k

(∫
Υbk

PM (y = k|X = x)dx
)sbk

∝
∏
k∈Ω

Bk∏
bk=1k

PM (y = k|X = x∗bk)sbk ,

where x∗bk ∈ Υbk is some point located inside the bthk bin. The symbolic multinomial likelihood
LSM (s;β) is therefore proportional to the classical likelihood for some dataset x∗, consisting of∑
k∈Ω

∑Bk
bk=1k 1{sbk > 0} distinct values x∗bk , each appearing sbk times, bk = 1k, . . . ,Bk, k ∈ Ω.

Albert and Anderson (1984) proved that LM(x, y;β) is a closed convex function. Therefore,
LM(x∗, y;β) and subsequently LSM (s;β) are closed convex functions. Similar arguments can
be used to show the closed convex nature of LSO(s;β). As a result, if the histogram-valued
data does not exhibit complete separation or quasi-complete separation (Definition 4.3.2), then
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there is a unique global maximum of LSM (s;β). Similarly, if the histogram-valued data does
not exhibit complete separation or quasi-complete separation for any class k ∈ Ω (Definition
4.3.1), then there is a unique global maximum of LSO(s;β).

A.1.3 Proof of Proposition 4.3.3

We first use the arguments in Cramer (2007), Wooldridge (2002) to derive L(j)
O and L

(j)
SO

using the latent variable formulation of the logistic regression model (equivalent to the log odds
formulation in Section 4.2). Consider a binary (K = 2) logistic regression model, such that
the OvR and multinomial model are equivalent. The latent variable formulation for the logistic
regression model based on the ith subset of variables can be written as

Y ∗n = βi>Xi
n + ein, n = 1, . . . , N, (A.1)

where Y ∗n is an unseen latent variable and ein is an error term following a logistic distribution.
Classification is then achieved by setting Yn = 1 if Y ∗n < 0 and Yn = 2 otherwise. In the full
model

Y ∗n = β>Xn + un,

where un follows a logistic distribution with zero mean and unit variance. In the smaller model
(A.1) indexed by i, the omitted terms are absorbed into the error term. That is

ein = un +
∑

i′∈I−i
1

βi
′
Xni′ .

Suppose that there are correlations between included and omitted variables for the model based
on subset i, and we can express each omitted variable as a linear function of the included
variables, i.e. Xi′ = α>ii′X

i + εii′ , as described in Section 4.3.3. W.l.o.g. we can assume the ith

variable has zero mean and variance given by σ2
i , and that the covariance between variables i

and i′ is given by σii′ . The error term ein can therefore be expressed as

ein = un +
∑

i′∈I−i
1

βi
′ (
α>ii′X

i
n + εnii′

)
.

We now rewrite (A.1) by absorbing the terms in ein that are dependent on the included variables
into the model. That is

Y ∗n =
∑
i′1∈i

βi′1 +
∑
i′2 6∈i

βi
′
2αi′1i′2

Xni′1
+ ẽin,

where
ẽin = un +

∑
i′ 6∈i

βi
′
εnii′ .
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Pingel (2014) shows that if X is distributed according to a logistic distribution with mean 0
and variance π2

3 , then a standard normal distribution also fits the distribution of X reasonably
well. The similarities between the standard logistic density and a rescaled normal density have
also been investigated by Jeffress (1973), Bowling and Khasawneh (2009) and Pingel (2014),
whereby different values for the rescaling factor C are proposed based on the criteria used
to match the logistic and normal distributions. In practise any of these values can be used
here, but we proceed with π2

3 in the simulations and real data analyses in Sections 4.4 and 4.5
respectively. As a result,

∑
i′ 6∈i β

i′εnii′ is approximately normally distributed, and the error term
ẽin is approximately logistically distributed with mean zero (i.e. E(ẽin) = 0) and variance given
by

Var(ẽin) = 1 +
∑
i′1∈I

−i
1

(
βi
′
12λ2

ii′1
+ 2

∑
i′2∈I

−i
1 ,i′2 6=i′1

βi
′
1βi
′
2λii′1i′2

)
π2/3 .

