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ABSTRACT 

 

The objective of this study is to develop an efficient computational framework for a 

rigorous coupled flow and deformation analysis of saturated and unsaturated porous 

media. The governing equations are derived based on equations of equilibrium, and 

conservation equations of mass and momentum for each phase of the porous media. For 

numerical solution of the governing equations, the edge-based smoothed point 

interpolation method (ESPIM) is employed due to its numerous advantages over the 

classical techniques. The ESPIM was originally introduced for problems in single phase 

media. The extension of the technique to multiphase media is not trivial, and therefore 

as the first development step, ESPIM is extended for the solution of the coupled flow 

and deformation problems in saturated porous media through a novel approach for 

evaluation of the coupling matrix of the system. Verification of the proposed ESPIM 

formulation is carried out using several benchmark numerical examples. Subsequently, 

the method of manufactured solutions (MMS) is introduced, for the first time in 

geomechanics, for a systematic and more rigorous verification of the computational 

scheme.  

The proposed numerical framework is then extended to include material nonlinearity. 

For this purpose, a non-associative Mohr-Coulomb constitutive model is adopted and an 

algorithm is developed based on the modified Newton-Raphson technique to address the 

nonlinearities arisen from the elasto-plastic constitutive model. Stress integration is 

performed using the substepping method. The computational framework is then further 

extended to include the problems in unsaturated soil mechanics, taking account of 
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coupling among different phases, and the hydraulic hysteresis observed in the behaviour 

of unsaturated soils. A framework based on the effective stress principle is followed in 

the formulation and a hysteretic water retention model is taken into account which 

includes the evolution of water retention curve (WRC) with changes of void ratio. An 

elasto-plastic constitutive model is employed within the context of bounding surface 

plasticity theory for predicting the nonlinear behaviour of soil skeleton in saturated and 

unsaturated porous media. The model is validated by comparing the numerical 

predictions with experimental or numerical data from the literature for fully and 

partially saturated soils. The results demonstrate the capability of the proposed 

numerical framework to predict essential characteristics of variably saturated soils. 
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û    Compatible displacement vector 

av    Absolute velocity of air phase 

asv   Relative velocity vector for the air phase with respect to a moving 

solid 

fv    Absolute velocity of fluid phase 

fsv   Relative velocity vector for the fluid phase with respect to a 

moving solid 

sv    Absolute velocity of solid phase 

wv    Absolute velocity of water phase 

wsv   Relative velocity vector for the water phase with respect to a 

moving solid 

a
w    Vector of analytical solution for the state variable of interest 

n
w    Vector of numerical solution for the state variable of interest 

W    Diagonal matrix of smoothing functions 



 

xxxii 

 

x    Vector of space coordinates 

X    Vector of nodal displacement and pore pressures 

δ    Identity vector 

ε    Strain vector 

kε    Smoothed strain vector over the k th smoothing domain 

ε̂    Compatible strain vector 

a
ε     Vector of strains obtained from analytical solution 

n
ε    Vector of strains obtained from numerical solution 

σ    Total stress vector 

σ    Effective stress vector 

netσ    Net stress vector 

u
Φ    Shape function matrix for displacement phase 

p
Φ    Shape function vector for fluid phase 

uΨ , fΨ , wΨ , aΨ  Residual vectors 

    Gradient operator vector 

 

 

 

 



 

Chapter 1 

 

 

 

1. Introduction  

 

 

 

1.1.  Background 

Predicting the response of porous media under various mechanical, hydraulic or thermal 

loading conditions has been a major interest in geotechnical engineering, as well as in 

many other strands such as material science, petroleum industry, and chemical and 

biomedical engineering. Geotechnical problems, however, can be very complicated in 

nature. One of these complexities is the effect of one or multiple fluids flowing through 

porous bodies which necessitates consideration of the interaction between solid and 

fluid phases. Another complication is the nonlinear response of geomaterials, called 

material nonlinearity. A great number of nonlinear constitutive models, from the simple 

elastic perfectly plastic Mohr-Coulomb model to very advanced models have been 

introduced and evolved through time for various types of geomaterials. 

Following the assumptions of continuum mechanics concept, the hydro-mechanical 

behaviour of variably saturated porous media can be evaluated through the theory of 

mixtures, in which the porous medium is considered as a uniformly distributed 
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combination of different constituents in a representative porous volume: Solid skeleton, 

and saturating fluids which are naturally observed as water, air, different types of gases, 

and oil products. The coupled effect of solid deformation and fluids flow is captured 

through applying the axioms of mechanics and thermodynamics to different mixture 

components. The modern concept of theory of mixtures was established by Fillunger 

(1936) who formulated the balance of mass and momentum for a volume fraction as the 

fundamental of porous media theory. The mixture theory was further developed by Biot 

(1956) for two-phase porous media for quasi-static and dynamic analyses. Following 

the same approach, and applying essential behavioural assumptions depending on the 

fluid components, the theory of mixtures can be generalised to flow and deformation 

behaviour of multi-phase porous media. Firstly, the deformation of the solid phase is 

expressed using the condition of equilibrium on a representative porous volume, which 

is stated by the linear momentum balance equation for the stated volume. Secondly, the 

fluid flow in porous media is modelled using a combination of the equation of linear 

momentum balance for the fluid phase with the mass balance equation of the fluid. 

The governing equations for the problems of interest derived from the theory of 

mixtures are often complicated. Due to this complexity and also various sources of 

nonlinearity, it is very difficult, if not impossible, to generate exact solutions for these 

equations unless in simple cases. Basically, there are two approaches available to solve 

the governing equations: first, making simplifying assumptions and solve the equations 

analytically and second, providing approximations adopting a proper numerical 

technique. Since the introduction of the finite difference method (FDM) in 1600’s, this 

direct method paved the way for numerical simulation of problems with simple 

geometries. From the mid years of the past century, the widely used finite element 

method (FEM) has been the major tool for tackling engineering problems numerically, 



Chapter 1 – Introduction 

 

 

3 

 

among them is the coupled flow and deformation analysis of porous media. Despite its 

popularity and excellent performance in many problems, the FEM suffers from inherent 

shortcomings some of which are as follow: Overly stiff behaviour; strong reliance on 

the quality of the mesh; poor performance when triangular elements are in application; 

poor stress solutions on element interfaces; difficulties when dealing with large 

deformation, material breakage, and crack propagation; volumetric locking; and 

difficulties in adaptive analysis.  

With the aim of addressing the shortcomings of the FEM, meshfree methods (MMs) 

were developed as early as 1970’s and particularly over that past three decades, and 

have achieved remarkable progress due to their advantages over the classical FEM. 

MMs are mesh independent (or less mesh dependent in some MMs) and therefore more 

flexible, and also more capable of handling changing geometries. Numerous MMs have 

been so far proposed, the first of which being the smoothed particle hydrodynamics 

(SPH) introduced in 1970’s by Lucy (1977) and Gingold and Monaghan (1977). SPH 

was followed by many other MMs including (to name a few) the element-free Galerkin 

methods (EFGM) (Belytschko et al., 1994), reproducing kernel particle methods 

(RKPM) (Liu et al., 1995), the meshless local Petrov-Galerkin (MLPG) (Atluri and 

Zhu, 1998), the polynomial point interpolation method (PPIM) (Liu and Gu, 2001) and 

the Radial point interpolation method (RPIM) (Wang and Liu, 2002b), and more 

recently the smoothed point interpolation methods (SPIMs) (Liu et al., 2005; Liu and 

Zhang, 2008; Liu and Zhang, 2009). 

The first study on the application of MMs to coupled flow and deformation of saturated 

porous media was performed by Modaressi and Aubert (1995) through a combination of 

the EFGM and the FEM. Since then, numerous other studies have been conducted in 
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attempts to benefit from the superior properties of MMs in different geotechnical 

problems such as two-dimensional contaminant transport through saturated porous 

media (Kumar and Dodagoudar, 2008), prediction of subsidence over compacting 

reservoirs (Zhuang et al., 2012), bearing capacity of strip and circular footings (Kardani 

et al., 2017), consolidation analysis in saturated porous media (Samimi and Pak, 2012; 

Nazem et al., 2016), soil collapse and erosion processes in excavations (Bui et al., 

2006), and analysis of slope stability and discontinuities (Bui et al., 2011).  

However, many of the employed MMs suffer from different shortcomings. MMs often 

employ non-polynomial functions (Dolbow and Belytschko, 1999a). Moreover, the 

imposition of essential boundary conditions in MMs may be complicated by the 

difficulties that arise from the lack of Kronecker delta properties (in EFGM and 

MLPG), which leads to the significant level of computation in MMs (Liu, 2010a). PPIM 

was proposed to circumvent this problem; however, the non-singularity associated with 

the creation of polynomial interpolation functions is not guaranteed in this method. 

Moreover, in PPIM and RPIM, the approximation functions violate continuity across a 

problem field. A penalty method was used to induce a continuous approximation instead 

of the discontinuous approximation produced by PPIM and RPIM, but the increase in 

computational costs are preventive due to the enlarged bandwidth of the attained 

algebraic system (Liu, 2010a). 

SPIMs are the evolved forms of PPIM and RPIM based on the concept of weakened 

weak (W
2
) formulation in which a generalised smoothing gradient operation is 

performed to form a smoothed and constant strain over parts of the domain, called 

smoothing domains. Smoothing domains can be constructed based on either nodes, 

cells, or edges of a background mesh yielding three different SPIM formulations known 
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as NSPIM, CSPIM, and ESPIM, respectively. In SPIMs, background mesh is still in 

need for performing the numerical integrations. However, unlike the FEM, the 

numerical solution is not heavily dependent on the quality of the background mesh, and 

a simple triangular mesh is often sufficient to ensure accuracy of the numerical 

solutions. SPIMs have some excellent properties such as ultra-accuracy and super 

convergence, and no mapping is required in their formulation while performing the 

numerical implementations, circumventing many of the problems involved with other 

MMs. SPIMs were originally proposed for applications in solid mechanics and were 

later applied in other disciplines. 

1.2. Problem Statement 

Despite the outstanding performance of SPIMs, their applications in geotechnical 

engineering problems have, so far, been very limited. A few coupled formulations 

which are proposed in this regard suffer from mathematical inaccuracies. The majority 

of the works available in the literature in applying SPIMs in coupled flow and 

deformation analysis of porous media are due to Delfim Soares Jr and his co-workers 

(Schönewald et al., 2012; Soares Jr, 2013b; Soares Jr et al., 2014). Nonetheless, the 

approach they have adopted in developing their numerical framework is not 

mathematically rigorous. This is because they adopted an approximation technique for 

calculation of the coupling matrix of the discretised system of equations in the sense 

that they used Gauss points located on the boundary on the smoothing domains, rather 

than conventional Gauss points, for the calculation of the area integrations over the 

smoothing domains. This approach introduces errors in the calculations, which can be 

controlled only by refining the background mesh, because adopting more Gauss points 

for the area integrations is not practical in their approach. It is essential to come up with 

a better solution for employing SPIMs in coupled problems. 
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Once a computational scheme is developed, it has to be validated and verified. 

Validation provides credibility for the correctness of the solution to the chosen system 

of equations, whereas verification refers to a procedure for making sure that the right 

equations are targeted to be solved. Validation and verification are each of great 

importance and should be performed independently for any numerical model developed; 

however, these two are often mixed up in geotechnical engineering. 

The most powerful code verification criterion is the order of accuracy test which 

examines the convergence rate of the numerical solution, together with the reduction 

rate of discretisation error as mesh size decreases. This rate is compared with the so-

called formal order of accuracy which is a property of the numerical model of interest. 

There are different approaches to perform the order of accuracy test, the most popular 

one being benchmarking a code against a few examples with analytical solutions. 

However, there are not many problems whose analytical solutions are available, and in 

many cases, the analytical solutions are proposed for simplified versions of problems. 

This problem necessitates the introduction of a more general verification procedure to 

be used in problems associated with multi-phase porous media. 

SPIMs have been rarely exploited in problems with material nonlinearity. A few works 

in this field include application of NSPIM to elastoplastic analysis of two-dimensional 

single-phase materials with gradient-dependent plasticity by Zhang et al. (2015), and 

studies on nonlinear dynamic analysis of solids and saturated porous media by Soares Jr 

(Soares Jr, 2013a; Soares Jr, 2013b). The former is presented for single-phase media, 

and the latter works, contain inaccuracies in implementation of the SPIMs as mentioned 

earlier. It is, therefore, desirable to develop SPIM formulation for the flow and 
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deformation analysis of elasto-plastic saturated porous media to exploit their full 

potentials in improving currently available numerical methods. 

Despite their outstanding properties, there have been very limited applications of MMs, 

and no application of SPIMs in particular, in modelling of unsaturated porous media. 

Furthermore, in many cases, inaccurate formulations have been assumed for flow and 

deformation analysis of unsaturated soils (Lewis et al., 1998; Sheng et al., 2003a; Tang 

et al., 2017). The source of inaccuracies include (but not limited to) overlooking the 

effective stress principle which governs the hydromechanics of unsaturated porous 

media (Khalili et al., 2004), assumption of linear elasticity, overlooking the effect of 

hydraulic hysteresis, and over-simplification in modelling the water retention curve 

(WRC). The current literature is short of an all-inclusive robust formulation for coupled 

flow and deformation analysis of unsaturated porous media using an efficient MM. 

1.3. Thesis Structure 

To address the above mentioned shortcomings in the literature, this thesis is prepared in 

seven Chapters with the following structure: 

Chapter 2 contains a comprehensive overview of the available literature on MMs and 

specifically SPIMs and their applications in geomechanics, followed by a study on the 

available literature on numerical modelling of unsaturated porous media, and finally a 

review of the current research on validation and verification techniques and their 

applications in geomechanics 

In Chapter 3, an ESPIM formulation is proposed for coupled flow and deformation 

analysis of saturated porous media which evaluates the coupling and compressibility 

matrices very accurately compared to the previous research in this area. 
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In Chapter 4, the method of manufactured solutions (MMS) which is routinely applied 

in computational fluid dynamics (CFD), is used for verifying the developed coupled 

SPIM code in Fortran. This is then followed by a comprehensive order of accuracy test. 

A nonlinear framework is proposed in Chapter 5 for elastoplastic modelling of coupled 

flow and deformation in saturated porous media. The modified Newton-Raphson and 

sub-stepping stress integration scheme are used in the numerical algorithm. 

In Chapter 6, the developed nonlinear SPIM algorithm is further evolved to capture the 

coupled hydro-mechanical behaviour of unsaturated porous media. A framework based 

on the effective stress principle is followed in the formulation and a hysteretic water 

retention model is taken into account which enables the evolution of the WRC and other 

soil parameters with changes in void ratio. A bounding surface constitutive model is 

also adopted in the model which enables more realistic numerical simulations. 

Chapter 7 provides a summary and conclusions, along with recommendations for 

further research. 



 

Chapter 2 

 

 

 

2. Literature Review 

 

 

 

2.1.  Introduction 

In this chapter, the existing literature relating to the meshfree methods and smoothed 

point interpolation methods (SPIMs) in particular, and their applications in modelling 

the coupled hydro-mechanical linear and nonlinear behaviour of saturated and 

unsaturated porous media will be reviewed. A brief introduction will be presented on 

mechanics of unsaturated soils, with a review of the most recent numerical studies in 

this field. Furthermore, an overview of the common methods for validation and 

verification purposes in code development will be discussed, and the available literature 

on the application of the method of manufactured solutions (MMS) will be presented. 

2.2. An overview of the meshfree methods 

Numerical methods have been extensively in use since the advent of computer 

technology in the past century in order to solve rather complex engineering problems by 

solving the relevant partial differential equations. There are generally three classical 

families of numerical techniques: The finite difference method (FDM) which is one of 
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the first numerical approaches to solve partial differential equations, followed by finite 

volume method and consequently the much more efficient finite element method 

(FEM). These families are common in employing a mesh and also in using local 

approximations by polynomials (Babuška et al., 2003). Among these three, FEM, which 

is developed based on the direct stiffness method (DSM) proposed by Turner (1959), is 

the most extensively developed numerical tool which has been used widely in the past 

fifty years to solve miscellaneous problems in engineering, including problems related 

to hydromechanics of porous media (Lewis et al., 1998; Lewis and Schrefler, 1999; 

Potts and Zdravkovic, 2001; Sheng et al., 2003a; Khosrojerdi and Pak, 2015). Although 

FEM is an efficient technique in the majority of the applications, there are some limited 

yet important problems which are not well-suited to FEM. Some of the limitations of 

FEM are as follows (Liu, 2010a; Zeng and Liu, 2016): 

 The underlying structure of FEM makes it strongly reliant on a quality mesh whose 

generation is computationally expensive. Usually, the triangular meshes that are 

readily generated are not of enough quality, especially in problems with complex or 

time-dependent geometries. 

 The FEM shows an overly stiff behaviour, leading to a lower bound to the exact 

solution of the engineering problems. 

 FEM lacks accuracy when triangular and tetrahedral elements are in use in 2D or 

3D settings, respectively. This is mainly due to the overly stiff behaviour resulted 

from fully compatible Galerkin weak form. 

 In problems containing extremely large deformations, FEM is difficult to 

implement and often involves accuracy degradation. FEM is not able to deal with 

mesh distortions easily. 

 FEM involves poor stress solutions on element interfaces. 
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 It is difficult to simulate crack propagation using FEM because of the 

discontinuities that do not usually coincide with the original element interfaces. 

Besides, it is very costly to design re-meshing approaches in FEM to overcome this 

difficulty, especially in 3D problems in which FEM becomes almost unusable for 

crack propagation problems. 

 The original FEM suffers from volumetric locking phenomenon which reduces the 

accuracy of solutions significantly when dealing with incompressible materials, i.e. 

when Poisson’s ratio approaches 0.5. 

Meshfree methods (MMs) were introduced in 1970’s to overcome at least part of these 

drawbacks by eliminating part of FEM structure and constructing the approximations 

entirely based on nodes (Belytschko et al., 1996). MMs have been used increasingly in 

the past two decades and have undergone remarkable progress due to their distinct 

features. Unlike in FEM, defining the problem domain in MMs can be independent of 

any predefined mesh, and a set of arbitrarily distributed field nodes which are scattered 

within the problem domain along with a set of field nodes located on the boundaries of 

the domain can represent the problem domain. The field variables at any node inside the 

problem domain is approximated using the shape functions of the field nodes within a 

local support domain, relating the value of field variables at any point of interest to the 

value of the variable at the field nodes. Following this philosophy, a large quantity of 

MMs have been developed since the starting point in 1970’s. Although MMs are 

generally slower than FEM in terms of computational speed, they have some 

superiorities over FEM such as better adaptability and accuracy, and more flexibility in 

handling changes in geometry. 
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The first MM which is referred to as the smoothed particle hydrodynamics (SPH) was 

introduced in 1970’s by Lucy (1977) and Gingold and Monaghan (1977) to solve 

boundaryless problems in astrophysics and astrodynamics, such as exploding stars and 

dust clouds. Later, Libersky et al. (1993) exploited SPH for the first time in solid 

mechanics to demonstrate the application of the method in this field. Although SPH 

attracted very limited attentions for years, this early technique was later followed by a 

number of MMs in 1990’s. Nayroles et al. (1992) were the first researchers to use 

moving least square (MLS) approximations in a Galerkin method named the diffuse 

element method (DEM). DEM was later received modifications by Belytschko et al. 

(1994), resulting in the introduction of the element-free Galerkin methods (EFGM). 

These MMs were followed by the reproducing kernel particle methods (RKPM) 

proposed by Liu et al. (1995), although the two type of MMs share striking similarities. 

EFGM is one of the first and most popular MMs which have been used to model 

coupled problems in saturated porous media. In EFGM, the nodal shape functions are 

constructed based on the MLS technique which makes satisfying the essential boundary 

conditions difficult due to lack of the Kronecker delta criterion. Furthermore, the MLS 

approximation involves complicated algorithms for computing shape functions which 

lead to high computational cost. Another MM which has been used recently in different 

engineering application is the Maximum-Entropy Meshless (MEM) method. This MM 

borrows the concept of entropy from information theory as a measure of uncertainty to 

form non-unique shape functions (Sukumar, 2004).  

MMs can be adapted on local weak forms and formulated on overlapping subdomains 

rather than global weak forms. The meshless local Petrov-Galerkin (MLPG) is one of 

the well-suited local MMs (Atluri and Zhu, 1998) in which the numerical integration is 

performed on overlapping subdomains resulting in a truly “meshfree” method because 
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no background mesh is required to perform numerical integration. In MLPG, 

implementation procedure is quite simple and comparable to numerical methods based 

on strong form, and also no shape function compatibility is required. However, the 

method is less computationally efficient than the global weak form MMs and also FEM 

because of numerous parameters and asymmetric stiffness matrix (Liu and Gu, 2005). 