In the full model,

P (Yn = 2|Xn) = P (Y ∗n > 0|Xn) = P (un < β>Xn) = exp{β>Xn}
1 + exp{β>Xn}

,

and we obtain MLE’s β̂ for β by maximising over the sum of this quantity over all observations.
Note that P (un < β>Xn) = PO(Yn = 2|Xn), resulting in the equivalency between the latent
and log odds formulations of the logistic regression model. For the omitted variable model,

P (Yn = 2|Xi
n) = P (Y i∗n > 0|Xi

n) = P

ẽin < ∑
i′1∈i

βi′1 +
∑
i′2 6∈i

βi
′
2αi′1i′2

Xni′1

 .
Rescaling ẽin by its standard deviation gives us a random variable with approximately the same
distribution as un, i.e. ũn = ẽi

n√
Var(ei

n)
will approximately follow a logistic distribution with zero

mean and unit variance. As a consequence,

P (Yn = 2|Xi
n) = P

 ẽin√
Var(ẽin)

<

∑
i′1∈i

(
βi
′
1 +

∑
i′2 6∈i

βi
′
2αi′1i′2

)
Xni′1√

Var(ẽin)


≈ P

ũn <
∑
i′1∈i

(
βi
′
1 +

∑
i′2 6∈i

βi
′
2αi′1i′2

)
Xni′1√

Var(ẽin)


= exp{β̃i>Xi

n}
1 + exp{β̃i>Xi

n}
,

where β̃i =
βi+
[

0,
(∑

i′∈I−i
1

βi
′
αii′

)>]>
√
Var(ẽi

n)
∈ R(j+1). Therefore we see that the regression parameters

β̃i for the OvR model fit to the data indexed by i can be expressed as functions of the regression
parameters β for the complete D−dimensional OvR model. The value for β̃i that maximises
the binary logistic likelihood for the ith subset is therefore a rescaled version of the value for βi

that maximises the complete binary logistic likelihood.
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Albert and Anderson (1984) proved that if the dataset x does not exhibit complete or
quasi-complete separation, then there is a unique value for the MLE β̂ for the complete model
regression parameter β. As a result, unique values for the MLE β̂i for β̃i exist if the data does
not exhibit complete separation in the variables indexed by i. It is trivial to show that if the
complete dataset x does not exhibit complete or quasi-complete separation, then there is no
i ∈ Ij for which xi exhibits complete or quasi-complete separation. If there was, then there
would exist a bi such that

bi>xin > 0 for all n such that yn = 2

bi>xin < 0 for all n such that yn = 1.

Setting bd = bid if d ∈ i and 0 otherwise yields the vector b = (b1, . . . , bD) such that

b>xn = bi>xin > 0 for all n such that yn = 2

b>xn = bi>xin < 0 for all n such that yn = 1,

which is a contradiction. As a result, a sufficient condition for the existence and uniqueness of all
MLE’s β̂i for β̃i, i ∈ i, is that the complete data x does not exhibit complete or quasi-complete
separation. Now, given β̂i is the value for β̃i that minimises the log-likelihood for the ith model

logL(xi, y; β̃i) =
N∑
n=1

1{yn = 1} logP (Y = 1|xin, yn, β̃i) + 1{yn = 2} logP (Y = 2|xin, yn, β̃i),

i.e. logL(xi, y; β̂i) < logL(xi, y; β̃i) for all β̃i ∈ D
β̃i , the parameter β̂(j) =

{
β̂i
}
i∈Ij

therefore
minimises the log-likelihood

logL(j)
O (x, y; β̃(j)) =

∑
i∈Ij

logL(xi, y; β̃i),

i.e. logL(j)
O (x, y; β̂(j)) < logL(j)

O (x, y; β̃(j)) for all β̃(j) ∈ D
β̃(j) . Therefore an estimate β̂ for β

such that

β̂i =
βi +

[
0,
(∑

i′∈I−i
1
β̂i
′
αii′

)>]>
√

1 +
∑

i′1∈I
−i
1

(
β
i′12
λ2

ii′1
+2
∑

i′2∈I
−i
1 ,i′2 6=i

′
1
β
i′1β

i′2λii′1i
′
2

)
π2/3

,

(i.e. an estimate for β that yields the MLE’s for each of the smaller-dimensional logistic models
based on the variables indexed by i) will minimise logL(j)

O (x, y; β̃(j)). By the definition of the
model this β̂ will exist. Furthermore, given the above equations can be reduced to a polynomial
system of equations with quasi-random coefficients and significantly more equations than un-
knowns, there is only one configuration of β that will lead to β̂, meaning the estimates obtained
from the maximisation of the symbolic j-wise likelihood are estimates of the regression param-
eter for the complete underlying model. Given that a logistic OvR model is just the product of
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K binary logistic regression models, the above results hold for the OvR model for K > 2 classes.
Consequently, the j−dimensional OvR model can therefore be written as

L
(j)
O (x, y;β) =

∏
i∈Ij

LO(xi, y; β̃i),

where

β̃ik =
βik +

[
0,
(∑

i′∈I−i
1
βi
′
k αii′

)>]>
√
Var(ẽink)

∈ R(j+1).

Through similar arguments, we can find an expression for the symbolic j-dimensional OvR
model as

L
(j)
SO(s;β) =

∏
i∈Ij

LSO(si, y; β̃i).
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Appendix B

Chapter 5 Supporting information

B.1 Appendices

B.1.1 Proof of Symbolic Empirical Likelihood

The following arguments are taken from the classical derivation of EL, and applied to the
non-standard data setting. Given the constraints (C3), (C4) and (C5) defined in Section 5.3,
the solution for q̂(c)

N can be obtained using Lagrangian multipliers, with the solution obtained
by minimising the Lagrangian function

Q =
C∑
c=1

nc log q(c)
n − ζ

(
C∑
c=1

ncq
(c)
n − 1

)
− λ>

(
C∑
c=1

ncq
(c)
n g′(sc; θ)

)

with respect to q = (q1, . . . , qC), ζ and λ. Equating the partial derivatives to zero yields the
following:


∂Q

∂q
(c)
n

= nc
q
(c)
n

− ζnc − ncλ>g′(sc; θ) = 0

∇λQ = −(
∑C
c=1 ncq

(c)
n g′(sc; θ)) = 0

∂Q
∂ζ = −(

∑C
c=1 ncq

(c)
n − 1) = 0

=⇒


q

(c)
n = 1

ζ+Nλ>g′(sc;θ)
0 = −

∑C
c=1

ncg′(sc;θ)
N{1+λ>g′(sc;θ)}

ζ = N

,

(B.1)

from which the solution follows. Now

∇2
λQ =

C∑
c=1

ncg
′(sc; θ)g′(sc; θ)>

(N − λ>g′(sc; θ))2 .

Clearly the denominator is greater than 0, and each numerator term is a positive definite matrix.
Consequently there exists a unique solution for λ.

153
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B.1.2 Evaluating mc for intervals

If we utilise the information contained in ϑ as described in Section 5.4.1 to evaluate the
following integrals required to evaluate the mc function:

∫
Υcd

xk[d]1{x[d] ∈ υbd}dx[d] =
(zdbd)

k+1 − (zdbd−1)k+1

k + 1 1{υdbd ⊂ Υd
cd
},

so that

∫
Υc
xk[d]1{x ∈ υb}dx =

∫
Υc
xk[d]

D∏
d′=1

1{x[d′] ∈ υd
′
bd′
}dx

=
{∫

Υdcd
xk[d]1{x[d] ∈ υdbd}dx[d]

}
×

∏
d′ 6=d

∫
Υd′
bd′

1{x[d′] ∈ υd
′
bd′
}dx[d]

∫
Υc
x[d]x[e]1{x ∈ Υc′}dx =

{∫
Υdcd

x[d]1{x[d] ∈ υdcd}dx[d]

∫
Υece

x[e]1{x[e] ∈ υebe}dx[e]

}

×

 ∏
d′ 6=d,e

∫
Υd′
c′
d

1{x[d′] ∈ υd
′
bd′
}dx[d′]


for any k ∈ N, d, e = 1, . . . , D, d 6= e, c, c′ = 1, . . . , C.

B.1.3 Derivation of φc(x) for histograms

When constructing a histogram such as that described in Section 5.4.2, the location of the
multivariate break points Υ = ((yd1 , . . . , yC

1
1 ), . . . , (yD1 , . . . , yC

D

1 )) is often an arbitrary choice
and a unique histogram s′ = (s′1, . . . , s′C) can be contructed for any choice of Υ′ = Υ + u,
u = (u1, . . . , uD), where u ∈

(
− δ

2 ,
δ
2

)
and C is constant. The bin locations Υ′c could therefore

be considered a realisation Υ′c = Υc + u of a random variable Υ̂c = Υc + U, such that U ∼
U
(
− δ

2 ,
δ
2

)
, and

Hx(Υ′c) = fU(u) = 1∏D
d=1 δd

1{x ∈ Υ′c}.