Most MMs require a background mesh to perform numerical integrations. Performing 

numerical integration in MMs often necessitates assigning more quadrature points, 

compared to FEM, to produce solutions with adequate accuracy since MMs often 

employ non-polynomial functions (Dolbow and Belytschko, 1999a).  

The imposition of essential boundary conditions in MMs is complicated when the 

Kronecker delta property is lacking in the shape functions, resulting in a significant 

level of computation in MMs (Liu, 2010a). To address this difficulty, the point 

interpolation methods (PIM), Polynomial PIM (PPIM) and radial PIM (RPIM), were 

formulated by Liu and Gu (2001) and Wang and Liu (2002b), respectively.  In the 

PPIM, the basis functions which are used to approximate unknowns at the field nodes 

are constructed using polynomials resulting in shape functions that possess delta 

function property. Therefore, the essential boundary conditions can be easily 

implemented in this MM. Besides, the complexity in obtaining the shape functions, 

which is one of EFGM’s difficulties, is eliminated using the PPIM. Wang and Liu 

(2002b) developed the RPIM in which radial basis functions (RBFs) with dimensionless 

shape parameters are used to construct the shape functions. The main purpose of 

introducing the RPIM was to overcome the singularity problem of the PPIM method. 

However, the rigorousness of the both methods is questionable because the 

compatibility of the approximation function in the whole domain of the problem is 
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violated when PPIM or RPIM shape functions are used (Liu et al., 2004). Moreover, in 

PPIM and RPIM, the approximation functions violate continuity across a problem field. 

A penalty method has been suggested to induce a continuous approximation instead of 

the discontinuous approximation produced by PPIM and RPIM, but the increase in 

computational costs are preventive due to the enlarged bandwidth of the attained 

algebraic system (Liu, 2010a). 

2.3. Smoothed point interpolation methods 

In order to circumvent the problems associated with the PIMs, a novel category of MMs 

were proposed by Liu and his co-workers (Liu et al., 2005; Liu and Zhang, 2013a; Liu, 

2010b; Liu and Zhang, 2008). This new approach is based on the G space theory (Liu 

and Zhang, 2013a) in which both continuous and discontinuous functions are included, 

and the generalized gradient smoothing technique (Liu and Zhang, 2013a) is applied to 

the PPIM and the RPIM, resulting in a new class of MMs known as the smoothed point 

interpolation methods (SPIMs). In SPIMs, the problem associated with the 

incompatibility of the displacement field is avoided by adopting a constructed, rather 

than a compatible, strain field and therefore removing the need for calculation of the 

derivation of the shape functions. SPIMs can be thought as a combination of MMs and 

FEM, combining the specific strengths of both methods. In SPIMs, background mesh is 

still needed for performing the numerical integration; however, unlike the FEM, the 

numerical solution is not heavily dependent on the quality of the background mesh, and 

a simple triangular mesh is often sufficient to ensure accuracy of the numerical 

solutions. The stability and convergence of the proposed methods were mathematically 

proven by the rigorous properties established by the G space theory (Liu, 2009; Liu and 

Zhang, 2013b) . Depending on the procedure through which the integration domains, or 

the so-called smoothing domains, are constructed within the problem domain, SPIMs 
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are divided into three different categories: Edge-based SPIM (ESPIM) (Liu and Zhang, 

2008), cell-based SPIM (CSPIM) (Liu and Zhang, 2009), and finally node-based SPIM 

(NSPIM) (Liu et al., 2005).  

Unlike the overly-stiff FEM, SPIMs have properly softened stiffness which gives them 

a series of excellent properties including possibility of yielding upper bound energy 

solution, super convergence, accuracy of stress solutions, freedom from volumetric 

locking, and insensitivity to the quality of the background mesh (Zhang et al., 2007). To 

date, they have been employed in several fields of engineering such as solid mechanics 

(Liu et al., 2005; Liu et al., 2009a; Tang et al., 2012), heat transfer (Wu et al., 2010), 

and mechanics of porous media (Tootoonchi et al., 2016; Soares Jr et al., 2014) in 

recent years. 

The strain smoothing technique has been also applied to the conventional FEM by Liu 

et al. (2007a) and Liu et al. (2007b), which was originally proposed by Chen et al. 

(2001), to eliminate spatial instability in nodal integration due to vanishing derivatives 

of shape functions. This is viewed as a robust way to address the difficulties associated 

with the conventional FEM. Applying the smoothing gradient technique to FEM results 

in smoothed FEM (SFEM), which yields a softened stiffness matrix compared to the 

original FEM, removing the occurrence of volumetric locking and other adverse 

consequences of overly-stiff behaviour of the conventional FEM such as under-

estimation of displacements. SFEMs can be considered as special reduced versions of 

SPIMs, and in a similar fashion, have various forms, including the cell-based smoothed 

finite element method (CSFEM) (Liu et al., 2007a), the edge-based smoothed finite 

element method (ESFEM) (Liu et al., 2009a) and the node-based smoothed finite 

element method (NSFEM) (Liu et al., 2009b). Various theoretical aspects of SFEMs 
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have been discussed in (Liu et al., 2007b; Nguyen‐Xuan et al., 2008). Similar to SPIMs, 

the non-local information that is brought in from the neighbouring elements leads to 

more supporting nodes being involved in the creation of the shape functions in SFEMs, 

resulting in a larger bandwidth of the ensuing stiffness matrix in SFEMs compared to 

that of the original FEM. The capability of SFEMs in various fields has been 

demonstrated by applying them to several numerical problems in (Cui et al., 2008; 

Nguyen‐Thoi et al., 2009; Nguyen‐Xuan and Nguyen‐Thoi, 2009; Nguyen-Xuan et al., 

2008). 

2.4. Applications of meshfree methods in geomechanics 

This section is dedicated to reviewing the existing literature on meshfree numerical 

modelling in the field of geotechnical engineering, with emphasis on hydromechanics of 

porous media. 

MMs have been used numerously for hydro-mechanical analysis of porous media. The 

first efforts to investigate the application of MMs in analysing the multiphase problems 

was made by Modaressi and Aubert (1995) by solving the consolidation problem in 

saturated soils using the EFGM. The nodal shape functions were constructed based on 

the MLS technique which makes satisfying the essential boundary conditions difficult 

due to lack of the Kronecker delta property. Later, to simulate the coupled hydro-

mechanical behaviour of multiphase porous media, Modaressi and Aubert (1998) 

proposed a numerical approach in which displacement of the solid skeleton was 

approximated by the standard FEM and the fluid pore pressures were modelled using 

EFGM. Another similar study was performed by Murakami et al. (2000) in which the 

EFGM was employed for flow-deformation analysis of saturated porous media. Oliaei 

and Pak (2009) proposed a coupled Element Free Galerkin (EFG) formulation to 
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simulate the consolidation process in saturated porous media, and also performed a 

study investigating the numerical issues related to utilisation of EFGM in conjunction 

with the hydro-mechanical analyses (Oliaei et al., 2009). Samimi and Pak (2012) later 

extended the formulation to three dimensions for analysis of saturated porous media, 

using the penalty method for imposition of essential boundary conditions and a fully 

implicit scheme for time discretisation. They evaluated the performance of their model 

by comparing its results with analytical solutions, and then analysed different 

consolidation problems in two and three dimensional settings with various loading and 

drainage conditions to demonstrate the applicability of their presented technique to 

practical problems. They later extended their three-dimensional formulation for analysis 

of two immiscible fluids flow through porous materials (Samimi and Pak, 2014). Oliaei 

et al. (2014) proposed a fully-coupled EFG formulation for the simulation of induced 

fractures in saturated porous media. This was followed by an improved form of EFGM, 

proposed by Samimi and Pak (2016). However, the numerical solutions obtained in the 

presence of discontinuities exhibited slight oscillations, as previously reported for solid 

mechanics applications (Dolbow and Belytschko, 1999a; Dolbow and Belytschko, 

1999b). An enriched EFG formulation that incorporated weak discontinuities was 

proposed for both saturated and unsaturated porous media by Goudarzi and 

Mohammadi (2014) in order to restore the accuracy of the numerical solutions. The 

study was then extended, by Goudarzi and Mohammadi (2015), to simulate a strong 

discontinuity due to a jump in the primary variable (displacement) and to compute its 

proportional cohesive forces, inspired by the formulation proposed by in Rethore et al. 

(2007). 

Wang et al. (2001) and Wang et al. (2002) showed the application of PPIM and RPIM 

to coupled flow-deformation analysis of saturated porous media, using the implicit and 



Chapter 2 – Literature Review 

 

 

18 

 

the Crank-Nicolson temporal discretization schemes. They showed that spurious ripple 

effect is observed in the numerical results when time step increments exceed a threshold 

in Crank-Nicolson temporal discretization scheme. They demonstrated that this effect is 

not observable when a fully implicit scheme is used in which much larger time steps can 

be chosen, compared to the acceptable time step range in Crank-Nicolson scheme. 

However, the fully implicit scheme possesses only first-order accuracy which makes the 

results less accurate. Wang et al. (2007) tried to alleviate the instability observed in their 

simulations using an unequal order RPIM; however, some of the numerical results they 

obtained were unreliable. For instance, the generated pore fluid pressure due to loading 

in a one dimensional consolidation problem was obtained greater than the applied load 

which is theoretically impossible.  

To address this problem, Khoshghalb et al. (2011) proposed a novel three-point time 

discretization technique with variable time steps for the time marching of parabolic 

partial differential equations. This technique has second order accuracy and is 

oscillation free irrespective of the time step adopted, unlike the conventional Crank-

Nicolson method. Khoshghalb and Khalili (2010) used this technique coupled with the 

RPIM to solve the Biot’s formulation capturing the coupled flow-deformation 

behaviour of saturated porous media. They verified the accuracy of the results obtained 

using their proposed method by comparing them with analytical or semi-analytical 

solutions. It was shown that the spurious ripple effect associated with the Crank-

Nicolson technique is completely removed when the three-point time discretisation 

technique is adopted in a MM framework. Khoshghalb and Khalili (2013) extended 

their previous work to develop a numerical solution for fully coupled flow-deformation 

problems in unsaturated porous media. They proposed their model using the three-point 

time discretization technique with growing time steps, Galerkin approach for spatial 
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discretization, and the RPIM. The focus of their study was on determination of 

constitutive coefficients and effective stress parameters of the medium considering 

hydraulic hysteresis. Their model worked well in capturing the volume change and 

suction dependency of the model parameters as well as the coupled behaviour of 

unsaturated porous media subject to hydraulic hysteresis. Khoshghalb and Khalili 

(2015) also presented a large deformation formulation for coupled flow and deformation 

analysis of saturated porous media using the Updated Lagrangian (UL) approach, except 

that spatial derivations are defined with respect to the configuration of the medium at 

the last time step, rather than that at the last iteration. This approach facilitates the 

calculations eliminating the need for dealing with the second Piola-Kirchhoff stress 

tensor, and can speed up the calculations in some problems as derivative calculation is 

not required in each iteration. Moreover, a two-dimensional RPIM formulation of 

contaminant transport in saturated porous media was proposed by Kumar and 

Dodagoudar (2008) and was validated and verified using experimental, analytical, and 

FEM results.  

The soil properties obtained from the laboratory results were verified through the 

adaptation of the MLPG method in a set of numerical simulation in studies presented by 

Sheu (2007). A modified MLPG was also adopted for dynamic analysis of saturated 

porous media (Soares et al., 2012), followed by an unequal MLPG formulation to 

supress the pressure oscillation that arises from the imposition of volumetric constraint 

(Soares Jr, 2010). 

Soares Jr et al. (2014) employed ESPIM for dynamic u-p analysis of porous media 

using the generalized Newmark method for the time discretization. They constructed the 

triangular background mesh through a Delaunay triangulation, and took into account 
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two different node selection schemes known as Tr3 and Tr6. They proposed a new 

approach to construct the mass, coupling, and compressibility matrices, considering the 

Gauss points on the boundaries of the edge-based smoothing domains. Although this 

approach may yield acceptable results in problems associated with coupled flow-

deformation analysis, it is not rigorous as it approximates the numerical integrations by 

considering unconventional Gauss points. Soares Jr (2013b) also used the same 

formulation considering the Tr6 node selection scheme for poro-dynamic models 

adopting the Newton-Raphson technique, and also an iterative model in which each 

phase of the coupled problem is dealt with separately. 

Tootoonchi et al. (2016) presented a group of CSPIMs based on the generalised gradient 

smoothing technique for numerical modelling of saturated porous media employing two 

different automatic node selection schemes, Tr4 and Tr2L, to prevent the singularity of 

the moment matrix. They proposed a novel approach to evaluate the coupling and 

compressibility matrices in the discretised system of equations, through which 

conventional Gauss points within the background cells are used in combination with the 

Gauss points on the edges of the background cells originally proposed in CSPIM. 

Moreover, for temporal discretisation they utilised the three-point time marching 

technique with variable time steps. When applying the SPIMs to axisymmetric 

problems, the Gauss points located on the axis of symmetry cause singularity problems 

and hence, the original SPIMs are not directly applicable in axisymmetric settings. 

Tootoonchi et al. (2018) presented a simple yet innovative approach which makes the 

application of SPIMs, and in particular CSPIM, to axisymmetric problems possible. 

They decomposed the strain-displacement matrix into two separate matrices: a 

smoothed strain-displacement matrix the same as the conventional SPIMs, and a strain 

displacement matrix containing the terms which cause the singularity problem. The first 
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matrix is dealt with using the boundary integration approach, while the integrations of 

second matrix are performed over the integration domains and not along their 

boundaries. This novel work facilitates the application of SPIMs to many engineering 

problems which are axisymmetric in nature. 

Another group of MMs that has been widely applied to a variety of disciplines, 

including geotechnical engineering, is the material point method (MPM) which was 

originally formulated in the early 1990’s by Sulsky et al. (1994) for problems in solid 

dynamics. In MPM, the material points are sufficiently small Lagrangian elements to 

present the problem field of interest, while the gradient of the primary variables is 

calculated using a stationary background mesh. A vast amount of numerical studies 

have been conducted using MPM in geotechnical and structural engineering. Coetzee et 

al. (2005) studied the interaction between anchors and soil using MPM. Jassim et al. 

(2013) adopted MPM for coupled dynamic flow-deformation analysis. Bandara and 

Soga (2015) investigated the soil behaviour arising from the coupling interaction of 

solid grains and fluid flow. The large deformation induced by the mass movements in 

landslides was studied numerically using MPM by Soga et al. (2015). Bhandari et al. 

(2016) performed a seismic study of slope failure using MPM. MPM was also used in 

the study of cone penetration test with different drainage boundary conditions by 

Ceccato et al. (2016). Abe et al. (2017) adopted MPM in a dynamic analysis of the slope 

failure that includes weak layers. Cortis et al. (2018) recently contributed in resolving a 

fundamental disadvantage of MPM by developing a method which allows arbitrary 

essential boundary conditions to be imposed in MPM. Another disadvantage of MPM is 

in satisfying the mass conservation law as each particle has its own mass and therefore 

the number of particles has to be kept constant (Idelsohn et al., 2018). On the other 

hand, locking behaviour is observed in MPM due to lack of a pressure equation. 
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Coombs et al. (2018) proposed a method to overcome the problem of volumetric 

locking in MPM in nearly incompressible materials in solid mechanics. 

Originally proposed by Cundall and Strack (1979), the discrete element method (DEM) 

is a class of numerical methods which is often categorised as a MM. The main idea 

behind DEM is to characterise the rotational movements of particles by including the 

distinguishable degrees of freedom, which appropriately captures the contact states of 

solid particles in granular media. DEM has been utilised in a number of geotechnical 

engineering applications, including analysis of a shallow foundation lain on a slope by 

Gabrieli et al. (2009). Jiang and Yin (2012) studied the effect of tunnel lining on the 

distribution of the soil pressure within the earth using DEM. A two-dimensional 

analysis of granular media was extended to three-dimensional simulations in a DEM 

context by Lim and Andrade (2014). Despite the capability of the DEM in modelling 

soils and rocks as granular materials, this method is computationally demanding and 

this is why it has not been widely adopted in computational engineering. Furthermore, 

modelling non-spherical particles with idealised spheres is a common concern in DEM. 

The finite point-set method (FPM) is another example of particle MMs that is 

extensively applied in fluid dynamics; however, several applications of the FPM in 

geotechnical engineering can also be found in the literature. In FPM, a series of 

background nodes to which local properties, such as temperature, density and velocity 

are assigned represent the continuum problem domain. The important feature of FPM is 

that it possesses the flexibility to express the problem of interest in Lagrangian, Eulerian 

or mixed Lagrangian-Eulerian discerption with ease of implementation which enables 

the nodes to be either moved or fixed in space. The influence of a vehicle travelling 

through body of water was studied by adopting a FPM by Jefferies et al. (2015). Other 
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examples of adopting FPM in soil mechanics problems include a work by Kuhnert and 

Ostermann (2014) to show the application of FPM to simulating standard laboratory 

tests, and avalanche simulation by Michel et al. (2017). Like other particle methods, 

FPM has a high computational cost and requires small time steps to be adopted to obtain 

reasonable results. 

SPH has also been applied to many problems in geotechnical engineering. Blanc and 

Pastor (2009) applied a two dimensional SPH model to simulate debris flows. Bui and 

Fukagawa (2013) developed an enhanced SPH model to capture the possible failure 

modes of embankments taking into account the coupling of flow and deformation in 

porous media. This work was then extended for large deformation analyses to evaluate 

the post-peak behaviour of segmental retaining walls (Bui et al., 2015). The use of SPH 

in large deformation analyses of geomaterials was also investigated by Peng et al. 

(2015) using a hypo-plastic constitutive model. Holmes et al. (2016) studied the 

coupling of fluid flow with soil particles in reservoirs through SPH numerical 

simulations. Hu et al. (2015) carried out three-dimensional analyses to simulate the 

flow-like behaviour of soil particles in landslides. The flow-like behaviour was also 

investigated by a combined technique referred to as the depth-integrated SPH, proposed 

by Blanc and Pastor (2009). Komoróczi et al. (2013) proposed a novel technique by 

combining SPH and DEM to simulate the brittle-viscous deformation in practical 

problems, such as hydro-fracturing. Das et al. (2014) applied SPH to model rock 

fracturing stemming from magma intrusion. Despite all these applications, SPH is 

known to have stability, accuracy and convergence problems, especially when non-

uniform particle distribution patterns are considered. Moreover, due to the particle 

nature of SPH, application of techniques which are developed for grid-based methods is 

not straightforward (Liu and Liu, 2003).  
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The particle finite element method (PFEM) refers to a MM that utilises FEM to 

discretise the physical domain and to integrate the discretised partial differential 

equations (PDEs), while in contrast to FEM, the corresponding nodes are free to move 

according to the motion equation in a Lagrangian sense and can even separate from the 

main analysis domain (Oñate et al., 2004). The balanced forces along with all the 

associative physical properties are transferred with the moving nodes as if they are 

particles. Idelsohn et al. (2004) used PFEM to solve continuous fluid mechanics 

problems. Idelsohn et al. (2006) later studied fluid-structure interaction (FSI) using 

PFEM. Although mainly used for applications in FSI, this unique feature has 

contributed to solving a number of complex geotechnical problems. Carbonell et al. 

(2009) adopted PFEM for modelling ground excavation. The application of PFEM to 

coupled problems in engineering was studied by Oñate et al. (2011). Carbonell et al. 

(2013) presented the influence of the tunnelling including the wear of the cutting tools, 

and Salazar et al. (2016) exploited PFEM for numerical simulation of a landslide in 

Lituya Bay in Alaska. The problem with mass conservation mentioned for MPM is 

overcome in PFEM. However, the main disadvantage of PFEM is that a mesh 

generation stage has to be performed in almost all time steps which costs a lot of time 

and memory (Idelsohn et al., 2018). 

Several other MMs have also been applied to geotechnical engineering problems. The 

soft particle method was developed by Chen (2015) to simulate granular media. The 

method was then used by Schneider-Muntau et al. (2017) for the simulation of shear 

bands in granular materials under shear. Another approach adapted for numerical 

simulation of geotechnical engineering problems is the Maximum-Entropy MM 

(MEM). MEM method was introduced for modelling incompressible and nearly 

incompressible elastic solids, and two-dimensional Stokes flow (Ortiz et al., 2010; Ortiz 
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et al., 2011). An adaptive FE-EFG method was also proposed by Ullah et al. (2013) for 

nonlinear problems including material and geometrical nonlinearities. The first 

applications of MEM method in coupled problems, however, were presented by 

Zakrzewski et al. (2016) and Nazem et al. (2016). Kardani et al. (2017) later used this 

MEM model for simulations of small strain geotechnical problems including material 

nonlinearity, where the Newton-Raphson technique and a dynamic relaxation method 

were used to solve the governing equations. The material nonlinearity was also 

considered in a meshless natural neighbour method developed by Zhu et al. (2006). 