Note that
P
(
X ∈ Υ′c′ |X ∈ Υc′′ , s

)
= |Υ

′
c′ ∩Υc′′ |
|Υc′′ |

,

and that each bin is disjoint, meaning a classical observation x can only fall in one bin region
if the break points are fixed. Then let Ac′′(Υ′c′) =

(
Ac′′1 (Υ1′

c′1
), . . . , Ac′′D(ΥD′

c′D
)
)
, Bc′′(Υ′c′) =
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(
Bc′′1 (Υ1′

c′1
), . . . , Bc′′D(ΥD′

c′D
)
)
and Cc′′(Υ′c′) =

(
Cc′′1 (Υ1′

c′1
), . . . , Cc′′D(ΥD′

c′D
)
)
such that

Ac′′
d

(
Υd′

c′
d

)
= 1

{
yd
′

c′
d
−1 ∈

(
ydc′′
d
−1, y

d
c′′
d

)}(
ydc′′
d
− yd′c′

d
−1

)
Bc′′

d

(
Υd′

c′
d

)
= 1

{
yd
′

c′
d
∈
(
ydc′′
d
−1, y

d
c′′
d

)}(
yd
′

c′
d
− ydc′′

d
−1

)
Cc′′

d

(
Υd′

c′
d

)
= Ac′′

d

(
Υd′

c′
d

)
+Bc′′

d

(
Υd′

c′
d

)
,

for d = 1, . . . , D, and |Υ′c′ ∩ Υc′′ | =
∏D
d=1Cc′′d

(
Υd′

c′
d

)
. If we then use the fact that Υ′ = Υ + u,

ydcd = yd1d + (cd − 1)δd, ydcd − y
d
cd−1 = δd and ud ∈ (− δ

2 ,
δ
2), we obtain

Ac′′
d

(
Υd′

c′
d

)
=1

{
yd
′

c′
d
− ydc′′

d
+ ud − δd ∈ (−δd, 0)

}
(ydc′′

d
− ydc′

d
− ud + δd)

=1
{
(b′d − c′′d)δd + ud ∈ (0, δd)

}
((c′′d − c′d + 1)δd − ud)

=1
{
c′d = c′′d

}
1

{
ud ∈

(
0, δd2

)}
(δd − ud) + 1

{
c′d = c′′d + 1

}
1

{
ud ∈

(
−δd2 , 0

)}
(−ud)

=(δd − ud)1
{
c′d = c′′d

}
1

{
ud ∈

(
0, δd2

)}
− ud1

{
c′d = c′′d + 1

}
1

{
ud ∈

(
−δd2 , 0

)}
,

Bc′′
d

(
Υd′

c′
d

)
=(δd + ud)1{c′d = c′′d}1

{
ud ∈

(
−δd2 , 0

)}
+ ud1{c′d = c′′d − 1}1

{
ud ∈

(
0, δd2

)}
,

Cc′′
d

(
Υd′

c′
d

)
=1{c′d = c′′d}

(
(δd − ud)1

{
ud ∈

(
0, δd2

)}
+ (δd + ud)1

{
ud ∈

(
−δd2 , 0

)})
− ud

(
1{c′d = c′′d + 1}1

{
ud ∈

(
−δd2 , 0

)}
− 1{c′d = c′′d − 1}1

{
ud ∈

(
0, δd2

)})
.