More sophisticated constitutive models were adopted in a study by Obermayr et al. 

(2013) to simulate cemented sand incorporating a bonded-particle method, and in a 

work by Schenkengel and Vrettos (2011) to capture the lateral spreading due to the 

liquefaction phenomenon using the Lattice Boltzman method. A Lagrangian MM was 

also proposed by Wu et al. (2001) which allows nodal movement in geotechnical 

problems. A novel DEM-SPH method was formulated by Komoróczi et al. (2013) to 

simulate induced fractures pressurised by a fluid. In this method, the displacement 

variable was represented by DEM while SPH adopted to simulate the fluid phase.   

2.5. Elastoplastic modelling using SPIMs 

Multiple works have been carried out to solve nonlinear elastoplastic problems using 

MMs (Pamin et al., 2003; Gu, 2008; Wang and Sun, 2011; Hu et al., 2013). However, 

SPIMs have not, so far, been widely applied to problems related to hydromechanics of 

elastoplastic porous media. In the following, the few works regarding the elastoplastic 

analysis adopting SPIMs are discussed. 

Zhang et al. (2015) applied NSPIM to elastoplastic analysis of two-dimensional 

materials with gradient-dependent plasticity and demonstrated the robustness of the 
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model in elastoplastic analyses, albeit for single phase material only. Their formulation 

was based on parametric variational principle (PVP) and the gradient dependent 

plasticity. The NSPIM eliminates the inherent overly-stiff problem associated with FEM 

which leads to problems including locking behaviour and inaccuracy in stress 

calculations. They showed that due to the softened stiffness yielded by NSPIM, the 

model is suitable for simulating the material softening behaviour. 

Soares Jr (2013a) conducted a study on the application of NSPIM, CSPIM, and ESPIM 

in elastoplastic dynamic analysis of elastoplastic solids. He considered an alternative 

approach consistent with the way stiffness matrix is calculated in SPIMs for evaluating 

the mass matrix and the external load vector. To this end, he employed smoothing 

domains identical to those considered in the original SPIMs to make use of the already 

calculated data. Although this method helps with increasing the speed of the 

computations and boosting up the computational efficiency, it is not computationally 

rigorous as will be explained later in Chapter 3 of this thesis. Later on, Soares Jr 

(2013b) adopted a similar approach to solve the time-domain nonlinear coupled system 

of equations.  

2.6. Numerical simulations in unsaturated porous media 

Reviewing the literature on numerical simulations of unsaturated porous media warrants 

at least a short discussion on the approaches available for modelling unsaturated soils. 

Such a discussion is presented first, followed by the literature on numerical analysis of 

unsaturated soils.  

Investigations on the behaviour of unsaturated soils date back to 1950’s (Bishop, 1959; 

Bishop et al., 1960). These works were followed by a series of research on applicability 

of the effective stress principle to unsaturated soils, including the results of a series of 
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oedometer tests published by Jennings and Burland (1962), stating the incapability of 

the effective stress principle in addressing the collapse phenomena in expansive soils, 

questioning Terzaghi’s statement that any volume change in soil is due exclusively to a 

change in effective stress. Bishop and Blight (1963) demonstrated the validity of 

effective stress principle by showing that the shear strength and volume change remain 

constant in certain stress paths when the individual components of the effective stress 

are changed in a way that the effective stress remains unchanged. However, many 

researchers later confirmed the argument stated by Jennings and Burland (1962), raising 

doubt on the validity of the effective stress principle in addressing the volume change 

behaviours of unsaturated soils (Aitchison, 1965; Matyas and Radhakrishna, 1968; 

Brackley, 1971; Fredlund and Morgenstern, 1977; Gens et al., 1995). Consequently, 

Fredlund and Morgenstern (1977) proposed a new approach as an alternative to the 

effective stress approach, introducing two independent stress variables to describe the 

constitutive behaviour of unsaturated soils. This approach was soon adopted by many 

researchers (Alonso et al., 1990; Wheeler, 1996; Alonso et al., 1999; Wheeler et al., 

2002; Chiu and Ng, 2003) and that has led to introduction of several constitutive models 

to the literature, including the famous Basic Barcelona Model (BBM) by Alonso et al. 

(1990).  

However, over the last 20 years, the effective stress principle has proven to be valid 

even in unsaturated soils if the effective stress parameter is defined appropriately. A 

simple and effective relationship for quantification of the effective stress parameter in 

unsaturated soils was proposed by Khalili and Khabbaz (1998). Loret and Khalili (2000) 

and Loret and Khalili (2002) discussed the reasons behind difficulties in previous 

investigations using effective stress principle. They showed that the plastic collapse 

upon wetting, which for years had been an indication of the failure of the effective stress 



Chapter 2 – Literature Review 

 

 

28 

 

principle in unsaturated soils mechanics, can be justified adopting a proper elastoplastic 

constitutive model predicting the hardening effects due to change in suction. Khalili et 

al. (2004) also showed the uniqueness of the critical state line for both saturated and 

unsaturated soils. Using the experimental data from the literature, they showed the 

effective state principle can provide rigorous and accurate predictions for the shear 

strength and volume change behaviour of unsaturated soils. These studies paved the 

way for the researchers to propose constitutive models for unsaturated soil based on the 

concept of the effective stress (Bolzon et al., 1996; Lewis et al., 1998; Gallipoli et al., 

2003; Laloui et al., 2003; Sheng et al., 2003a; Sun et al., 2003; Wheeler et al., 2003; 

Tamagnini, 2004; Georgiadis et al., 2005; Santagiuliana and Schrefler, 2006; Sun et al., 

2007a; Sun et al., 2007b; Muraleetharan et al., 2009; Tsiampousi et al., 2013b), rather 

than the unnecessarily complicated approach proposed earlier by Fredlund and 

Morgenstern (1977). 

Biot (1941) formulated the coupled flow and deformation behaviour of saturated porous 

media in quasi-static condition and later extended the formulation to dynamic 

conditions (Biot, 1956). Fredlund and Hasan (1979) presented theory for one-

dimensional consolidation of unsaturated soils in which they used the independent stress 

state variables and an uncoupled flow and deformation formulation. Another study to 

simulate multiphase flow through porous media was performed by Morel‐Seytoux and 

Billica (1985), although no deformation is assumed in the solid phase which is known to 

often yield unrealistic results (Narasimhan and Witherspoon, 1978). The same approach 

was applied in the work by Wu and Forsyth (2001) assuming rigid solid phase. 

The Biot’s fundamental formulation was later extended to unsaturated porous media by 

Lewis and Schrefler (1982), Li et al. (1989), Zienkiewicz et al. (1990) and Xikui and 
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Zienkiewicz (1992), leading to an extensive array of numerical investigations to capture 

the coupled flow and deformation behaviour of unsaturated porous media using both 

two stress state approach and effective stress approach. In the following, some of these 

works are overviewed with focus on the most recent ones. 

Lewis et al. (1998) presented a fully coupled formulation for multiphase flow through 

saturated and unsaturated porous media and proposed a three-phase model based on the 

WRC model proposed by Brooks and Corey (1966). They assumed elastic response for 

the solid skeleton and subsequently incorporated their proposed nonlinear saturation and 

permeability functions into a finite element (FE) model to simulate multiphase flow in 

porous media to solve problems of groundwater contamination. 

Sheng et al. (2003a) proposed a FE formulation for geotechnical problems involving 

both saturated and unsaturated soils. They defined a constitutive stress tensor, rather 

than an effective stress tensor and employed it in a constitutive model similar to the 

BBM (Alonso et al., 1990). In their formulation, suction is treated as a strain variable 

instead of a stress variable to simulate suction hardening. In a separate work, Sheng et 

al. (2003b) showed that the plastic collapse upon wetting can be simulated by this 

model by adjusting one constitutive equation and one or two material parameter in the 

BBM model.  

Sheng et al. (2008b) overviewed different approaches available for numerical solution 

of boundary value problems associated with unsaturated media in a FE framework. In 

this work, they mainly compared the Sheng-Fredlund-Gens (SFG) model (Sheng et al., 

2008a) to a few other models, including the BBM. The SFG is formulated based on 

independent stress state variables and is shown to perform well in many cases. This 
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model, however, involves several parameters that are difficult to identify using routine 

tests, rendering the model difficult for practical applications. 

Khoei and Mohammadnejad (2011) investigated the flow of two immiscible fluid 

phases through a deformable porous media adopting a fully coupled hydro-mechanical 

analysis within a FE framework. They used the Pastor-Zienkiewicz generalised 

constitutive model and examined the validity of their formulation in modelling the 

liquefaction of San Fernando dam. However, they made several simplifying 

assumptions in their formulations, including neglecting the effect of hydraulic 

hysteresis. 

A fully coupled formulation for analysis of unsaturated porous media was developed by 

Khoshghalb and Khalili (2013) in which RPIM was adopted to numerically solve the 

governing equations. The model is based on the effective stress principle and a WRC 

model which is an extension of the model originally proposed by Brooks and Corey 

(1964) to include hydraulic hysteresis (Khalili et al., 2008). All the model parameters 

including the coefficients of permeability and constitutive coefficients are continuously 

updated during the analysis through an iterative procedure. The dependency of the 

degree of saturation on void ratio and suction is taken into account through an extended 

form of the work by Mašín (2010) to include hydraulic hysteresis effects. While the 

model was a great step forward towards a more realistic simulation of flow and 

deformation in unsaturated porous media, it was based on assuming isotropic elastic 

behaviour for solid skeleton which is often inaccurate for geomaterials. 

Another meshfree formulation based on the EFGM for simulation of two-phase flow in 

porous media was proposed by Samimi and Pak (2014). They utilised Van Genuchten 

(1980) model for predicting the permeability variations for wetting and non-wetting 
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phases and also degree of saturation in their simulations. Their model, however, lacks a 

firm theoretical background like the effective stress approach and therefore, cannot 

accurately simulate the hydro-mechanical behaviour of unsaturated porous media. 

A FE model was developed by Shahbodagh-Khan et al. (2015) in which they employed 

the effective stress based model used earlier by Khoshghalb and Khalili (2013). They 

took account of the effect of hydraulic hysteresis, but assumed void ratio independent 

WRC parameters in the analyses. Also investigated in this work are the effects of large 

deformation, and nonlinear shear modulus. 

Tang et al. (2016) utilised the effective stress approach in a FE formulation to compute 

bearing capacity of shallow foundations, adopting a Mohr-Coulomb model. In their 

study, they illustrated how suction and hydraulic hysteresis can impact the bearing 

capacity of shallow foundations. In another study, Tang et al. (2017) used the same 

formulation to study consolidation problems in unsaturated porous media. 

Ghorbani et al. (2016) proposed a comprehensive FE model for coupled analysis of 

multi-phase flow through unsaturated porous media, under both static and dynamic 

loading conditions. They, however, adopted an extended Modified Cam-Clay model in 

their analysis which has several limitations including the unrealistic results in modelling 

overall behaviour of over-consolidated soils when the yield surface is reached. Ghorbani 

et al. (2018b) later implemented an objective stress integration scheme into their 

formulation to deal with large deformations. In another work, Ghorbani et al. (2018a) 

studied the dependency of WRC on volume changes considering the effect of hydraulic 

hysteresis on elasto-plastic response of unsaturated porous media. 
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2.7. Validation and Verification 

Due to high cost of physical modelling, computer codes are being developed constantly 

to approximate the physics of various problems. However, the outcomes of these codes 

may not always be worthy of trust and confidence. To evaluate the fidelity of modelling 

and simulation aspects of scientific computing, verification and validation (V&V) must 

be considered as an unavoidable step in code development. Verification simply refers to 

a procedure for making sure that the right equations are targeted to be solved, whereas 

validation provides credibility for the correctness of the solution to the chosen system of 

equations. Blottner (1990) best described the difference between validation and 

verification stating that code validation in “solving right governing equations”, while 

code verification is “solving governing equations right”. 

Validation is referred to as the procedure to check whether the right physical and 

continuum mathematical models are solved through a code that is developed. In fact, the 

code itself is not validated, but the model on which the code is based and the 

assumptions behind the model are (Roache, 2004). Therefore, validation is a 

responsibility of the scientific community and the ongoing research and is out of the 

scope of this study. 

There are a series of criteria for performing code verification: expert judgement, error 

quantification, consistency/convergence, and order of accuracy, in order of increasing 

reliability (Roy, 2005). The most powerful code verification criterion is the order of 

accuracy test which examines the convergence rate of the numerical solution, along 

with the rate of discretisation error reduction as mesh size decreases. This rate is 

compared with the so-called formal order of accuracy which can be obtained by 

performing a truncation error test. Performing a truncation error test may be difficult in 
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practice. Hence, alternative approaches including the residual method, the statistical 

method, and the downscaling method can be employed for order verification purposes 

(Oberkampf and Roy, 2010). Burg and Murali (2006) proved that the exact solution to 

the mathematical model does not exactly satisfy the discrete equations, and it can be 

shown that for linear problems, the residual approximates the truncation error. The 

residual method is easy to implement and has a very low computational cost compared 

to other approaches mentioned. It is, therefore, adopted in this study for obtaining the 

formal order of accuracy when performing an order of accuracy test. In the following, a 

brief overview is provided on different order of accuracy tests. 

The fundamental and most rigorous method for obtaining the numerical order of 

accuracy is comparing the numerical results to analytical solutions of the PDEs 

governing the physics of the problem. This method is called method of exact solutions. 

Only a limited number of problems with exact solutions are, however, available in 

geomechanics, e.g. Terzaghi’s one-dimensional consolidation problem (Terzaghi, 

1925), two-dimensional consolidation in poro-elasticity (Schiffman et al., 1969), and 

one dimensional consolidation of elastic perfectly-plastic material (Small et al., 1976; 

Carter et al., 1979). Furthermore, the exact solutions invariably involve several 

simplifying assumptions which result in simple solutions that are often not capable of 

verifying all aspects of a code. 

Another verification approach commonly adopted in geomechanics is to compare the 

numerical solutions with benchmark experimental data. However, this approach cannot 

be considered as a reliable verification technique because it cannot distinguish among 

verification, validation, and experimental errors, and therefore may not identify subtle 

coding errors. The least reliable verification approach is code comparison principle 
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(CCP) where results from two codes are compared with each other (Oberkampf et al., 

2003). This method can be erroneous and improper when there is no scientific credible 

evidence that the reference code is an appropriate benchmark code. 

The method of manufactured solutions (MMS), which is also referred to as “Man Made 

Solution”, “Prescribed Forcing Method”, and “Method of Nearby Solution” (ASME, 

2009), is a very powerful approach for verifying the open source and in-house computer 

codes. The basic idea of MMS is to simply manufacture exact continuum solutions to 

the PDEs of interest (Roache, 2002). To this end, one first assumes an analytic solution 

to the PDEs according to the available guidelines. Next, the selected manufactured 

solution is substituted into the PDEs to calculate the source terms which guarantee that 

the selected manufactured solutions are indeed exact solutions to the governing PDEs. 

The source terms are distributed terms which should be applied in the code at each cell 

or node of interest, depending on the nature of the numerical method in hand. Therefore, 

the source code must be available to modifications so that such an implementation can 

be made while dealing with MMS. The only purpose of manufacture solutions is 

determining the order of accuracy of computer codes in solving the corresponding 

PDEs. Hence, manufactured solutions are not required to be physically realistic as long 

as they do not yield ill-conditioned insoluble discretised equations (Knupp and Salari, 

2002). The initial and boundary conditions are imposed in this method by simply 

substituting the initial time and boundary coordinates into the analytic expressions. In 

the following, a brief overview of the existing literature on the application of MMS as a 

verification method, which is available mainly in the CFD field, is presented. 

Oberkampf and Blottner (1998) were the first to mention the term “manufactured 

solution”, however, the very first articles on MMS were published by Shih (1985) for 
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identifying coding mistakes, and by Steinberg and Roache (1985) where they used a 

symbolic manipulation approach for verifying a solution to three-dimensional elliptic 

PDEs. Roache et al. (1990) later extended the MMS concept to groundwater flow. 

Salari and Knupp (2000) employed MMS in a blind study for a series of examples in 

computational fluid dynamics and discussed the coding mistake types that MMS is and 

is not able to reveal. To do so, they altered a previously verified CFD code by 

deliberately introducing errors to the code and then they tested it using MMS. They 

showed that any mistake that prevented the governing equations from being solved 

correctly could be detected by MMS, while none of the mistakes which were not 

managed to be detected prevented the equations from being solved correctly. In a 

review article, Roache (2002) studied three MMS examples, including a one-

dimensional transient solution to the nonlinear Burger’s equation. He illustrated that the 

same exact answer can be used to verify two different codes with different governing 

PDEs. Through another example he also showed that making a realistic solution 

assumption is not necessary.  

The application of MMS to the Euler and Navier-Stokes equations was investigated by 

Roy et al. (2004) using two different finite volume codes. Eça et al. (2007b) presented 

manufactured solutions for some famous eddy-viscosity turbulence models. A 

convergence study on two-dimensional, steady, wall-bounded, incompressible turbulent 

flow was done by Eça et al. (2007a) using MMS. Eça and Hoekstra (2009) focused on 

three different issues on error evaluation using MMS: The estimation of the iterative 

error; the influence of the iterative error on the estimation of the discretisation error; and 

the overall effect of the iterative and discretisation errors on numerical error. Their 

results show that the magnitude of the iterative error must be two to three times smaller 

than the discretisation error in order for negligible influence of the iterative error. 
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Étienne et al. (2012) presented manufactured solutions for verification of a fluid-

structure interaction (FSI) code which solves uncoupled Navier-Stokes equation for 

fluid flow and large deformation equation considering St.Venant-Kirchhoff material in a 

total Lagrangian (TL) framework. Leng et al. (2013) constructed manufactured 

solutions for three-dimensional, isothermal, nonlinear Stokes model for flow in glaciers 

and ice-sheets, and employed their manufactured solution to verify a 3D FE code. 

Veeraragavan et al. (2016) demonstrated the use of MMS to verify the implementation 

of coupled heat transfer for fluid-solid solvers. Unlike conventional applications of 

MMS, they tested the interface implementation using MMS by choosing manufactured 

solutions which satisfy the physical conditions on the boundaries. 

The only published study on the application of MMS in earth sciences is the numerical 

simulations of seismo-elastic wave propagation in heterogeneous earth models by 

Petersson and Sjögreen (2018). However, to the best of the author’s knowledge, there is 

not any published peer reviewed study in the realm of fully coupled computational 

geomechanics which integrated advanced techniques like MMS to verify codes.  

If the source code is not accessible, MMS cannot be considered as an option for code 

verification. Alternatively, black box testing which only requires access to input and 

output files can be substituted for MMS. Black box testing, which is also called 

functional testing, can be performed by any code user without the need for any 

knowledge about the details of the code. The only purpose of the black box testing is 

checking the accuracy of the outputs rather than any specific element of the code. Black 

box testing is in fact comparing the code outputs with highly accurate solutions 

(Oberkampf et al., 2004), e.g. analytical solutions. Finally, if access to the source code, 

analytical solutions and another reliable high resolution solver are not available, the 
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Richardson extrapolation can be used for verification study (Roache and Knupp, 1993). 

An example of using the Richardson extrapolation for error estimation is presented by 

Roy and Blottner (2003) for hypersonic flows. Baliga and Lokhmanets (2016) presented 

an overview of the efforts for utilising the Richardson extrapolation in numerical 

predictions of fluid flow and heat transfer. 

2.8. Conclusion 

Most common MMs were introduced in a chronological order and typical shortcomings 

accompanying each method were briefly discussed. SPIMs were introduced as a rather 

new class of MMs which are very accurate and super convergent and are able to 

overcome many of the drawbacks in other MMs. A thorough overview on the 

application of MMs in geomechanics was undertaken stating weaknesses, strengths, and 

the contributions of each study to the application of MMs in geomechancis, highlighting 

the need for a robust meshfree algorithm for coupled problems in multiphase porous 

media. The limited applications of SPIMs in modelling nonlinear material response 

were reviewed and the deficiencies of each study were highlighted. A thorough 

literature review was then performed on numerical modelling of the behaviour of 

unsaturated porous media, beginning with a brief introduction on the historical 

developments of the mechanics of unsaturated soils. It was pointed out that the effective 

stress principle has had a crucial role in modern numerical approaches to problems in 

unsaturated porous media. Finally, the importance of validation and verification in 

developing numerical models was highlighted, and different verification approaches 

were discussed. In particular, the order of accuracy study along with the method of 

manufactured solutions was highlighted and the available literature on the application of 

this verification method was overviewed. 
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3. Coupled flow and deformation analysis of 

saturated porous media 

 

 

3.1. Introduction 

In this chapter, an edge-based smoothed point interpolation method based on weakened 

weak (W
2
) formulation is developed for numerical analysis of Biot’s formulation. Point 

interpolation method (PPIM or RPIM) in conjunction with four different node selection 

schemes for defining the support domain at each point of interest is used for 

construction of the shape functions for both solid and fluid phases. Problem domain is 

discretised using triangular background elements. Edge-based smoothing domains are 

then created on top of the background mesh using the edges of the background cells. 