Now rewrite 1{x ∈ Υ′c′} such that

1{x ∈ Υ′c′} =
D∏
d=1

1{x[d] ∈ Υd′

c′
d
} =

D∏
d=1

1
{
x[d] ∈

(
yd
′

c′
d
−1, y

d′

c′
d

)}

=
D∏
d=1

1
{
x[d] ∈

(
ydc′
d
− δd + ud, y

d
c′
d

+ ud
)}

=
D∏
d=1

1
{
ud ∈

(
x[d] − ydc′

d
, x[d] − ydc′

d
+ δd

)}
.
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Let

A1c′
d

=
(

0, δd2

)
∩
(
x[d] − ydc′

d
, x[d] − ydc′

d
+ δd

)
A2c′

d
=
(
−δd2 , 0

)
∩
(
x[d] − ydc′

d
, x[d] − ydc′

d
+ δd

)
|A1c′

d
| =

(
x[d] − ydc′

d
−1

)
1

{
x[d] ∈

(
ydc′
d
−1, y

d
c′
d
− δd

2

)}
+ δd

2 1
{
x[d] ∈

(
ydc′
d
− δd

2 , y
d
c′
d

)}
+
(
δd
2 − x[d] + ydc′

d

)
1

{
x[d] ∈

(
ydc′
d
, ydc′

d
+ δd

2

)}
|A2c′

d
| =δd

2 1
{
x[d] ∈

(
ydc′
d
−1, y

d
c′
d
− δd

2

)}
+
(
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1

{
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d
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d
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and

M1c′
d

=

x[d] − ydc′
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1
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−1, y

d
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2
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4 1
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 .
Then ∫

DΥ′
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∫ δ
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D∏
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|
)

−1{c′d = c′′d + 1}M2c′
d
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d
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d
|A1c′

d
|
)
,



B.1. APPENDICES 157

and as a result,

φ(x) =
∫
D(Λ)

fX|S=s′(x)Hx(λ)dλ

=
∫
D(Υ′)

C∑
c′=1

1{x ∈ s′c′}
P (X ∈ s′c′ |s)
|Υ′c′ |

Hx
(
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dΥ′
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)
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(
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C∑
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N
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c′′=c′−1
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N

∫
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1
{
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}
|Υ′c′ ∩Υc′′ |dΥ′c′

= 1∏D
d=1 δ

3
d
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N
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(
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(
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d
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d
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d
|
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d
|A2c′
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d
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d
|
)
.

As a consequence we also have an expression for φc and setting

Jc′,c′′(x) =1
{
c′d = c′′d

} (
δd
(
|A1c′

d
|+ |A2c′

d
|
)
−M1c′

d
|A1c′

d
|+M2c′

d
|A2c′

d
|
)

− 1
{
c′d = c′′d + 1

}
M2c′

d
|A2c′

d
|+ 1

{
c′d = c′′d − 1

}
M1c′

d
|A1c′

d
|

then yields the estimates shown in Section 5.4.2. The following integrations can then be used
to compute P scH :

∫
Υdcd

(
|A1c′

d
|+ |A2c′

d
|
)

dx[d] = δ2
d

4

(
31{c′d = cd}+ 1

21
{
c′d = cd − 1

}
+ 1

21
{
c′d = cd + 1

})
,

∫
Υdcd

M1c′
d
|A1c′

d
|dx[d] = δ3

d

12

(
1
{
c′d = cd

}
+ 1

21
{
c′d = cd − 1

})
,

∫
Υdcd

M2c′
d
|A2c′

d
|dx[d] = − δ

3
d

12

(
1
{
c′d = cd

}
+ 1

21
{
c′d = cd + 1

})
.

B.1.4 Additional graphical information
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Figure B.1: Estimates and 95% confidence intervals of the mean (left), variance (centre) and
skewness (right) as function of C the number of symbols when the aggregates take the form of
intervals (top) or histograms (bottom). Classical estimates are given by black horizontal lines,
SIU estimates by dotted black lines, SDD estimates by solid grey lines and rounded analysis with
Sheppard’s correction by dashed black lines. Estimates obtained from the estimated histogram
(5.13) are given in the top row respectively by dashed and dotted grey lines for the SIU and
SDD approaches. Original data was simulated from the standard normal distribution.
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Figure B.2: Estimates and 95% confidence intervals of the mean (left), variance (centre) and
skewness (right) as function of C the number of symbols when the aggregates take the form of
intervals (top) or histograms (bottom). Classical estimates are given by black horizontal lines,
SIU estimates by dotted black lines, SDD estimates by solid grey lines and rounded analysis with
Sheppard’s correction by dashed black lines. Estimates obtained from the estimated histogram
(5.13) are given in the top row respectively by dashed and dotted grey lines for the SIU and
SDD approaches. Original data was simulated from the mixture of skew-normal distributions.
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Figure B.3: Estimates and 95% confidence intervals for some of the statistics of interest as a
function of C the number of rectangles. Classical estimates are given by black horizontal lines,
SIU estimates by dotted black lines and SDD estimates by solid grey lines. Original data were
simulated from a normal distribution with correlation ρ = −0.2 (top row) and skew-normal
distribution with α = (1, 0.5).
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Appendix C