Strains construction is carried out through a smoothing operation leading to constant 

smoothed strains over the edge-based smoothing domains. A novel approach for 

evaluation of the coupling matrix of the porous media is developed. Temporal 

discretisation is performed using a three-point approximation technique with variable 

time steps to avoid temporal instabilities. Numerical examples are studied and the 
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results are compared with analytical and semi-analytical solutions to evaluate the 

performance of the proposed model. 

3.2. Sign convention 

Compact matrix-vector notation is used throughout the dissertation. Two-dimensional 

plain strain condition is assumed. Tensors and vectors are identified by boldface letters, 

and an over-dot represents a time derivative. 
dL  stands for the differential operator 

matrix as 

d

0

0

x

y

y x

 
 
 
 

  


 
  
 
  

L           (3.1) 

with x   and y  being space coordinates.  is the gradient operator vector defined as 

T

d L δ , with  
T

1 1 0δ , and div( )= ( )    is the divergence operator. It should be 

noted that the sign convention of continuum mechanics is adopted throughout: 

Compression is taken as negative, and tension is taken as positive. However, the 

volumetric strain in defined as v ( )tr   ε  which is positive in compression, where tr  

is the trace operator. On the other hand, pore fluid pressures are taken as positive in 

compression following soil mechanics convention. 

3.3. Governing equation 

According to the theory of mixtures, a saturated porous medium consists of two 

continuous interacting continuum phases, solid skeleton (or solid matrix) and pore fluid. 

The framework in this work is presented based on two separate, yet coupled models: a 
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deformation model which takes account of the interaction between the internal total 

stresses and the external applied forces, and a flow model considering the flow of the 

fluid phase through the porous medium. The coupling effect of the two models is 

established utilising the effective stress concept together with the volumetric 

compatibility relationships for the different phases.  

3.3.1. Deformation model 

Neglecting inertial effects and assuming homogeneity, differential equation for the 

general equilibrium in the medium is expressed as 

T

d  L σ F 0            (3.2) 

where σ  is the total stress tensor, F B  is the vector of body forces per unit volume, 

B  is the vector of body force per unit mass, and   is the average density of the mixture 

as 

f s(1 )n n               (3.3) 

where n  is the total porosity of the porous media, and f  and s  are densities of fluid 

and solid phases, respectively. 

In order to elaborate the total stress vector in equation (3.2), Terzaghi’s effective stress 

principle must be taken into account as follows 

fp σ σ δ            (3.4) 

in which s1 c c    is the Biot’s constant, where sc  and c  are the compressibility of 

the solid grains and drained compressibility of the solid skeleton, respectively. 
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The effective stress vector σ  is related to the strain vector through the elastic 

constitutive matrix e
D , assuming elastic response of the solid skeleton 

e σ D ε           (3.5) 

and the strain vector is obtained from the displacement vector as below 

dε L u            (3.6) 

where u  is the solid phase displacement vector. 

3.3.2. Flow model 

For establishing the flow model we first consider the equation of linear momentum 

balance for fluid phase as 

fs f f

f

( )p 


   
k

v g         (3.7) 

k  indicates the intrinsic permeability matrix defined as kk I , where k  is the intrinsic 

permeability assuming isotropic material (i.e., 
x yk k k  ), and I  is the 2 2  identity 

matrix; f  is the dynamic viscosity of fluid phase;  
T

0 gg  is the gravity 

acceleration vector, with g  being the gravitational acceleration; and fsv  is the relative 

velocity vector for the fluid phase with respect to a moving solid i.e. 

fs f( )sn v v v           (3.8) 

where f fv u  and s v u  are absolute velocities of fluid phase and the solid phase, 

respectively, and fu  is the displacement vector for the fluid. 

The mass balance equation for the fluid phase is given by 
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f f f( ) div( ) 0n n
t

 


 


v         (3.9) 

Substituting equation (3.8) into (3.9) we have 

f fs f f sdiv( ) ( ) div(n )n
t

  


  


v v        (3.10) 

Now, introducing the Lagrangian total derivatives concept with respect to moving solid, 

sd( ) / d ( ) / ( )t t       v , and noting that  α α αdiv ( ) ( )div( ) ( )     v v v , equation 

(3.10) is rearranged to 

f
f fs f f s

d d
div( ) div( )

d d

n
n n

t t


     v v       (3.11) 

Considering the definition of compressibility of barometric fluids, we have 

f f
f f

d d
c

d d

p

t t


          (3.12) 

in which fc  is the coefficient of compressibility for the fluid phase. Knowing the 

definition of porosity, the rate of porosity can be derived as 

vdd 1 d

d d d

Vn V
n

t V t t

 
  

 
        (3.13) 

where vV  is the void volume. Substituting equations (3.7), (3.12) and (3.13) into 

equation (3.11), and noting that   sd d / div( )V t V  v , yields the following equation for 

the fluid flow in saturated porous media 

  vf
f f f f

f f

dd1 1
div =0

d d

Vp
p nc

t V t
 

 

 
    

 

k
g      (3.14) 
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Considering a representative volume V  of saturated porous material subjected to 

external isotropic stress increment of d , the following equations can be expressed to 

establish a constitutive link between the volumetric changes and the primary field 

variables (Khalili and Valliappan, 1996) 

v s f

d
d ( )d

V
c c c p

V
              (3.15) 

 v
s s f

d
( )d (1 ) d

V
c c c n c p

V
            (3.16) 

Now, combining equations (3.15) and (3.16) yields 

 v s s
v s f

d
(1 ) (1 ) d

V c c
c n c p

V c c
            (3.17) 

Noting that v ( ) div( )tr    ε u , the ultimate equation governing the fluid flow in 

saturated porous media is obtained by substituting equation (3.17) into equation (3.14) 

as follows 

 f f f f f

f f

1
div div( )p a p  

 

 
    

 

k
g u       (3.18) 

with the apparent compressibility coefficient of the fluid phase defined as 

f f s s( )a n c c c              (3.19) 

3.3.3. Initial and boundary conditions 

The displacement of the solid skeleton and the pore fluid pressure ( ( , )tu x  and f ( , )p tx , 

respectively, where  x yx  stands for coordinate and t  stands for time) are the main 
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variables in the governing equations (3.2) and (3.18). The required initial conditions for 

solving the equations are  

0( ,0) ( )u x u x           (3.20) 

f f0( ,0) ( )p px x          (3.21) 

where 0 ( )u x  and f0 ( )p x  are prescribed initial displacement vector and pore fluid 

pressure, respectively.  

The boundary conditions are imposed as external displacement and traction as 

u( , ) ( )t t on u x u         (3.22) 

T

n t( , ) ( )t t on  L σ x t          (3.23) 

in which ( )tu  and ( )tt  are the prescribed displacement and traction on the 

corresponding boundaries of u  and t , where u t     and   is the total 

boundary. The boundary conditions are also imposed as external fluid pressure or flux 

in the normal direction to the boundary of the pressure field as follows, 

f f p( , ) ( )p t p t on x         (3.24) 

T

n fs f q( , ) ( )t q t on L v x         (3.25) 

where f ( )p t  and f ( )q t  are the prescribed pore fluid pressure and fluid flux on the 

corresponding boundaries of 
p  and 

q , where 
p q    . nL  is the matrix of unit 

outward normal, defined as 
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1

n 2

2 1

0

0

n

n

n n

 
 


 
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L          (3.26) 

where 
1n  and 

2n  are the components of the unit outward normal to the domain 

boundary. 

3.4. Edge-based smoothed point interpolation method 

3.4.1. Function approximation 

In this work, point interpolation methods (PPIM and RPIM) (Liu and Gu, 2001; Wang 

and Liu, 2002b) are considered for determination of the nodal shape functions. The first 

group of shape functions applied in the ESPIM are the polynomial point interpolation 

shape functions in which polynomials are used as the basis functions. A field function 

f  is approximated at the point of interest x  as 

T

1

( ) ( ) ( )
p

i i

i

f P a


 x x P x a          (3.27) 

where ( )iP x  are the polynomial basis functions obtained from the Pascal’s triangle of 

monomials for 2D problems as shown in Figure ‎3-1, and a  is a coefficient vector with 

yet unknown entries as follows 

T 2 2( ) 1 ...x y x xy y   P x       (3.28) 

T

1 2 ... pa a a   a          (3.29) 

where p  is the number of supporting nodes for the point of interest. 
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Figure ‎3-1- Pascal triangle of monomials for 2D domains 

The radial point interpolation shape functions based on RBFs are used in the ESRPIM. 

The approximated field function based on RPIM interpolation enriched with 

polynomials can be written as 

T T

1 1

( ) ( ) ( ) ( ) ( )
p l

i i j j

i j

f R b P a
 

    x x x R x b P x a       (3.30) 

where ( )iR x  and ( )jP x  are radial and polynomial basis functions, respectively, and l  is 

the number of monomials used in the polynomial basis functions. It should be noted that 

a minimum of three monomials are required to ensure linear consistency (i.e., 3l  ). 

Adding polynomials to the RPIM shape functions generally improves the accuracy of 

the results and interpolation stability of the nodal shape functions (Liu and Gu, 2005).  

There are various types of RBFs available in the literature (Zhang, 2007; Franke and 

Schaback, 1998; Kansa, 1990; Sharan et al., 1997). Four of these RBFs are more 

frequently used which are listed in Table ‎3-1. 
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Table ‎3-1- Typical RBFs available in the literature. 

Name Expression Shape Parameters 

Multi-quadrics 

(MQ) 
c2 2

c c( ) ( ( ) )
q

i iR r d x  c0,c q   

Gaussian (EXP) 

2

c

c

( ) exp i
i

r
R

d


  
    
   

x  
c  

Thin Plate 

Spline (TPS) 
c( )

e

i iR rx  ce   

Logarithmic c( ) log
e

i i iR r rx  ce  

In Table ‎3-1, 
ir   is the distance between the point of interest x  and the node at 

ix , and 

cd  is the local average nodal spacing. In the current study, the MQ RBFs are chosen 

due to their simplicity and stability, and the shape parameters 
c  and 

cq  are taken as 

4.0  and 1.03  respectively, following the recommendations in (Wang and Liu, 2002a; 

Liu and Zhang, 2013a). 

The coefficients ia  and ib  in equation (3.30) are obtained by satisfying the field 

approximation function at all supporting nodes, resulting in p  equations of the 

following form 

1 1

( ) ( ) ( ) , 1,2,...,
p l

h h i h i j h j

i j

f f R b P a h p
 

    x x x        (3.31) 

where hf  represents the nodal value of the independent variable at the h th node in the 

support domain. To guarantee a unique solution for b  and a , l  extra requirements have 

to be defined. The following requirements are often enforced, 

1

( ) , 1,2,...,
p

i i j

i

P b j l


  x 0           (3.32) 
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The combination of equations (3.31) and (3.32) can be presented in matrix form as 

follows 

0

T0

       
       

       

f R P b b
G

P 0 a a
        (3.33) 

where 

0

T

 
  
 

R P
G

P 0
          (3.34) 

0R  is the moment matrix of the RBFs, 

1 1 2 1 1

1 2 2 2 2

0

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

p

p

p p p p p p

R r R r R r

R r R r R r

R r R r R r


 
 
 
 
 
  

R        (3.35) 

P  is the polynomial moment matrix, 

1 1 2 1 1 1 1 1

1 2 2 2 2 2 2 2

1 2

( ) ( ) ( ) 1 ( )

( ) ( ) ( ) 1 ( )

( ) ( ) ( ) 1 ( )

l l

l l

p p l p p p l pp l p l

P P P x y P

P P P x y P

P P P x y P
 

   
   
    
   
   
      

x x x x

x x x x
P

x x x x

  (3.36) 

and f  is the vector storing the values of the field function. Using equation (3.33), the 

following expression for the field approximation function is obtained, 

T T T T T T 1( ) ( ) ( ) ( ) ( ) ( ) ( )f    
            

   

b f
x R x b P x a R x P x R x P x G

a 0
 (3.37) 

The RPIM shape functions can then be extracted from equation (3.37) as 
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1 1

, ,

1 1

( ) ( ) ( )
p l

i j j i j j p i

j j

R G P G  



 

  x x x        (3.38) 

where 
1

,j iG
 shows the entries of matrix 1

G . Non-singularity of matrix G  is secured 

adopting the node selection schemes elaborated in section  3.4.3 , and also by imposing 

l p  (Liu and Zhang, 2013a). 

PPIM and RPIM shape functions benefit from the Kronecker delta function property 

which facilitates the imposition of the Dirichlet boundary conditions. Furthermore, 

these shape functions satisfy the partition of unity condition at each point of interest x , 

i.e., 
1

( ) 1
p

ii



 x . 

Having calculated the shape functions, the field approximation functions, which are the 

displacement and fluid pressure functions in this study, can be calculated at any point of 

interest x  as 

1u

1 2

( ) 0
( ) ( )

0 ( )

i

i

p
i

i i

u

u





    
    

    


x
u x Φ x u

x
       (3.39) 

p

f f f

1

( ) ( ) ( )
i

p

i

i

p p


 x Φ x p x        (3.40) 

where ( )u x  and f ( )p x  are the displacement vector and pore fluid pressure at the point 

of interest x , respectively, 
1i

u  and 
2i

u  are the components of nodal displacements, 
fi

p  

is the pore fluid pressure at node i , and ( )i x  are the PPIM or RPIM shape functions 

associated with node i . u ( )Φ x  is the shape function matrix for displacement defined as 

1 2u

1 2 2 2

( ) 0( ) 0 ( ) 0
( )

0 ( )0 ( ) 0 ( )

p

p p

 

 


 
  
 

xx x
Φ x

xx x
   (3.41) 
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p ( )Φ x  is the shape function matrix for pore fluid pressure defined as 

p

1 2 1
( ) ( ) ( ) ( )p p

  


   Φ x x x x       (3.42) 

fp  is the vector storing the nodal pore fluid pressures as 

1 2

T

f f f f p
p p p 
 

p            (3.43) 

and u  is the vector storing the nodal displacements as follows 

1 1 2 2

T

1 2 1 2 1 2p p
u u u u u u 
 

u       (3.44) 

3.4.2.  Construction of smoothing domains 

The compatibility condition is not necessarily satisfied in the global domain when PPIM 

and RPIM shape functions are used (Liu and Gu, 2005). Therefore, the generalised 

smoothed Galerkin (GS-Galerkin) weak formulation, which accommodates both 

compatible and incompatible displacement fields is employed to discretise the system of 

equations in the current smoothed meshfree model. In the GS-Galerkin weak 

formulation, instead of using a compatible strain field similar to those used in the FEM, 

a strain field is constructed using the generalized smoothed gradient over smoothing 

domains. In the present method, a mesh of cells is required which can be created in the 

same manner as in the standard FEM. A mesh of en  triangular elements with nn  

number of nodes is considered. For construction of the smoothing domains, on top of 

the background cells, the problem domain is divided into SDn  number of smoothing 

domains in a non-overlapping and no-gap fashion, so that the total problem domain   

is defined as follows 
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SD

SD

1

n

i

i

             (3.45) 

and  

SD SD ,i j i j              (3.46) 

where  SD

i  represents the i th smoothing domain. A constant smoothed strain is 

assigned to each smoothing domain. The smoothing domains can be constructed in 

different ways; however, a valid construction must satisfy certain conditions detailed in 

(Liu and Zhang, 2013a). In the edge-based smoothed point interpolation method, the 

smoothing domains are associated with edges of the background cells is such a way that 

the smoothing domain SD

k   associated with k th edge is created by connecting the 

nodes at the ends of this edge to the two centroids of the two adjacent triangular cells 

sharing edge k , as shown in Figure ‎3-2. Such a set of smoothing domains satisfies the 

necessary requirements mentioned above. These set of smoothing domains are also used 

for performing numerical integrations. Therefore, the domain integrations become 

simple summation over the smoothing domains.  

Boundary edge m

Interior edge kField node

Centroid of cell Edge-based smoothing domain

 
SD

m
 

SD

m

 
SD

k

 
SD

k

 

Figure ‎3-2- The schematic representation of triangularisation of the problem domain 

and edge based smoothing domains 
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3.4.3.  Node selection schemes 

For a point of interest located inside the problem domain, there are different schemes 

available for selection of supporting nodes using the triangular cells (T-schemes). A 

brief discretion of the several T-schemes adopted in this study is given below. These 

schemes are selected as they create shape functions which allow the use of edge based 

smoothing domains explained earlier. In other words, these T-schemes result in an 

approximated displacement field which may be discontinuous along the boundary of the 

smoothing domain only in a finite number of points. The manners in which supporting 

nodes are adopted in T-schemes are illustrated in Figure ‎3-3. It should be noted that 

when the point of interest is on the boundary of the problem domain, only linear 

interpolation using the two adjacent nodes on the boundary is used. This rule is required 

to ensure that the ES-PIM method passes the standard patch test (Liu and Zhang, 

2013a).  

In the definitions to follow, the cell which hosts the point of interest is called home cell 

which in turn can be a boundary home cell if it has at least one edge on the boundary of 

the problem domain, or an interior home cell if it has no edge on the boundary of the 

problem domain. Cells that share an edge with the home cell are called its neighbouring 

cells. 

3.4.3.1. Tr3 Scheme 

This is the simplest node selection scheme in which we simply select the three nodes of 

the home cell of the point of the interest. This scheme is used only for creating PPIM 

shape functions with polynomial basis and avoids the singularity problem associated 

with the moment matrix. Therefore, the shape functions can always be constructed 

using this scheme. The shape functions created are linear and are the same as those in 
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the FEM using linear triangular elements. Tr3 node selection scheme in conjunction 

with PPIM shape functions results in ESPIM-Tr3 model 

3.4.3.2. Tr6/3 scheme 

In this scheme, for an interior home cell, six nodes are selected for shape function 

creation: the three nodes of the home cell and the three remote nodes of the three 

neighbouring cells. For a boundary home cell, only three nodes of the home cell are 

selected. This scheme can either be used for creating high-order PIM shape functions or 

RPIM shape functions. In any case, the problem of singularity of the moment matrix is 

always avoided and therefore shape functions can always be created. In this study, Tr6/3 

scheme is used for creating PPIM shape functions only, resulting into ESPIM-Tr6/3 

model. 

3.4.3.3. Tr6 scheme 

This scheme is the same as Tr6/3 scheme for interior home cells, however it uses six 

nodes also for boundary cells: the three nodes of the boundary cell, the two remote 

nodes of the neighbouring cells and one other field node which is nearest to the centroid 

of the home cell excluding the five nodes which are already selected. Similar to the 

Tr6/3 scheme, it can be used for creating high-order PPIM or RPIM shape functions 

with no singularity problem associated with the moment matrix as long as some specific 

known shape parameters are avoided. Application of Tr6 scheme in construction of 

RPIM shape functions in this study yields the ESRPIM-Tr6 model. 

3.4.3.4. Tr2L scheme 

In this scheme, two layers of nodes around the home cell are selected. The first layer 

includes the three nodes of the home cell and the second layer includes those nodes 

which are directly connected to the three nodes of the home cell. This scheme selects 
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more nodes compared to the previously mentioned schemes and is mainly used to create 

RPIM shape functions, avoiding the singularity of the moment matrix. The MM 

generated based from this node selection scheme is denoted by ESRPIM-Tr2L. 

Field node Gauss point of interest

Support node 

Boundary 

cell

Interior cell

Boundary edge

Interior 

cell

Boundary 

edge

First Layer of supporting node

Second layer of supporting node

`

Boundary 

cell

Interior 

cell

Boundary 

edge

Boundary 

cell

Interior cell

Boundary edge

Boundary 

cell

Field node Gauss point of interest

Support node 

Field node Gauss point of interest

Support node 

Field node Gauss point of interest

(a) (b)

(c) (d)

 

Figure ‎3-3- Elaboration of various node selection schemes: (a) Tr3 scheme, (b) Tr6/3 

scheme (c) Tr6 scheme, (d) Tr2L scheme. 

   

3.4.4. Edge-based smoothing operation 

In the FEM, after construction of the displacement field, compatible strain can be 

calculated using the strain-displacement relationship which is a direct result of 

differentiation of the shape functions. This results in a compatible displacement field, 



Chapter 3– Coupled Flow and Deformation Analysis of Saturated Porous Media 

 

 

55 

 

and the strain field over the entire problem domain. The compatible strain field ˆ( )ε x  

which is obtained from the displacement field ˆ ( )u x can be shown as 

n n

u

d d

1 1

ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
n n

i i i i

i i 

    ε x L u x L Φ x u B x u B x u     (3.47)  

where 

1

2

2 1

0

ˆ ( ) 0

i

i
i

i i

x

x

x x





 

 
 
 

 
  

 
  
 
  

B x          (3.48) 

and ˆ
iu  and u ( )iΦ x  are the compatible displacement vector and the shape function 

matrix of the i th node, dL  is the differentiation matrix obtained as shown in equation 

(3.1), and û  is the nodal compatible displacement vector. 

In the SPIM, the constructed strain kε  which is constant over each smoothing domain 

SD

k  is approximated by an integral representation as follows 

SD d ( ) ( )d
k

k  


  ε L u W x         (3.49) 

in which W  is a diagonal matrix of smoothing functions associated with x ,   is the 

integration variable, and dL u  denotes the gradient of the displacement field, or the 

compatible strain field. u  is the displacement vector and assumed to be square 

integrable in SD

k  in the sense of Lebesgue integration that allows occasional 

discontinuity at finite points within the smoothing domain. In this work, the simple 

Heaviside smoothing function of the following form is used  
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SD

SD

SD

1

( )

0

k

k

k

A







 

  


 

W x        (3.50) 

where 
SD

SD d
k

kA


   is the area of the k th smoothing domain and the frame for 

smoothing domain SD

k  represents the closed domain as: 
SD

SD SD

k kk
   , which 

encompasses the area and the boundary of the smoothing domain. Utilising the 

Divergence theorem, the integration of the gradient of the field function over the 

smoothing domains is transformed into the integration of the field function itself over 

the boundary of the smoothing domains (Liu and Zhang, 2008). Therefore, derivation of 

an incompatible displacement field resulting from PIM shape functions is avoided in the 

formulation. This leads to the definition of the smoothed strain over the smoothing 

domains. The smoothed strain can be defined for both compatible and incompatible 

displacement fields as follows 

SD nSD

1
( )d

k
k

kA 
 ε L u x          (3.51) 

where kε  is the constant smoothed strain over the k th smoothing domain ( SD

k ), with 

the boundary SD

SD( 1,2,..., )k k n  , and nL is the matrix of unit outward normal defined 

in equation (3.26). 

Substituting equation (3.39) into equation (3.51), the smoothed strain for the k th 

smoothing domain is obtained as 

SD

1

1u

n 2 1SD
1 2

2 1

0

1
( )d 0

i

i

i
k

i

i i

q
q

k q q

ik

b
u

b
uA

b b




 
      
      
      
  

ε L Φ x u B u     (3.52) 
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with 

1 2u

1 2 2 2

( ) 0( ) 0 ( ) 0
( )

0 ( )0 ( ) 0 ( )

qq

q q

 

 


 
  
 

xx x
Φ x

xx x
    (3.53) 

1 1 1

2 2 2

2 1 2 1 2 1

1 2

1 1 2

1 1 2 2
3 2

0 0 0

0 0 0

q

q

q q
q

b b b

b b b

b b b b b b


 
 
 
 
  

B

      (3.54) 

1 1 2 2

T

1 2 1 2 1 2q qq u u u u u u 
 

u       (3.55) 

and 

SDSD

1
( ) ( )d , 1,2

l
k

i i l

k

b n l
A




   x x         (3.56) 

where q  is the total number of supporting nodes of all the Gauss points on the 

boundaries of the k th smoothing domain ( q p ). Employing the Gauss integration 

scheme, the integration in equation (3.56) can be further simplified in a summation form 

considering the linear segments of the smoothing domain boundaries,   

seg G

,

G GSD
1 1

1
( ) , 1,2

2l

n n
k n n m m

i m i l

m nk

b L w n l
A


 

 
  

 
  x      (3.57) 

where 
segn  is the number of line segments of the boundary SD

k , m

ln  is the l th 

component of the unit outward normal vector to the m th segment of SD

k , Gn  is the 

number of Gauss points on each segment of SD

k , ,

G

n m
x  is coordinate of the n th Gauss 

point on the m th segment of SD

k , k

mL  is the length of the m th segment of SD

k , and 
G

nw  

is the corresponding Gauss integration weight. ,

G( )n m

i x is the shape function value at 
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node i  at the Gauss point of interest ,

G

n m
x . If node i  is not among the supporting nodes 

of the current point of interest, then ,

G( ) 0n m

i x . 

It can be observed that unlike the compatible strain field, there is no need for derivation 

of the shape functions in calculation of the smoothed strains. Hence, the discontinuity of 

the approximation function does not pose any problem. This further weakens the 

consistency requirement to shape functions and that is why the formulation is called 

weakened weak 2(W )  formulation, as opposed to the weak formulation used in many 

numerical techniques such as the FEM (Liu and Zhang, 2008). 

3.5. Numerical algorithm 

3.5.1.  Discretised system of equations 

Applying the GS-Galerkin approach to the flow and deformation coupled equations 

(3.2) and (3.18), and neglecting the effect of the self-weight of the pore fluid in the total 

head at any point, the general discretised form of the governing equations is defined as 

f u KU QP F           (3.58) 

T

f f f fa   Q U HP SP F          (3.59) 

where U  is the vector of nodal displacements, fP  is the vector of the nodal pore fluid 

pressures, uF  is the vector of nodal forces, fF  is the vector of nodal fluxes, and Q , S  

and H  are the global property matrices of the system. These matrices are evaluated by 

assembling the corresponding local property matrices associated with each smoothing 

domain. 

Employing the smoothing operation, the global stiffness matrix is obtained as 



Chapter 3– Coupled Flow and Deformation Analysis of Saturated Porous Media 

 

 

59 

 

 
SD SD

SD

SD T e

1 1

1 1

d
k

n n

k

k k


 

    K K B D B        (3.60) 

where the summation shows the assembly process, SD

kK  is the local stiffness matrix of 

the k th smoothing domain, and e
D  is the linear elastic constitutive matrix for plane 

strain setting as 

e

1 0

1 0
(1 )(1 2 )

1 2
0 0

2

E
 

 
 



 
 
 

  
 

 
 
 

D        (3.61) 

with E  and   being the Young’s modulus and the Poisson’s ratio, respectively. The 

smoothed strain operator 
1B  can be taken out of the integration because it is constant 

over each smoothing domain. The tangent constitutive matrix e
D  is also taken as 

constant over each smoothing domain, and as a result, equation (3.60) can be written in 

the simplified form of 

SD

SD T e

1 1

1

n

k

k

A


K B D B          (3.62) 

The permeability matrix is evaluated through a similar procedure as follows 

(Ghaffaripour et al., 2017) 

SD SD SD

SD

SD
SD T T

2 2 2 2

1 1 1f f

d
k

n n n

k
k

k k k

A

 
  

 
    

 
  

k
H H B B B kB      (3.63) 

where 
2B  is defined as 
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1 2

1 2

11 1

2

2 2 2
2

q

q q

bb b

b b b


 
 
 
 

B         (3.64) 

The major challenge in the application of the ESPIM/ESRPIM to coupled problems is 

evaluating the coupling matrix. To this end, the conventional Gauss points in the 

triangles composing the smoothing domains, in addition to the Gauss points located on 

the edges of the smoothing domains, are used to obtain the coupling matrix. Different 

Gauss points used in the calculation of the coupling matrix in RPIM-Tr6 and RPIM-

Tr2L are illustrated in Figure ‎3-4 for a generic smoothing domain. 

Gauss points for integration over the boundary of the smoothing domains

Gauss points for integration over the area of the smoothing domains  

Figure ‎3-4- Schematic illustration of the Gauss points used for numerical integrations in 

RPIM-Tr6 and RPIM-Tr2L for an interior smoothing domain. 

To evaluate the coupling matrix Q , again the assembly process for all the smoothing 

domains along with the smoothing operation is required as follows 

 
SD SD

SD

SD T p

3

1 1

d
k

n n
q

k

k k


 

    Q Q B Φ         (3.65) 
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in which pq
Φ  is the shape function matrix for the pore fluid pressure at each Gauss 

point of interest, which includes all the supporting nodes of the Gauss points along the 

boundary of the smoothing domain of interest, as follows 

p

1 2 1

q

q q
  


   Φ          (3.66) 

and 
3B  is  

1 1 2 23 1 2 1 2 1 2
1 2q q q

b b b b b b


 
 

B       (3.67) 

It is worth mentioning that although the above procedure is simple and the natural 

extension of the conventional Gauss integration for calculation of the coupling matrix in 

SPIMs, it had never been used in the literature before this study. Schönewald et al. 

(2012) adopted an approximation technique for the calculation of the coupling matrix of 

the discretised system of equations in which they used Gauss points located on the 

boundary of the smoothing domains, rather than the conventional Gauss points, for the 

calculation of the area integrations over the smoothing domains. In this approach, the 

numerical errors can only be controlled by refining the background mesh, because 

adopting more Gauss points for the area integrations is not practical. The same approach 

was also used in the studies by Soares Jr (2013b) and Soares Jr et al. (2014). 

The term 
SD

p d
k

q


 Φ  in equation (3.65) has to be evaluated over each smoothing 

domain. This is done by dividing each interior smoothing domain into two triangles and 

using the standard Gauss integration method for the triangular areas. The division is not 

required for the boundary smoothing domains. In case of PPIM-Tr3 and PPIM-Tr6/3 

shape functions, one Gauss point per triangle is sufficient because the shape functions 

are linear; however, if the shape functions are nonlinear, more Gauss points in each 
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triangle can be adopted. In this study, three Gauss points per triangle are adopted for the 

numerical integrations when RPIM-Tr6 and RPIM-Tr2L shape functions are used, as 

shown in Figure ‎3-4. If the total number of such Gauss points over each triangle is 

denoted by 𝑛gtr (which is either 1 or 3 in this study) and the number of triangles 

constituting each smoothing domain is denoted by 𝑛tr (which is 2 for interior smoothing 

domains and 1 for boundary smoothing domains), then the coupling matrix can be 

obtained as follows, 

gtrSD tr

T tr p

3 G

1 1 1

2
j

nn n
q

i j

k i j

A w
  

  
     

  
  Q B Φ        (3.68) 

where tr

iA  is the area of the triangle hosting the Gauss point of interest, and G j
w is the 

weight corresponding to the Gauss point. 
pq

jΦ  is the fluid shape function matrix 

calculated at the Gauss point of interest.  

Those global matrices that do not involve differentiation of the shape functions are 

calculated without using the smoothing operation. In such cases, the local matrices are 

calculated over the internal Gauss points of the smoothing domains, and are assembled 

into the global matrices following the standard approach. We therefore have  

SD

SD

p T p

1

d
k

n
q q

k




 S Φ Φ          (3.69) 

SD

SD

p T

f f

1

d
k

n
q

k

q




 F Φ          (3.70) 

where fq  is the imposed fluid flux across the boundary. The force vector can also be 

defined as 
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 
SD

SD SD

u T u T

u

1

d d
k k

n
q q

k
 



    F Φ F Φ T       (3.71) 

in which T  is the boundary tractions. 

3.5.2.  Time discretisation  

The system of equations has to be also discretised in time domain. A number of time 

discretisation schemes are available including forward difference, Crank Nicholson, 

Galerkin and backward difference method. In the current work, except for the first time 

step in which a standard backward difference scheme is used, temporal discretisation of 

the equations is performed using a three-point time discretisation approach with variable 

time steps (Khoshghalb et al., 2011). In this algorithm, the time derivative of an 

arbitrary function f  at time t t   is estimated using the function values at times

t t , t  and t t   as 

t t t t t
t t Af Bf Cf

f
t




  
   




        (3.72) 

2 1 1
, ,

( 1) 1
A B

  

   

 
 

 
        (3.73) 

where   is a constant time step growth factor, which enlarges the time interval in each 

step and consequently, speeds up the computations. For stability reasons, 1 1 2    

should be satisfied (Khoshghalb et al., 2011). 

By introduction of equations (3.72) and (3.73) into equations (3.58) and (3.59), the fully 

discretised governing equations are obtained in the form of 

f u

t t t t t t        KU QP F          (3.74) 
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-    T

f f f f f f

t t t t t t t t t t t t t tA B C t a A B C t                    Q U U U HP S P P P F

           (3.75) 

The overall matrix form of equation is therefore stated as 

EW Y            (3.76) 

in which 

n n

T

f 3 3
( )

n n

A

A t Aa






 
  
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K Q
E

Q H S
       (3.77) 

n
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n
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T T

f f f f f 3 1

t t

t t t t t t t t

n
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t B C Ba Ca
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 
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

 
  

     

F
Y

F Q U Q U MP MP
   (3.79) 

where nn  is the total number of nodes. 

Equation (3.76) should be solved in each time step. However, it is not possible in the 

first time step to use the three point temporal discretisation scheme. Therefore, the 

backward difference method is adopted for the first time step and therefore the 

discretised equations will be as follows, 

0 0 0 0 0 0

f u

t t t t t t       
 KU QP F        (3.80) 

   0 0 0 0 0 0 0 0 0 0T

f f f f f

t t t t t t t t t t
t a t

            
       Q U U HP S P P F   (3.81) 

which leads to the following form of the matrix equation for the first time step 
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K Q U F

Q H S P F Q U SP
   (3.82) 

where 
0t  is the starting time and

0t  is the initial time increment. 

3.6. Numerical examples 

A number of numerical examples are to be evaluated to show the applicability, accuracy 

and stability of the proposed fully coupled hydro-mechanical meshfree model. Firstly, 

the model is examined through a one-dimensional consolidation problem and the 

numerical results are compared to those of analytical solution proposed by Terzaghi 

(1925). Secondly, a two-dimensional problem is investigated and robustness of the 

numerical model is demonstrated by comparing the results to the analytical results of 

Schiffman et al. (1969). Finally, a hydraulic pulse test is modelled and compared to 

semi-analytical solutions proposed by Selvadurai and Carnaffan (1997) and Selvadurai 

(2009). 

3.6.1.  One-dimensional consolidation 

The first example studied here is the Terzaghi’s one dimensional consolidation problem, 

as illustrated in Figure ‎3-5. Single side drainage from the top surface is assumed. The 

left and right sides and the bottom are all fixed for horizontal displacements, while 

vertical displacement is allowed on the side boundaries. The thickness of the soil layer 

is taken as 16mH   and the intensity of the surface surcharge is 10.0 kPaQ  . Linear 

elastic drained parameters of soil are assumed as 30,000 kPaE   and 0.3   . The 

intrinsic coefficient of permeability and dynamic viscosity of water are assumed as 

12 210  mk   and 6

f 10  kPa.s  , respectively. Analytical solution for this problem is 

available in Das (2013). 
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The problem is studied using the four ESPIM models introduced earlier in this chapter. 

The problem domain is discretised using the same background mesh for all models as 

illustrated in Figure ‎3-5, which comprises of 149 nodes and 256 triangular elements. 

The initial dimensionless time increment is taken as 
D 0.01t  , where the 

dimensionless time is defined as      2

D f1 1 1 2t E k t H          . The 

dimensionless time increment 
Dt  grows gradually through the analysis with the 

growth factor 1.1  .  

 

 

Figure ‎3-5- Schematic representation of the soil column in 1D consolidation problem 

and the background mesh associated with it. 

10 kPa

16 m

4 m
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The numerical results of different solutions in terms of dimensionless surface settlement  

ult/u u , in which 
ultu  is the ultimate surface settlement, versus dimensionless time 

D  t  

are presented in Figure ‎3-6. One-dimensional consolidation isochrones for this single-

drainage soil layer at different dimensionless times are shown in Figure ‎3-7. In this 

figure, the numerically obtained degrees of consolidation, z f1U p Q  , at 

dimensionless times equal to D 0.095t  , 0.405  and 0.983  are plotted along the 

dimensionless depth /z H  for different meshfree models used in this study. Also 

included in Figure ‎3-6 and Figure ‎3-7 are the analytical solutions to the problem 

(Terzaghi, 1925). It can be observed that for this simple 1D consolidation problem, all 

the numerical results are in perfect agreement with the analytical solution and the 

different numerical models do not show any advantage over each other. 
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Figure ‎3-6- Dimensionless surface settlement versus dimensionless time for different 

ESPIM and ESRPIM models. 
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Figure ‎3-7- One-dimensional consolidation isochrones for a single-drainage soil layer at 

different dimensionless times 

3.6.2.  Two-dimensional consolidation 

The problem of two-dimensional consolidation of a saturated soil layer under plane 

strain condition and subjected to a strip loading is studied here. The intensity of the strip 

loading is 10.0 kPaQ  . The top surface is fully drained and the rest of the boundaries 

are all assumed to be impervious. Horizontal displacement is fixed along vertical 

boundaries and all displacements are fixed along the bottom of the domain. The lateral 

extent of the soil layer from the centre of the strip load is assumed to be 6a  and the 

depth of the soil layer is taken as 9a , in which a  is the half-width of the strip loaded 

area. A schematic model of the problem, along with the adopted background mesh, 

which consists of 925 nodes and 1725 triangular elements, are shown in Figure ‎3-8. It 

should be mentioned that only one-half of the medium is simulated because of 

symmetry. 
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Figure ‎3-8- Representation of a two-dimensional consolidation problem and the 

background mesh used in the numerical analysis. 

The material properties adopted for the analysis are as follows: 6

f 10  kPa.s  , 

15 210  mk  , 30,000 kPaE  , 0    and 1ma  . The initial dimensionless time step 

is taken D 0.01t  , where the dimensionless time for this problem is defined as 

  2

D f 1t E tk a    . The time step growth factor is again taken as 1.1  . 

Analytical solution for the variations of the normalised excess pore pressure, f /p Q , 

with depth ratio, /z a , along the axis of symmetry at dimensionless time D 0.1t   is 

available for this problem (Schiffman et al., 1969), and used here for the evaluation of 

the performance of the different SPIMs developed. The numerical results obtained from 

different numerical models are plotted along with the analytical solution in Figure ‎3-9. 

As shown in this figure, there is a good correspondence between the numerical and 

analytical results for all the ESPIMs. Nevertheless, the ESPIM-Tr6/3 yields less 

accurate pore pressures compared to the other three models. It is worth noting that the 
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analytical solution is originally proposed for a semi-infinite domain, as opposed to the 

limited domain assumed in the numerical solution. Hence, the deviation of the 

numerical dimensionless pore pressure from the analytical solution as the impervious 

boundary is approached is because of the truncated boundary effect in the numerical 

models. This effect is also reported in other meshfree and FEM simulations (Khalili et 

al., 1999; Tootoonchi et al., 2016; Khoshghalb and Khalili, 2010). 
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Figure ‎3-9- Dimensionless excess pore pressure versus depth ratio along the axis of 

symmetry at D 0.1t  . 
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3.6.3. Hydraulic pulse test 

The last example to verify the ESPIM/ESRPIM models is the one-dimensional 

hydraulic pulse test. This test involves a pressurizing rigid water chamber attached to a 

sample (Selvadurai and Carnaffan, 1997; Selvadurai, 2009) and is used to define the 

hydraulic properties of low-permeability porous material making use of the time 

dependent pore pressure variations within a specimen when a hydraulic pulse is applied 

at the boundary of the domain.. The geometry and domain representation of the problem 

is illustrated in Figure ‎3-10, where a long porous medium, 10 mm in diameter and 10 m

in length, is assumed which is attached to a 4 mm  wide rigid water chamber. A very 

large length to diameter ratio is adopted in this example in order to best simulate the 

semi-infinite domain assumed in the semi-analytical solution to this problem as detailed 

in Selvadurai (2009) and Khoshghalb et al. (2011)  

A significantly low intrinsic permeability of 19 210  mk   is assumed in this example. 

The dynamic viscosity of water is 6

f 10  kPa.s  , and the coefficient of compressibility 

of water is taken as 7 1

f 4.54 10 kPac    . The drained Young’s modulus and the 

Poisson’s ratio are assumed as 10,000 kPaE   and 0.3   , respectively. The initial 

water pressure in the chamber is f0 100 kPap  . 

The essential boundary condition on nodes located on the boundary between the sample 

and the water chamber ( 0x  ) has to be updated at each time step as follows 

(Selvadurai, 2009) 

f

f f

ch f

i

t

t t t
q

p p t
V c

  
 

    
 

        (3.83) 
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where  
chV  is the volume of the chamber and 

iq  is the water flux for the boundary 

nodes. 
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Figure ‎3-10- Geometry and background mesh assumed in one-dimensional hydraulic 

pulse test problem (not to scale). 