Chapter 6 Supporting information

C.1 Complete results for the synthetic examples
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Figure C.1: Mean estimates for each parameter in the poisson synthetic analysis. Classic results
are shown in solid black, classical analysis of the rounded data in dashed black, EE results with
no additional information in dotted black (6.15), EE results with additional totals information
utilised in solid grey (6.16) and EE results with additional proportions information in dashed
grey (6.17).

161



162 APPENDIX C. CHAPTER 6 SUPPORTING INFORMATION

0.1
2

0.1
6

0.2
0

0.2
4

β0

R

Sta
nd

ard
 De

via
tion

25 15 5
0.0

25
0.0

30
0.0

35
0.0

40

β1

R

Sta
nd

ard
 De

via
tion

25 15 5

0.0
08

0.0
10

0.0
12

0.0
14

0.0
16

β2

R

Sta
nd

ard
 De

via
tion

25 15 5

0.0
35

0.0
40

0.0
45

0.0
50

0.0
55

β3

R

Sta
nd

ard
 De

via
tion

25 15 5

0.0
8

0.1
0

0.1
2

0.1
4

0.1
6

β4

R

Sta
nd

ard
 De

via
tion

25 15 5

0.0
8

0.1
0

0.1
2

0.1
4

β5

R

Sta
nd

ard
 De

via
tion

25 15 5
0.0

8
0.1

0
0.1

2
0.1

4
0.1

6

β6

R

Sta
nd

ard
 De

via
tion

25 15 5

Figure C.2: Mean estimated standard deviations for each parameter in the poisson synthetic
analysis. Classic results are shown in solid black, classical analysis of the rounded data in
dashed black, EE results with no additional information in dotted black (6.15), EE results
with additional totals information utilised in solid grey (6.16) and EE results with additional
proportions information in dashed grey (6.17).
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Figure C.3: Mean estimates each parameter in the binomial regression synthetic analysis. Classic
results are shown in solid black, classical analysis of the rounded data in dashed black, EE
results with no additional information in dotted black (6.15), EE results with additional totals
information utilised in solid grey (6.16) and EE results with additional proportions information
in dashed grey (6.17).
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Figure C.4: Mean estimated standard deviations for each parameter in the binomial regression
synthetic analysis. Classic results are shown in solid black, classical analysis of the rounded data
in dashed black, EE results with no additional information in dotted black (6.15), EE results
with additional totals information utilised in solid grey (6.16) and EE results with additional
proportions information in dashed grey (6.17).
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Figure C.5: Difference between the estimated variances of the complete classical analysis and
various models. Classic results are shown in solid black, classical analysis of the rounded data
in dashed black, EE results with no additional information in dotted black (6.15), EE results
with additional totals information utilised in solid grey (6.16) and EE results with additional
proportions information in dashed grey (6.17).
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Figure C.6: Mean estimates for each parameter in the ordinal logistic regression synthetic anal-
ysis. Classic results are shown in solid black, classical analysis of the rounded data in dashed
black, EE results with no additional information in dotted black (6.15), EE results with addi-
tional totals information utilised in solid grey (6.16) and EE results with additional proportions
information in dashed grey (6.17).
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Figure C.7: Mean estimated variances for each parameter in the ordinal logistic regression
synthetic analysis. Classic results are shown in solid black, classical analysis of the rounded data
in dashed black, EE results with no additional information in dotted black (6.15), EE results
with additional totals information utilised in solid grey (6.16) and EE results with additional
proportions information in dashed grey (6.17).
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Figure C.8: Difference between the estimated variances of the complete classical analysis and
various models for each parameter in the ordinal logistic regression synthetic analysis. Classic
results are shown in solid black, classical analysis of the rounded data in dashed black, EE
results with no additional information in dotted black (6.15), EE results with additional totals
information utilised in solid grey (6.16) and EE results with additional proportions information
in dashed grey (6.17).
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