The results of the analyses using the four meshfree models developed in this study are 

presented in Figure ‎3-11. It should be noted that the results are only presented in terms 

of pore water pressure as all field nodes are restrained by zero vertical and horizontal 

displacements. The dimensionless time factor is defined as 2

Dt t , where  

  22 2

f c f ch fka A V c   in which cA  is the cross section area of the specimen normal 

to the direction of flow. The vertical axis in Figure ‎3-11 denotes the dimensionless pore 

pressure f f0/p p  at node A , located 4.6 mm  horizontally away from the left side of the 

specimen, as shown in Figure ‎3-10. To obtain the presented results, an initial time step 

of 0 1st   (equivalent to the dimensionless time step of 
0

3

D 2.33 10t   ) is 

employed which increases in subsequent time steps using a time step growth factor of 

1.1  .  
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Figure ‎3-11- Pore pressure variations with time at x=4.6 mm in one-dimensional 

hydraulic pulse test. 

Comparing the numerical and semi-analytical results, it is observed that ESPIM-Tr3 and 

ESRPIM-Tr2L models are clearly superior to the other two, yielding more accurate 

results in terms of pore pressure.  

3.7. Conclusion 

A new approach to apply the edge-based smoothed point interpolation method to fully 

coupled flow and deformation problems was introduced in this chapter. The 

displacement and pore fluid pressure fields were both approximated using either PPIM 

or RPIM shape functions. A strain smoothing technique was performed to assign 

constant strains to each edge-based smoothing domain. Temporal discretisation was 

carried out using a three-point time discretisation technique. The coupling matrix of the 

porous media was evaluated through a combination of the smoothing operation 

technique and the conventional Gauss integration scheme. Four different node selection 

schemes were used resulting in four ESPIM/ESRPIM models. The models developed 
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were applied in simulation of three benchmark examples in poro-elasticity. Good 

agreement between the numerical results and analytical and semi-analytical results were 

obtained. ESPIM-Tr3 and ESRPIM-Tr2L yielded more accurate results, especially in 

terms of pore fluid pressures, than ESPIM-Tr6/3 and ESRPIM-Tr6. More in-depth 

verification of the models and their quantitative comparisons will be presented in the 

following chapter. 

 



  

Chapter 4 

 

 

 

4. Code verification using the Method of 

Manufactured Solutions (MMS) 

 

 

4.1. Introduction 

This chapter is dedicated to application of the order of accuracy study along with the 

method of manufactured solutions (MMS) for verification of the in-house code 

developed in this study. The code is developed using Fortran programming language for 

fully coupled flow and deformation analysis of poro-elastic geomaterials using the 

ESPIM explained earlier in Chapter 3. To the best of the author’s knowledge, order of 

accuracy study along with MMS has not been utilised in coupled problems in 

geomechanics to date and therefore this chapter focuses on examining the applicability 

of this method to geotechnical engineering problems. An overview of code verification 

techniques are presented first. The essence of an order of accuracy study is then 

presented in details along with discussions on numerical and formal order of accuracies, 

followed by an introduction to the MMS. The application of the MMS and order of 

accuracy study in coupled problems of geomechanics is then presented through 

verification of the developed in-house code using two manufactured solutions. 
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4.2. An over view of code verification techniques 

Although considered synonymous in common usage, validation and verification (V&V) 

are two indispensable yet independent steps in evaluating the fidelity of computational 

codes. To put it simply, according to Blottner (1990) code validation is “solving right 

governing equations”, while code verification is “solving governing equations right”. 

Validation is basically performed by comparing the numerical results with the data 

obtained from laboratory tests and experiments. Validation is not the focus of this 

chapter, and it is not discussed further here. 

There are different criteria for scientific code verification. The least reliable code 

verification approach is to seek an expert opinion on the outputs of a code, and this 

judgement may even be performed by the developer of the code (Roy, 2005). There are 

also a series of simple tests which may be exploited as part of the verification process 

while developing a code, but they are not an acceptable replacements for code 

verification (Oberkampf and Roy, 2010). Symmetry test can be used in problems with 

symmetrical geometries and boundary conditions. Conservation test is basically 

checking whether or not conservation of different variables such as mass and energy, 

according to the physics of the tackled problem, is satisfied. Finally, Galilean invariance 

test involves changing the inertial reference frames by moving it linearly with a constant 

speed or by simply exchanging the direction of the coordinate axes, and examining the 

objectivity of the solutions.  

The next common verification approach is code-to-code comparison in which the results 

of two codes with the same mathematical and physical basis are compared to each other. 

This approach is valid only if the reference code is already evaluated through a rigorous 

verification process. In Chapter 7 of this dissertation, a code-to-code comparison is 
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undertaken as part of the verification process for the ESPIM developed for unsaturated 

porous media. 

The criteria discussed so far cannot be used as a substitute for rigorous verification 

assessments (Oberkampf and Roy, 2010). Discretisation error evaluation is another 

criterion in which the numerical results obtained from a discrete model using a single 

spatial and/or time discretisation are compared to an exact or benchmark solution 

(Oberkampf and Roy, 2010). This type of verification should always be accompanied 

with a discussion stating whether the discretisation error is small enough or not. 

Convergence test, which is also referred to as consistency test, is the assessment of the 

rate in which the discretisation error is reduced as the mesh size decreases, without 

evaluating the magnitude of the error. A more comprehensive version of this 

verification test is called order of accuracy study. An order of accuracy study not only 

concerns studying the error reduction rate, but also compares this rate with the 

theoretical order of accuracy, which may also be called the formal order of accuracy. 

This approach, which is the most reliable code verification technique, is adopted in this 

study and will discussed in more details in the remainder of this chapter. 

4.3. Order of accuracy study 

The order of accuracy test is a rigorous code verification test, which examines whether 

or not the discretisation error of the numerical solution is reduced at the expected rate 

(Roy, 2005). In the order of accuracy test, the order of accuracy for the numerical 

scheme is obtained as the mesh and the time step are systematically refined by 

evaluating the reduction rate of various norms of the solution discretisation error over 

the domain. The error norms that are often used are 2L  and L . For any state variable 

w
1(u , 2u  or f )p , these error norms are defined in this study as follows, 
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where L
 is the infinity norm and 

2L  is the second norm. a
w  and n

w  are the analytical 

and numerical solution vectors for the state variable of interest, respectively, where a

iw  

and n

iw  are the entries of these vectors for each node of interest. The variable nn  is the 

total number of field nodes on which no essential boundary condition is applied. 

The numerical order of accuracy is then compared with the formal order of accuracy, 

obtained or estimated from a truncation error analysis of the discrete equations or 

interpolation theory, depending on the numerical solution scheme adopted (Roy, 2005; 

Choudhary et al., 2016). If the discretisation error of the numerical solution does not 

reduce monotonically, or if the order of accuracy obtained from the numerical solutions 

fails to match the formal order of accuracy, these could be indications of a probable 

coding mistake or algorithm inconsistency. It is worth mentioning that there is no 

iterative procedure involved in the problems studied in this chapter. It is also assumed 

that the round-off error is negligible compared to the overall discretisation error of the 

solutions.  

4.3.1. Numerical order of accuracy 

Oberkampf and Roy (2010) proposed an approach to obtain the spatial order of 

accuracy in transient problems. To this end, neglecting the higher order terms, the 

discretisation error of the equations presented at i th spatial discretisation and j th 

temporal discretisation can be written in the following form  
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    τ τh h 11

h t

r rr rL

ij i j i jE h O h O    
           (4.3) 

where 
hr   and 

τr   are the orders of accuracy in space and time, respectively, obtained 

from the numerical analysis, 
h  and 

t  are the coefficients of spatial and temporal 

terms, respectively, 
ih  and 

j  are normalized spatial and temporal discretisation sizes 

corresponding to the i th spatial discretisation and j th temporal discretisation, 

respectively, and L  is the error norm used for order of accuracy study 
2(L L  or )L

. 

The higher order terms,  h 1r

iO h
  and  τ 1r

jO   , can be neglected if the spatial and 

temporal discretisations adopted are in the asymptotic convergence range. The 

asymptotic range is defined as the range of discretisation sizes where the lowest-order 

terms in the truncation error dominate. For the developments to follow, it is assumed 

that the solution is in asymptotic range; however, it is noted that the identification of the 

asymptotic range may be challenging for complex scientific computing applications 

(Oberkampf and Roy, 2010). 

To obtain the spatial order of accuracy of the code, a constant time step is selected 

( c)j   rendering the temporal discretisation error term in equation (4.3) a constant. 

Spatial discretisation errors are then found through systematic mesh refinements. For 

three spatial discretisations ( 1i   to 3)i  , we have 

τ τ τh h h

1c h 1 t c 2 h 2 t c 3c h 3 t c; ;
r r rr r rL L L

cE h E h E h                  (4.4)

Exploiting the constancy of the temporal discretisation error term, we then have 

   h h h h

1c 2c h 1 2 2c 3c h 2 3and
r r r rL L L LE E h h E E h h           (4.5) 
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If the exact solution is known, the errors can be evaluated for each numerical solution. 

Thus, we have 

h
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       (4.6) 

Now, introducing the spatial discretisation refinement factor 
2 1 3 2R h h h h   (i.e., the 

ratio between element sizes of two consecutive meshes in the mesh refinement study), 

the observed order of accuracy for spatial discretisation, hr , can be obtained from 

equation (4.4) as follows 

2c 3
h

1c 2c

1
ln

ln

L L

c

L L

E E
r

R E E

 
  

 
         (4.7) 

As can be seen, the exact solution to the governing equations, which is often 

unavailable, is required in this procedure. A method to address this difficulty is 

discussed later in this chapter. 

It is worth noting that the temporal order of accuracy can also be obtained in a similar 

fashion based on several analyses using same spatial discretisations, but different 

temporal discretisations), although it is not discussed in this study.  

4.3.2. Formal order of accuracy 

The formal order of accuracy is the theoretical rate of convergence of the discrete 

solution to the exact solution to the mathematical model. For simple mathematical 

models and simple solution/discretisation methods, this can be obtained using truncation 

error analysis of the discrete equations or interpolation theory. For example, when FDM 
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is used for the solution of a parabolic equation, the formal spatial order of accuracy can 

be obtained using a truncation error analysis (e.g., (Roy, 2005)).  

In this study, the ESPIM along with a three point time discretisation technique is 

applied to coupled flow and deformation problems in two phase saturated porous media. 

Due to the complexity of the governing equations and the numerical solution technique 

adopted in this study, determination of the spatial formal order of accuracy directly from 

the governing equations is difficult, if not impossible. Hence, another approach, called 

the residual method, is adopted for estimation of the spatial formal order of accuracy. In 

this approach, the exact solution to the mathematical model is substituted into the 

discrete governing equations. The exact solution to the mathematical model does not 

satisfy the discrete equations, and it can be shown that for linear problems, the 

remainder (referred to as discrete residual) approximates the spatial truncation error 

(Oberkampf and Roy, 2010). Therefore, by performing a systematic mesh refinement 

(with a constant time discretisation), and evaluating the discrete residual in each case, 

the reduction rate of the spatial truncation error can be estimated, which is the spatial 

formal order of accuracy of the numerical scheme. 

4.3.3. Method of Manufactured Solutions 

As explained earlier, exact solutions to the governing equations are required in an order 

of accuracy study to obtain the numerical orders of accuracy. However, exact solutions 

are often not available for real geotechnical engineering problems with complex initial 

and boundary conditions and there are only a limited number of exact solutions for 

complex problems involving the coupled flow and deformation response of 

geomaterials. Even when exact solutions are found for such complex problems, they are 

often resulted from significant simplifications assumed in the problems.  
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Given the weakness of classical methods in solving complex PDEs, the Method of 

Manufactured Solutions (MMS) can be utilised as an alternative which provides a 

straightforward and general procedure for generating analytical solution of complex 

system of PDEs for code verifications. As far as the adopted manufactured solutions 

(MS) are not mathematically problematic, their physical meaning is of no importance in 

conducting an order of accuracy test (Roy, 2005). The MMS is, however, code intrusive 

and cannot be performed on commercial codes, unless the source code can be accessed.  

The basic idea behind MMS is to simply manufacture exact continuum solutions to the 

PDEs of interest (Roache, 2002). To this end, analytic solution to the PDEs are first 

assumed and next, the selected manufactured solution is substituted into the PDEs to 

calculate the source terms which guarantee that the selected manufactured solutions are 

indeed exact solutions to the governing PDEs. The source terms are distributed terms 

which should be applied in the code at each node of interest, according to the nature of 

the ESPIM code in hand. Therefore, the source code must be available and open to 

modifications so that such an implementation can be made while dealing with MMS. 

4.4. Numerical examples 

Two numerical examples based on two different MSs are discussed in this section to 

illustrate the application of the proposed verification technique for typical problems in 

geomechanics. In both examples, a 2m 2m  weightless isotropic saturated porous 

medium is considered in a plane strain setting, in which 1m 1mx    and 0 2 my 

. The state variables 1u , 2u  and fp  are assumed known on the domain boundaries 

where the essential boundary conditions are imposed. Linear elasticity is assumed for 

the mechanical behaviour of the solid phase. The material parameters adopted in the 

numerical analyses are given in Table ‎4-1. 
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Table ‎4-1- Material and physical properties considered in the numerical analyses. 

Parameter Symbol Value Unit 

Young's Modulus E  10,000   kPa   

Poisson's Ratio    0.3   

 Porosity n   0.5   

Coefficient of permeability of fluid fk   49.81 10   m/s   

Density of fluid f   1.0 3t/m   

Dynamic viscosity of fluid f   610   kPa.s   

Compressibility of fluid fc   74.54 10   1kPa  

Compressibility of solid grains sc  0     

Gravitational acceleration g  9.81 2m/s  

 

Time step increment of 0.1st   and a time step growth factor of 1.0   are assumed 

for the numerical analyses to obtain spatial order of convergence. Five different models 

using different background meshes are used for evaluating the solution errors, which are 

detailed in Table ‎4-2. The background mesh sizes in Table ‎4-2 are obtained from 

 n/ 1h A n   (Liu and Zhang, 2013a), where A  is the area of the domain and nn  

is the total number of nodes.  

Table ‎4-2- The properties of different mesh configurations for the numerical examples. 

Mesh number Number of nodes Number of cells Mesh size (m) 

1 41 64 0.370 

2 145 256 0.181 

3 545 1024 0.090 

4 2113 4096 0.044 

5 8321 16384 0.022 

 

The coarsest discretisation with 41 nodes is shown schematically in Figure ‎4-1 as an 

example. All refinements are performed systematically by halving the horizontal and 

vertical nodal distances of the coarser discretisation. This results in a refinement factor 

of approximately 2.0 which means the background mesh size is also halved through 
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each refinement from the coarsest discretisation (with 41 nodes) to the finest 

discretisation (with 8321 nodes). 

10

y (m)

x (m)

-1

2

 

Figure ‎4-1- The problem domain with 41 nodes. 

Now, a solution with analytical functions must be “manufactured” for this problem. The 

MS does not necessarily need to be physically realistic and can involve general 

analytical functions. For the governing equations of interest in this study, the selected 

MS must be smooth analytical functions of both space and time, with derivatives that do 

not vanish up to the second order in space and first order in time. Also, the solution 

should have enough complexity without any single term that dominates the other terms 

to ensure that all terms in the governing equations are exercised during the verification 

(Pelletier and Roache, 2000; Pelletier, 2010). 
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In this chapter, two sets of MSs are exercised. The first set is fairly simple and is used to 

clearly demonstrate the steps needed to perform the order of accuracy study. The second 

set contains more complexities and is in the form that are often recommended for 

generation of a comprehensive MS (e.g., (Roy, 2005)).  

4.4.1. Example 1 

The following arbitrary pore fluid pressure field is first assumed inside the problem 

domain as a function of space and time,  

 2 2

f ( , , )p x y t t x xy y            (4.8) 

This selection ensures that all the discretised terms of the governing equations are 

exercised. Substituting equation (4.8) into equation (3.18), possible solutions for the 

vertical and horizontal displacement fields can be expressed as 

23 2
2f f

1

f

( , , )
2 3 2

a t k xtx x y
u x y t xy

g

 
    

 
       (4.9) 

23 2
2f f

2

f

( , , )
2 3 2

a t k yty y x
u x y t yx

g

 
    

 
      (4.10) 

The assumed pore fluid pressure and the resultant displacement fields are shown within 

the problem domain at 10 st   in Figure ‎4-2. 
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Figure ‎4-2- Distribution of the field variables in example 1 over the problem domain at 

10 st  . (a) Pore fluid pressure, (b) Displacement in x direction, (c) Displacement in y 

direction. 

Having calculated the displacements, the components of the body force vector ( )F   

required to satisfy the governing equation (3.2) at any time anywhere in the problem 

domain are calculated as 

 f f
1

(3 2 )
2 1

2(1 ) 4 (1 )(1 2 )

a Etx a E
F t x y



  

 
     

   
      (4.11) 

 f f
2

(3 2 )
2 1

2(1 ) 4 (1 )(1 2 )

a Ety a E
F t y x



  

 
     

   
     (4.12) 
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No source term for the second governing equation is needed in this case, because the 

MSs are chosen in such a way that they satisfy equation (3.18). 

Substituting equations (4.11) and (4.12) in equation (3.71) to obtain the vector of nodal 

forces, the analysis can be carried out through time to obtain the numerical solutions. 

The analytical solutions of equations (4.8) to (4.10) can then be used to assess the 

convergence and accuracy of the numerical solutions.  

Figure ‎4-3 illustrates the summary of the spatial order of accuracy study for this 

example. In this figure, the error norms of the numerical solutions are plotted for state 

variables fp , 
1u  and 

2u  at 10 st  . The second order line is also depicted on the graphs 

for comparison purposes. The results presented are obtained with double precision 

computations. There were also no iterations involved in the numerical algorithms. 

Therefore, the spatial discretisation error is the dominant error in all the calculations.  
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Figure ‎4-3- Order of accuracy study for example 1 at 10 st   for obtaining the observed 

spatial orders of accuracy. 
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Figure ‎4-4 summarises the observed spatial convergence rates as a function of mesh 

size. Note the horizontal axes show the average of the three consecutive refinements 

between which the spatial convergence rate is obtained. As can be clearly seen in 

Figure ‎4-4, the numerical method shows second order accuracy in 
2L   and L

 norms. 

Due to the simplicity of the adopted state variables in this example, the numerical 

method is capable of predicting the state variables inside the problem domain very 

accurately even using a coarse discretisation, and this capability does not seem to be 

threatened severely as coarser discretisations are adopted. Therefore, the observed 

convergence rates rarely deviate from 2.0 for different discretisations. 
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Figure ‎4-4- Observed spatial order of accuracies at 10 st   for example 1. 

To evaluate the observed convergence rates, the formal spatial orders of accuracy are 

obtained through the procedure elaborated in section 4.3.2. Figure ‎4-5 illustrates the 

results of the studies performed for obtaining the formal orders of accuracy for different 

state variables at 10 st  . The observed formal spatial orders of accuracy are also 

reported in Figure ‎4-6. 
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Figure ‎4-5- Order of accuracy study for example 1 at 10 st   for obtaining the formal 

spatial orders of accuracy. 
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Figure ‎4-6- Formal spatial orders of accuracy at 10 st   for example 1. 

In linear analyses, the study of the accuracy and convergence of the numerical solution 

are often performed in terms of the energy error norm, eE , defined as, 

   
SD SD

SD

T
a n e a n SD SD

1 1

1
d

2 k

n n

e k k k k k k

k k

E A


 

     ε ε D ε ε      (4.13) 
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where a

kε  and n

kε  are the analytical and numerical strain vectors corresponding to the 

thk  smoothing domain. Figure ‎4-7 shows the formal and numerically observed spatial 

convergence rates of energy norm for different nodal discretisations at 10 st  . 
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Figure ‎4-7- (a) Energy error norm at 10 st  , (b) Observed spatial order of accuracy in 

terms of energy error norm, for example 1. 

Comparing Figure ‎4-3 and Figure ‎4-4 to Figure ‎4-5 and Figure ‎4-6, it can be seen that 

the formal spatial order of accuracies are recovered. The second order of accuracy was 

expected as the problem is linear and moreover, linear interpolants are used in the 

ESPIM-Tr3 model. Furthermore, it is known that for smooth solutions like the adopted 

manufacture solution in this example, the order of accuracy for strain results is one 

order lower than that of displacements (Belytschko et al., 2000). Noting Figure 4-7, it 

can be seen that the expected first order accuracy in strain energy is also recovered 

using the adopted meshfree model and the code is therefore verified, spatially, for the 

selected MS. It is worth mentioning that for simplicity, the current example was 

examined using a suit of simple nodal discretisations; however, nodal discretisations 

with severer irregularities are needed for a more general code verification analysis. 
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4.4.2. Example 2 

The second set of MSs are selected according to the general recommendation by 

Oberkampf and Roy (2010), as follow 

2 2 2 2

1

π 5π 3π
0.02 0.01( 1) ( 2 ) cos( ) 3sin( ) 2sin( ) cos(π )

9 4 4

t x y
u x y y xy

 
      

 
 (4.14)  

2 2 2 2

2

π 3π 5π
0.01 0.01( 1) ( 2 ) sin( ) sin( ) 2cos(π ) sin( )

15 4 4

t x xy
u x y y y

 
       

 
 (4.15) 

2 2 2 2

f

π 5π 3π
200 5( 1) ( 2 ) cos( ) 3sin(π ) cos( ) cos( )

12 4 4

t xy xy
p x y y x

 
      

 
  (4.16) 
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Figure ‎4-8- Distribution of the field variables in example 2 over the problem domain at 

10 st  . (a) Pore fluid pressure, (b) Displacement in x  direction, (c) Displacement in y  

direction. 
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Following recommendations by Bond et al. (2007), the sinusoidal parts of the MSs are 

multiplied by 2 2 2 2( 1) ( 2 )x y y   to ensure that the boundary conditions for the MSs are 

simple, similar to the boundary conditions relevant in real applications of the code. A 

trigonometric function of time is also multiplied to the MSs to induce time dependency 

of the solution. Due to independent determination of the MSs for pore fluid pressure and 

displacements, special care must be taken in generating the MS for each state variable 

fulfilling consistency between the order of magnitude of the variable of interest and the 

order of magnitude of the coefficients applied in the relevant PDE, as improper solution 

determination can result in ill-conditioned matrix equations and incorrect results 

consequently. Note that this condition was automatically satisfied in the first example as 

the MSs for displacement fields were directly obtained from equation (3.18). 

Substitution of these MSs into the governing equations (3.2) and (3.18) results in the 

analytical determination of the source terms. It is worth noting that the second 

governing equation (equation (3.18)) would also include a source term for this set of 

MSs. This source term, which can be seen as the required adjustment to the fluid flux at 

each point of interest, has to be also included in the formulation at the right-hand side of 

equation (3.75). The variations of the discretisation error norms of the numerical 

solutions are depicted in a logarithmic scale in Figure ‎4-9 as a function of the mesh size 

for this example. Presented in Figure ‎4-10 are the observed orders of accuracy for the 

three state variables using 2L  and L  norms of the discretisation error. It is observed 

that these orders of accuracy are in agreement with those obtained in example 1, 

especially when finer discretisations are used. 
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Figure ‎4-9- Mesh convergence study for example 2 at  10 st   for obtaining the 

observed spatial orders of accuracy. 
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Figure ‎4-10- Observed spatial orders of accuracy at 10 st   for example 2. 

The formal orders of accuracy for the state variables, obtained again using the procedure 

explained earlier in section 4.3.2, are illustrated in Figure ‎4-11 and Figure ‎4-12. It is 
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observed that the formal order of accuracy approaches 2.0 for both 
2L  and L

 norms as 

the element size decreases, which is in excellent agreement with the numerically 

observed convergence rates and also the results of the first example. The formal orders 

of accuracy, however, slightly deviates from the above values as coarser discretisations 

are used. This problem is due to inability of coarse background meshes in accurate 

prediction of the complicated MSs adopted in equations (4.14) to (4.16). This issue was 

less detectable in example 1 in which the orders of accuracy were not sensitive to mesh 

size due to simplicity and lack of abrupt variations in the assumed MSs. 
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Figure ‎4-11- Order of accuracy study for example 2 at 10 st   for obtaining the formal 

spatial orders of accuracy. 
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Figure ‎4-12- Formal spatial orders of accuracy at 10 st   for example 2. 

Figure ‎4-13 shows the numerical order of accuracy in terms of energy error norm for 

this example. The mesh dependency of the solutions is again evident from this figure, 

although it is observed in Figure ‎4-13(a) that the convergence curve approaches the first 

order accuracy for finer discretisations. 
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Figure ‎4-13- (a) Energy error norm at 10 st  , (b) Observed spatial order of accuracy in 

terms of energy error norm, for example 2. 
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4.5. Conclusion 

This chapter presented the application of MMS combined with order of accuracy study 

for code verification in geomechanics. The procedure for code verification was 

described in details for an ESPIM in-house code for coupled flow and deformation 

analysis of poro-elastic media developed in Fortran. Verification of the code was 

performed through an order of accuracy study in space domain with two MSs for 

displacement and pore pressure fields that are constructed as functions of both space 

and time. The results showed that the code successfully passes the spatial order of 

accuracy test.  

 

 



  

Chapter 5 

 

 

 

5. Elasto-plastic flow and deformation analysis of 

saturated porous media 

 

 

5.1. Introduction 

The majority of the problems in geotechnical engineering involve nonlinear behaviour 

of soils. In this chapter, the edge-based smoothed point interpolation method (ESPIM) 

discussed in earlier chapters is extended for fully coupled hydro-mechanical analysis of 

saturated porous media considering material nonlinearity. The ESPIM numerical 

framework developed in Chapter 3 is employed, utilising the Tr3 and Tr2L node 

selection schemes resulting in ESPIM-Tr3 and ESRPIM-Tr2L models respectively, due 

to their great performance in linear analyses which was discussed in Chapter 3. A non-

associative Mohr-Coulomb yield criterion is assumed for the behaviour of the solid 

phase; however, the formulation is developed in a general form so that any other 

constitutive model can be readily adopted. A substepping scheme (Sloan, 1987) 

assuming known strain increments is utilised for stress integration, and an iterative 

modified Newton-Raphson approach is adopted to deal with the nonlinearities arisen 
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from the elastoplastic constitutive model. Finally, the accuracy and efficiency of the 

numerical model is examined through different numerical examples. 

5.2. Governing equation 

As presented in Chapter 3, the Biot’s equations governing the coupled hydro-

mechanical behaviour of saturated porous media are expressed as 

 T

d fp   L σ δ B 0          (5.1) 

 f f f f f

f f

1
div div( )p a p  

 

 
    

 

k
g u       (5.2) 

In nonlinear problems, it is necessary to solve equations (5.1) and (5.2) incrementally. 

Therefore, introducing a nonlinear constitutive model to the equations, the effective 

stress rate σ  is stated proportional to the strain rate ε  through the tangent elastoplastic 

constitutive matrix ep
D  as 

ep σ D ε           (5.3) 

5.3. Numerical algorithm 

5.3.1.  Spatial discretisation of the governing equations 

Using the GS-Galerkin approach (Liu and Zhang, 2013a), the discretised system of 

equations are obtained as follows 

T

1 f ud 


   B σ QP F          (5.4) 

T

f f f fa   Q U HP SP F          (5.5) 
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where all the vectors and matrices are the same as those previously defined in Chapter 3 

(section 3.5.1). 

Utilising the smoothing operation, the tangent stiffness matrix is evaluated as 

   
SD SD

SD

SD T ep

T 1 1T
1 1

d
k

n n

k

k k


 

    K K B D B       (5.6) 

where the summation shows the assembly process and  SD

TkK  is the local tangent 

stiffness matrix of the k th smoothing domain. In ESPIM, 
1B  and ep

D  are constant over 

each smoothing domain, and therefore equation (5.6) can be written as 

SD

SD T ep

T 1 1

1

n

k

k

A


K B D B          (5.7) 

5.3.2. Temporal discretisation of the governing equations 

The three-point time discretization scheme (Khoshghalb et al., 2011) is again adopted 

for time discretisation of the governing equations in this chapter. Equations (5.4) and 

(5.5) can be discretised in time using equations (3.72) and (3.73), resulting in the fully 

discretised governing equations of the following form, 

 T

1 f ud
t t t t t t  
     


   B σ QP F         (5.8) 

   T

f f f f f f

t t t t t t t t t t t t t tA B C t a A B C t                     Q U U U HP S P P P F

           (5.9) 

5.3.3.  Nonlinear algorithm 

The discretised system of equations derived in the previous section are nonlinear when a 

nonlinear behaviour is assumed for geomaterials and therefore, an appropriate solution 

strategy is required to solve the nonlinear equations. Among all the approaches in the 
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literature, the following methods have been more popular in geotechnical engineering: 

The tangent stiffness method, the visco-plastic method, and the modified Newton-

Raphson method (Potts and Zdravkovic, 2001). The modified Newton-Raphson method, 

however, yields the most accurate results compared to the other two strategies (Potts 

and Zdravkovic, 2001). Consequently, it is adopted in this study to solve the nonlinear 

fully coupled equation system at each time step through an iterative procedure. To this 

end, the vectors of the nodal displacement and pore fluid pressure at iteration i  of the 

current time step t t   ( ,i t t 
U and, ,

f

i t t 
P respectively) are refined at iteration 1i   

as  

1, , 1,

1, , 1,

f f f

d

d

i t t i t t i t t

i t t i t t i t t

  

  

       

       

     
      

     

U U U

P P P
       (5.10) 

in which d  shows the corrections to the current solution resulting from the Newton-

Raphson process. The refinement is performed so that the nodal displacements and pore 

fluid pressures satisfy the following residual form of nonlinear equations at time t t   

 
1,1, T 1,

u 1 f ud
i t ti t t i t t t t  
         


   Ψ B σ QP F 0      (5.11) 

 

 

1, T 1, 1,

f f

1,

f f f f f

i t t i t t t t t i t t

i t t t t t t t

A B C t

a A B C t

  

 

         

     

    

    

Ψ Q U U U HP

S P P P F 0
    (5.12) 

To evaluate the incremental vector of the nodal displacements and pore fluid pressures, 

the following matrix equation is formed by expanding equations (5.11) and (5.12) with 

the first-order truncated Taylor series 

1, , 1,

,u u

1, , 1,

f f f

d

d

i t t i t t i t t

i t t

i t t i t t i t t

  


  

       

 

       

     
       

     

Ψ Ψ U
J 0

Ψ Ψ P
      (5.13) 
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in which J  is the Jacobian matrix, defined as 

u u

f

f f

f

  
  
 
  
   

Ψ Ψ

U P
J

Ψ Ψ

U P

          (5.14) 

The term  
1,T

1 d
i t t  


  B σ  in equation (5.11) is the vector of internal nodal forces at 

iteration 1i   of time step t t  . In problems involving a nonlinear response for the 

solid phase, the tangent stiffness matrix at each time step is defined as the derivative of 

the internal force vector with respect to the displacement vector at that time step. Hence, 

the Jacobian matrix at iteration i  of time step t t   takes the following form: 

,

, T

T

f( )

i t t

i t t A A

A Aa t


 



 

 
 

  
   

K Q
J

Q S H
      (5.15) 

In derivation of equation (5.15), equation (5.11) is multiplied by A  to produce a 

symmetrical Jacobian matrix to ease the computations when associative plasticity is 

assumed. Finally, from equation (5.13), the incremental vector of the nodal 

displacements and pore fluid pressures is obtained at iteration 1i   as 

 
1, ,

1
, u

1, ,

f f

d

d

i t t i t t

i t t

i t t i t t

 


 

    


 

    

   
   

   

U Ψ
J

P Ψ
       (5.16) 

A proper stress integration method has to be used in each iteration to obtain the 

unknown stresses. The stresses obtained are then used to form the residual vector for the 

next iteration or as the final stresses for the current time step if the convergence is 

reached in the current iteration. Convergence is assumed when the following criterion is 

fulfilled in an iteration, 
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1,

2

1
,

1 2

d

d

i t t

i
j t t

j

ERROR eps





  


 



 



X

X

        (5.17) 

where 
T

1, 1, 1,

fd d di t t i t t i t t             X U P  is the vector of the nodal displacements and 

pore fluid pressure increments in the i th iteration, 
2

.  is the Euclidean 2-norm, and 

eps  is a small positive number for controlling the error. 610eps   is used in this study 

to obtain the numerical solutions. 

5.3.4.  Mohr-Coulomb model 

The simple elastic perfectly plastic Mohr-Coulomb model which is extensively utilised 

in elastoplastic analysis of geotechnical problems is adopted in this chapter. Isotropic 

elastic behaviour similar to the one presented in Chapter 3 is assumed inside the yield 

surface. In this work, a simple hyperbolic yield surface is used based on the Mohr-

Coulomb yield criterion proposed by Abbo and Sloan (1995), which eliminates the 

singular tips from the Mohr-Coulomb yield surface at the edge intersections in the π-

plane, as seen in Figure ‎5-1. 

1
2

3

30 

30  

T  

T 

0 

(a) (b)  

Figure ‎5-1- (a) Original Mohr-Coulomb yield surface in   -plane, (b) Mohr-Coulomb 

yield surface with rounded vertices. 
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The three dimensional Mohr-Coulomb yield surface can be expressed in terms of three 

stress invariants: the mean effective stress p , the deviatoric stress q , and the Lode 

angle  , expressed as follows, 

x y z

1
( )

3
p                   (5.18) 

2 2 2 2 2 2

x y z xy yz zx

3
( ) 3( )

2
q s s s                (5.19) 

1 3

3

1 27
sin , 30 30

3 2

J

q
   
     

 
       (5.20) 

where 

2 2 2

3 x y z xy yz zx x yz y xz z xy2J s s s s s s            ,     (5.21) 

x x y y z z, ,s p s p s p                    (5.22) 

Having the stress invariants, the Mohr-Coulomb yield criterion is expressed as 

( , , ) sin ( ) cos 0F p q p qK c                   (5.23) 

where    and c represent the drained friction angle and cohesion of the soil. 

The Mohr-Coulomb yield surface becomes singular at Lode angles of 30   , posing 

difficulties in numerical implementation of the model. Sloan and Booker (1986) 

proposed the following trigonometric definition for ( )K   so that the ensuing octahedral 

cross-section in the 𝜋-plane is similar to the Mohr-Coulomb cross section, but smoothed 

at the vicinity of the singularities where T  , with T  being a transition angle 

between 0 and 30  defined by the user (see Figure ‎5-1(b)),  



Chapter 5 – Elasto-plastic Flow and Deformation Analysis of Saturated Porous Media 

104 

 

T

T

sin 3

( ) 3
cos sin sin

3

a b

K

  


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  


 
 



      (5.24) 

The coefficients a  and b  in equation (5.24) are obtained through the following 

formulas, 

T
T T T T

cos 3
3 tan tan3 sign( )(tan3 3tan )sin

3 3
a


     

 
     

 

   

 (5.25) 

T T

T

1 3
sign( )sin sin cos

3cos3 3
b    



 
   

 
      (5.26) 

where 

1 0
sign( )

1 0






 
 

 
         (5.27) 

In this study a transition angle of 
T 25   is adopted. 

In the non-associative Mohr-Coulomb model, the plastic potential function is expressed 

as 

sin ( ) cos 0G p qH c                (5.28) 

in which    is the dilation angle. The model is associative if the dilation angle is 

assumed equal to the friction angle, and is non-associative if different values are 

assumed for the friction and dilation angles. ( )H   has the same definition as ( )K  in 

equation (5.24) except for   replacing   in the definition of ( )H  . 
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In the modified Newton-Raphson procedure, the tangent constitutive matrix is required 

in each iteration for calculation of the Jacobian matrix and convergence check. In 

general, the elastoplastic tangent constitutive matrix is defined as (Potts and 

Zdravkovic, 2001), 

e T e
ep e

T e h
 



D mn D
D D

n D m
         (5.29) 

where e
D  is the elastic constitutive matrix, h  is the hardening parameter (not to be 

confused with the average mesh size defined in Chapter 4) which is zero in elastic 

perfectly plastic models like the Mohr-Coulomb model, and n  and m  are  the unit 

vectors normal to the yield surface and the plastic potential, respectively, defined as, 

/

/

F

F

 


 

σ
n

σ
          (5.30) 

/

/

G

G

 


 

σ
m

σ
         (5.31) 

The gradients of the yield surface and plastic potential are of importance in elastoplastic 

numerical analyses. These values are used to obtain ep
D  and also for stress integration 

purposes explained in the following section. The yield surface gradient can be 

calculated as follows, 

3
1 2 3

JF p q
c c c

   
  
      σ σ σ σ

        (5.32) 

where 

1 sin
F

c
p




 


          (5.33) 
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d

F F K
c K

q q

 
 

 

 
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      (5.34) 

3 3 2

9 9 d ( )

2cos3 2cos3 d

F K
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q q



   


   


      (5.35) 

and 

 
T1

1 1 1 0 0 0
3

p

σ

        (5.36) 
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3
2 2 2

2

q
s s s
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   
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 

  

σ
        (5.38) 

It should be noted that for a plane strain setting, which is considered in this work, shear 

stresses zx  and 
zy  are set to zero. Different entries of /G  σ  can also be derived in a 

similar fashion. 

5.3.5.  Stress integration 

The elastoplastic stress-strain relation of equation (5.3) should be integrated using a 

proper stress integration method in each iteration. There are generally two common 

classes of stress integration algorithms: The explicit, and the implicit. Potts and 

Ganendra (1994) evaluated the performance of the two approaches and showed that the 

explicit algorithm is more accurate considering a particular increment. As a result, a 

sub-stepping explicit scheme by Sloan (1987) is used in this work. This method is based 
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on the well-known modified Euler method, assumes known strain increments and 

controls the error of the numerical integrations by adjusting the size of each sub-step 

automatically. The details of the sub-stepping method can be found in the research 

paper by Sloan (1987) and is not repeated here. 

5.4. Numerical examples 

Three numerical examples are examined to show the applicability, accuracy and 

stability of the proposed nonlinear meshfree model: a bearing capacity problem in a 

drained medium, a thick-walled cylinder problem and a consolidation problem. In all 

the examples, the results are compared with those obtained from analytical/reference 

solutions or the standard linear FEM using the same background mesh. 

5.4.1.  Bearing capacity of a rigid strip footing 

A smooth, rigid strip footing placed on a drained Mohr-Coulomb material in a plane-

strain setting is first examined. The permeability of the material is assumed to be 

sufficiently high to prevent build-up of excess pore fluid pressure during loading. Due 

to symmetry, only half of the domain is modelled. The thickness of the soil layer is 

taken as 5 mH  , the width of the domain is 10 mW  , and the half width of the 

footing is considered as / 2 2 mB  . A surcharge of 20 kPaQ   is assumed to be 

applied on the ground surface. The rigid footing is modelled by imposing controlled 

vertical displacement increments of 2 0.001mu  . Associativity is assumed for the 

material behaviour, with the dilation angle   taken equal to the friction angle   of the 

soil. The details of the model as well as the properties of the soil layer are illustrated in 

Figure ‎5-2 ( E ,  , c , and   denote the elastic modulus, Poisson’s ratio, cohesion, and  

unit weight of soil, respectively, with the superscript dash indicating that the 

corresponding parameter is for a drained condition). Also presented in this figure is the 
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background mesh used in the analyses consisting of 315 nodes and 576 elements. For 

time marching, 1   was adopted. 

8 m

Smooth rigid footing

Surface surcharge = 20 kPa
Qult

  '  = ψ'  = 20 ̊ 

c' = 10 kPa

E' = 100,000 kN/m2

ν ' = 0.3

γ = 16 kN/m3

2 m

5
 m



 

Figure ‎5-2- Illustration of the problem domain for the bearing capacity problem, and the 

background mesh used. 

In Figure ‎5-3, the footing pressure, calculated from the sum of the nodal reaction forces 

under the footing, is plotted versus the vertical footing displacement. The numerical 

results of ESPIM-Tr3 and ESRPIM-Tr2L are compared to the FEM solution with the 

same mesh (FEM-Tr3), the numerical solution of Smith et al. (2013) using FEM with 

800 regularly distributed FEM-Q8 elements and visco-plastic strain approach, and 

finally the ultimate bearing capacity obtained using the method of characteristics 

(Martin, 2004). It is clear from this figure that ESPIM-Tr3 yields more accurate results 

than does FEM-Tr3. However, ESRPIM-Tr2L yields less accurate results mainly due to 

the large number of supporting nodes selected in the construction of nodal shape 

functions, which limits its ability to capture precisely sharp changes in the displacement 

field normally associated with elastic-perfectly plastic materials.   
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Figure ‎5-3- Footing pressure versus footing displacement for the bearing capacity 

problem. 

To compare the efficiency of the proposed models to that of FEM-Tr3, the total number 

of Newton-Raphson iterations, the average time of each iteration, and the total time of 

the analysis for the proposed methods are normalised with respect to those of FEM-Tr3 

and presented in Table ‎5-1 for the first 25 displacement increments of the analyses. As 

seen from this table, although each iteration takes slightly longer for ESPIM-Tr3 

compared to the linear FEM, adopting ESPIM-Tr3 has not only yielded more accurate 

results compared to FEM-Tr3, but also reduced the total analysis time by reducing the 

number of iterations required. ESRPIM-Tr2L on the other hand seems to be less 

efficient than both ESPIM-Tr3 and FEM-Tr3, as it yielded less accurate results while 

requiring more computational time. 
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Table ‎5-1- Comparison of the computational time required by different numerical 

procedures adopted in example 5.4.1. 

Method 
Total number of 

iterations 

Average time of each 

iteration with respect to that 

of FEM-Tr3 

Total time of the 

analysis with respect to 

that of FEM-Tr3 

FEM-Tr3 234 1 1 

ESPIM-Tr3 226 1.026 0.992 

ESRPIM-Tr2L 269 1.102 1.261 

 

5.4.2.  Thick-walled cylinder 

In the second example, pressurisation of the thick-walled cylinder illustrated in 

Figure ‎5-4 is considered in both drained and undrained conditions, as analytical 

solutions are available for this problem (Small et al., 1976). The cylinder is subjected to 

an internal pressure Q  with no external pressure, as illustrated in Figure ‎5-4. Only one 

quarter of the cylinder is simulated due to symmetry. The background mesh used in the 

numerical analyses is also shown in Figure ‎5-4. 

r

2r

Q

 

Figure ‎5-4- Cross section of the thick-walled cylinder and the background mesh 

assumed for numerical simulations. 

The cylinder is initially at a zero stress state, and the drained properties of the solid 

skeleton, which obeys a non-associative Mohr-Coulomb constitutive law, are as 
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follows: / 200E c   , 0   , 30   and 0   . The undrained (indicated with a 

subscript u ) properties of the material used in the analyses are u 1.5 (1 )E E     , 

u 0.49  , 
u 0   and 

u 2 (1 )c c N N 
  , where (1 sin ) (1 sin )N      . 

For the drained and undrained responses of the material, two types of analyses are 

performed. First, a single-phase analysis is conducted considering the drained or 

undrained properties of the material. Then, a coupled flow and deformation analysis is 

performed using two extreme loading conditions: a fast loading rate to simulate the 

undrained behaviour of the material and a slow loading rate to account for the drained 

response. The loading rate in the problem is defined using the parameter 

Dd( / ) dQ c t   in which Dt  is the dimensionless time for the one-dimensional 

consolidation problem, defined as      2

D f f1 1 1 2t E k t r         , where 

3

f 9.81kN m   is the unit weight of water and k  is the coefficient of permeability. 

The drained behaviour is captured considering a loading rate of 0.09  , as suggested 

by Small et al. (1976). For simulation of the problem in an undrained condition, a 

loading rate of 900   is used. This rate is 100 times higher than the rate 9   used 

by Small et al. (Small et al., 1976) because 9   is not sufficiently fast to simulate 

undrained conditions (Small et al., 1976). The time step growth factor of 1.0   was 

adopted in the coupled analyses.   

The numerical results from ESPIM-Tr3 for both single-phase and coupled analyses are 

compared with the analytical solutions in Figure ‎5-5. In this figure, the vertical axis 

shows the dimensionless pressure defined as Q c , and the horizontal axis represents 

the dimensionless deflection of the cylinder inner radius as  r / (1 )E u c r    , where ru  

is the deflection of the inner radius. As seen from this figure, in both drained and 
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undrained analyses, the numerical results of the proposed method show excellent 

agreement with the analytical solutions. 
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Figure ‎5-5- Dimensionless pressure versus dimensionless deflection of inner radius of 

the thick-walled cylinder. 

 

5.4.3.  Consolidation analysis of a flexible strip footing 

This example involves a flexible, smooth, and impervious strip footing of half width a , 

placed on a saturated weightless clay layer of thickness 8a  that extends laterally 16a  

from the centre of the footing. The soil layer is sitting on impervious non-deformable 

bedrock. Associative Mohr-Coulomb behaviour is assumed for the saturated soil layer. 

The ground surface is assumed to be free draining. Similar to the example 5.4.1, only 

half of the model is considered due to symmetry. The geometry of the problem, the 

background mesh used in the analyses, and the material properties are shown in 

Figure ‎5-6 ( fk  denotes the coefficient of permeability of the soil). 3 ma   is used in the 

numerical simulations. 
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Figure ‎5-6- Geometry, background mesh, and material parameters for the consolidation 

problem. 

The dimensionless time for plain-strain two-dimensional consolidation problems 

proposed by Manoharan and Dasgupta (1995) is adopted here: 

   2

D f f 1 1 2  2t E k t a      . 3

f 10 kN m   is assumed in this example to 

ensure consistency with Manoharan and Dasgupta (1995) and Sabetamal et al. (2016), 

as their solution to this problem is used here for comparison with the results of the 

proposed methods. As shown in Figure ‎5-7, the footing is subjected to a linearly 

increasing vertical pressure that reaches 0 100 kPaQ   at the dimensionless time 

D 0.01t   ( Lt  in Figure ‎5-7), corresponding to 46.8 dayst  , and is kept constant 

afterwards. The linear loading is simulated in the analyses through 10 steps of 

10 kPaQ  . For these ten loading steps, the time increment is assumed to be 

D 0.001t   ( 4.68 dayst  ), and the time step growth factor is taken as 1.0  . Then, 

from the eleventh step onwards, the time step growth factor is increased to 1.1   to 

reduce the duration of the analysis. 
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Figure ‎5-7- Loading regime of the flexible footing (example 5.5.3) 

Figure ‎5-8 illustrates the variations in the dimensionless settlement, 2100u a  at the 

centre of the footing (point A in Figure ‎5-6) with time. As seen from Figure ‎5-8(a), the 

results from ESPIM-Tr3 and ESRPIM-Tr2L excellently match those obtained by 

Manoharan and Dasgupta (1995) and Sabetamal et al. (2016). As expected, the footing 

settles more rapidly as the footing pressure increases to the point corresponding to 

D 0.01t   (i.e., end of loading), and then, the settlement continues due to consolidation 

of the clay layer. Figure ‎5-8(b) presents a comparison of the predicted settlements at 

time D 0.01t   obtained from the proposed MMs, the conventional FEM with the same 

triangular background mesh (FEM-Tr3), and the reference solution (obtained from the 

FEM model with a very fine background mesh). As can be clearly observed from this 

figure, the ESPIM-Tr3 produces the most accurate results, matching almost perfectly 

the reference solution. ESRPIM-Tr2L is again the least accurate method, most likely 

because of possible sudden changes in displacement fields of neighbouring smoothing 

domains when an elastic-perfectly plastic model is used, as explained previously. The 

softening effect of the smoothing operation is also clear from the results presented in 

Figure ‎5-8(b), especially for ESRPIM-Tr2L, compared to the FEM-Tr3 model as also 

reported by Liu and Zhang (Liu and Zhang, 2008). 
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Figure ‎5-8- Dimensionless settlement at the centre of the footing versus the 

dimensionless time. 

Variations of the dimensionless pore fluid pressure, f 0p Q , at point A with respect to 

the dimensionless time, Dt , are depicted in Figure ‎5-9. Again, the agreement between 

the results of the presented models and the results reported by Manoharan and Dasgupta 

(1995) and Sabetamal et al. (2016) is acceptable. Figure ‎5-9(b) shows the pore fluid 
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pressure variations in the vicinity of the peak of the graph. In this case, both edge-based 

smoothed MMs render a better solution compared to the FEM with the same 

background mesh, with ESPIM-Tr3 again being the most accurate method.  
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Figure ‎5-9- Dimensionless pore fluid pressure versus dimensionless time at the point 

immediately below the centre of the footing. 

The dimensionless horizontal displacement of the soil through depth on section B (see 

Figure ‎5-6) obtained using different numerical methods at dimensionless time D 100t   
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(assumed end of the consolidation process) is given in Figure ‎5-10. As observed from 

this figure, once again, ESPIM-Tr3 provides better results compared to FEM-Tr3 and 

ESRPIM-Tr2L. 
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Figure ‎5-10- Dimensionless horizontal displacement versus dimensionless depth along 

section B at dimensionless time  . 

Finally, efficiency analyses were performed for different methods by recording the time 

required for the analyses up to D 100t  . The results of the analysis are reported in 

Table ‎5-2 in a format similar to the format previously presented for example 5.5.1. It 

can be seen from this table that, once again ESPIM-Tr3 has performed better than FEM-

Tr3 in terms of the total analysis time, and its superior accuracy in displacements and 

pore water pressure calculations is also evident from Figure ‎5-8 to Figure ‎5-10. 

ESRPIM-Tr2L, however, was slightly slower than ESPIM-Tr3 and linear FEM due to 

the more complicated computational procedure and larger number of selected 

supporting nodes.  
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Table ‎5-2- Comparison of the computational time required by different numerical 

procedures adopted in example 5.4.3. 

Method 
Total number 

of iterations 

Average time of each 

iteration with respect to 

that of FEM-Tr3 

Total time of the analysis 

with respect to that of 

FEM-Tr3 

FEM-Tr3 572 1 1 

ESPIM-Tr3 552 1.033 0.997 

ESRPIM-Tr2L 546 1.059 1.011 

 

 

5.5. Conclusion 

Application of the ESPIM to the solution of coupled flow-deformation problems in 

porous media was presented. Two different node selection schemes for defining the 

support domains along with employment of polynomial and radial PIMs for 

construction of nodal shape functions were adopted resulting in two smoothed meshfree 

algorithms: ESPIM-Tr3 and ESRPIM-Tr2L. Temporal discretisation of the governing 

equations were performed using a three-point time discretisation technique. Sub-

stepping method was adopted for stress integration, and the modified Newton-Raphson 

method was utilized to solve the nonlinear system of equations. The capability of the 

developed algorithms in capturing the coupled behaviour of elasto-plastic materials was 

investigated through three numerical examples with analytical or reference solutions. In 

all cases, very good agreement between the numerical results of the proposed methods 

and the analytical or reference solutions was observed. From the comparison between 

the numerical results of different methods and the analytical or reference solutions, it 

can be concluded that for flow-deformation problems in elastic-perfectly plastic 

materials, ESPIM-Tr3 offers very accurate solutions, clearly superior to ESRPIM-Tr2L 



Chapter 5 – Elasto-plastic Flow and Deformation Analysis of Saturated Porous Media 

119 

 

and linear FEM using the same background mesh in terms of both displacement and 

pore fluid pressure calculations.  

 



  

Chapter 6 

 

 

 

6. Coupled flow and deformation analysis of 

unsaturated porous media 

 

 

6.1. Introduction 

In spite of the focus of the classical soil mechanics on behaviour of saturated porous 

media and a huge number of numerical investigations in this area based on Biot’s 

theory, the geo-materials routinely encountered in engineering practice belong to a 

different category, namely unsaturated porous media. The mechanical and hydraulic 

behaviour of unsaturated porous media are rather complex and proper models should be 

developed to meticulously address different aspects of engineering problems involving 

them. 

In this chapter, a fully coupled ESPIM algorithm is introduced for hydro-mechanical 

analysis of unsaturated porous media considering hydraulic hysteresis. The simple Tr3 

node selection scheme is adopted which ensures the non-singularity of the moment 

matrix in constructing the PPIM shape functions. An effective stress based framework 

based on the work of Khalili et al. (2008) is followed in this work, and a hysteretic 

water retention model is taken into account which enables the evolution of water 
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retention curve (WRC) with volumetric changes (Pasha et al., 2017; Khoshghalb and 

Khalili, 2013). An elastoplastic constitutive model is employed within the context of 

bounding surface plasticity theory for predicting the nonlinear behaviour of soil 

skeleton in unsaturated porous media. The applicability of the presented model is 

verified through several numerical examples. 

6.2. Governing equations 

The theory of mixtures (Fillunger, 1936) is adopted for developing the relevant 

mathematical framework. According to this theory, a medium is assumed to comprise 

different overlapping constituents distributed continuously throughout the medium. An 

unsaturated porous medium is made up of three constituents: Solid skeleton, liquid 

phase, and gas phase. In geotechnical engineering applications, the liquid and gas 

phases are often water and air, respectively, and that is assumed in this study too, except 

for in one of the worked examples in which hypothetical liquid and gas phases are 

assumed. The framework in this study is presented based on three separate, yet coupled 

models: a deformation model which takes account of the interaction between the 

internal stresses and the external applied forces, and two flow models considering the 

flow of the fluid phases through the porous medium. The coupling between the 

deformation and the two flow models is established utilising the effective stress concept 

for unsaturated porous media (Khalili et al., 2000; Khalili et al., 2008), together with the 

volumetric compatibility relationships for the different phases. The coupling between 

the two flow models is stablished through the soil WRC. Further coupling among all the 

phases were accounted for through volume change dependency of the WRC. 



Chapter 6 - Coupled Flow and Deformation Analysis of Unsaturated Porous Media 

122 

 

6.2.1. Deformation model  

As explained in Chapter 3, the deformation model is expressed based on the momentum 

balance of the solid-fluid mixture. For quasi-static processes, the momentum balance 

equation is expressed in the following form, 

T

d  L σ B 0           (6.1) 

in which 𝜌 is the average density of the mixture defined as 

w w a a s(1 )n n n                (6.2) 

where w rn n S  and a r(1 )n n S   are porosity of the water and air phases, 

respectively, with rS  being the degree of saturation, and w  and a  are density of 

water and air, respectively. 

The only unified approach to deal with equation (6.1) for either saturated or unsaturated 

porous materials is the effective stress approach (Khalili et al., 2004). The effective 

stress for unsaturated porous media is expressed in the total and incremental forms in 

equations (6.3) and (6.4), respectively, as follows 

net s  σ σ δ           (6.3) 

net s  σ σ δ           (6.4) 

 where net ap σ σ δ  is the net stress vector. d( ) / ds s   is the incremental effective 

stress parameter, with   being the effective stress parameter, and a ws p p   is the 

matric suction, which will be simply referred to as suction in this work assuming the 

osmotic suction is negligible. Adopting an incremental constitutive equation and the 
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relationship for small strains of the solid skeleton (equations (5.3) and (5.4), 

respectively), equation (6.1) can be rewritten in the following incremental form  

 T ep

d w a( (1 ) )p p      L D ε δ δ B 0       (6.5)  

The effective stress parameter   which specifies the relative contribution of the pore 

air and pore water pressures to the effective stress, can be obtained through various 

models, many of which are focused in relating this parameter to the degree of saturation 

rS . In this study, an extension of the widely used effective stress parameter proposed by 

Khalili and Khabbaz (1998) is adopted. The original model proposed by Khalili and 

Khabbaz (1998) does not include the hydraulic hysteresis effects, and expresses   as a 

function of the suction and air entry/expulsion value of the soil, as follows 

e

e
e

1

( )

s s

s
s s

s







 




          (6.6) 

where   is a material parameter, with the best fit of 0.55 . For the cases in which 

suction is increasing on the main drying path, es  is equal to the air entry value ( aes ), 

while when suction is decreasing on the main wetting path, es  is equal to the air 

expulsion value ( exs ). Khalili and Zargarbashi (2010) expanded the model to consider 

the effect of hydraulic hysteresis on the changes in   when suction reversal occurs: 
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  (6.7) 
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where   is the slope of the scanning curve, and rds  and 
rws  are the points of suction 

reversal on the main drying and main wetting curves, respectively. The evolution of 

effective stress parameter based on equations (6.6) and (6.7) is presented in Figure ‎6-1. 
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Figure ‎6-1- Evolution of the effective stress parameter with suction. 

6.2.2. Flow models 

The flow model which describes the flow of water and air through the unsaturated 

porous media is stated by combining the equation of linear momentum balance ignoring 

the inertia and viscous effects (equation (6.8)), with the mass balance equation for each 

fluid phase (equation (6.9)), as follows 

rπ
πs π π

π

( )
k

p 


   
k

v g         (6.8) 

π π π π π( ) div( ) 0n n
t
 


 


v         (6.9) 

where π=w,a represents water and air phases; rπk  is the relative permeability of phase 

π ; π  is the dynamic viscosity of phase π ; π  is the density of phase π ; πn  is the 
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volumetric content of phase π , and 
πsv  is the relative velocity vector for phase π  with 

respect to a moving solid, i.e., 

πs π π( )sn v v v           (6.10) 

where 
π πv u  and 

s v u  are absolute velocities of fluid phase π  and the solid phase, 

respectively, with 
πu  indicating the displacement vector of fluid phase π . 

Introducing the Lagrangian total derivatives concept with respect to a moving solid, 

sd( ) / d ( ) / ( )t t       v , and noting  α α αdiv ( ) ( )div( ) ( )     v v v , equation (6.9) 

is rearranged to 

π πs π π π π π f sdiv( ) div( )n n n      v v       (6.11) 

Considering the definition of compressibility of barometric fluids, we have 

π π π πc p            (6.12) 

in which πc  is the coefficient of compressibility for phase π .  

In case π= a , the density of air is obtained from the ideal gas law as a function of 

pressure and temperature as follows 

a
a

P M

RT
             (6.13) 

where aP  is the absolute air pressure ( a a atmP p p  , where atmp  is the atmospheric air 

pressure), M  is the average molecular mass of air, R  is the universal air constant, and 

T  is the absolute temperature. 
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From the definition of 
πn  ( π πn V V ), the rate of change in porosity of phase π  can be 

derived as 

 π π π

1
n V n V

V
           (6.14) 

Substituting equations (3.7), (3.12) and (3.13) into equation (6.11), and noting that 

  sd d / div( )V t V  v , the following equation for the flow of fluid phase π  through 

porous media is obtained, 

 π π
π π π π π π

π π

1
div =0rk V

p n c p
V

 
 

 
    

 

k
g      (6.15) 

6.2.3. Constitutive coefficients 

To capture the dependency of the model parameters on suction and volume change, the 

constitutive relationships can be expressed relating the pore water and pore air 

volumetric deformations to changes in volumetric strain and suction (Khalili et al., 

2008), 

w
v 12

V
a s

V
             (6.16) 

a
v 21(1 )

V
a s

V
             (6.17) 

where 21 12a a  are the constitutive coefficients relating the changes in pore water and 

pore air volumetric deformations to changes in pore water and pore air pressures, wV  is 

the volume of water phase and aV  is the volume of air phase.  
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The constitutive coefficients and the incremental effective stress parameter can be 

obtained by exposing an element of unsaturated porous medium to perturbations of pore 

water and pore air pressure and measuring the volume changes associated with each 

phase. An alternative approach, according to (Khalili et al., 2008), is followed here. 

From the definition of degree of saturation r w vS V V , where wV  is the volume of the 

water phase and 
vV  is the void volume, we have 

w
r r v

V
nS S

V
           (6.18) 

a
r r v(1 )

V
nS S

V
             (6.19) 

The degree of saturation is a function of both suction and volume change of the soil 

skeleton. Therefore, its rate can be expressed in the differential form of 

r r
r v

v

S S
S s

s




 
 
 

          (6.20) 

Now, from equations (6.18) to (6.20) we have 

w r r
r v

v

( )
V S S

n s S n
V s




 
  

 
        (6.21) 

a r r
r v

v

(1 )
V S S

n s S n
V s




 
    

 
       (6.22) 

Comparing equations (6.21) and (6.22) with equations (6.16) and (6.17), constitutive 

parameters   and 12a  are obtained as 

r
r

v

S
S n




 


          (6.23) 
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r
12

S
a n

s


 


           (6.24) 

Noting that 
v ( ) div( )tr    ε u  and considering zero compressibility for the solid 

skeleton  s 0c   the fully coupled flow equations can be obtained employing equations 

(6.23) and (6.24) in conjunction with equation (6.15) as 

 rw
w w w 11 w 12 a

w w

1
div div( )

k
p a p a p  

 

 
      

 

k
g u 0    (6.25) 

 ra
a a a 21 w 22 a

a a

1
div (1 )div( )

k
p a p a p  

 

 
       

 

k
g u 0    (6.26) 

where 

11 w w 12a c n a  , 22 a a 21a c n a         (6.27) 

and the compressibility of air is obtained as 

 
11

a a a atmc P p p
           (6.28) 

6.2.4. Void ratio dependent water retention model 

A critical step in modelling the behaviour of unsaturated soils is determining the water 

retention capacity at various suctions and hydraulic loading conditions, i.e. drying, 

wetting, or suction reversals, at a given density state. Numerous models have been so 

far proposed for this purpose (Van Genuchten, 1980; Brooks and Corey, 1964; Fredlund 

and Xing, 1994). Soil WRC is an a priori function of the volume change of the solid 

skeleton; however, the majority of the current WRC models overlook the influence of 

soil density on the soil water retention capacity. A number of models are proposed to 

take account of volume change dependency of the WRC (Tarantino, 2009; Mašín, 2010; 
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Salager et al., 2013; Tsiampousi et al., 2013a; Khoshghalb et al., 2015; Pasha et al., 

2017). According to equations (6.23) and (6.24), the constitutive coefficients have to be 

evaluated considering the evolution of the degree of saturation with changes in 

volumetric strain and suction. In this study, a void ratio dependent WRC similar to that 

presented in Pasha et al. (2017) is adopted. This model is briefly explained in the 

remainder of this section. 

Based on the model originally proposed by Brooks and Corey (1964) and later extended 

by Khalili and Zargarbashi (2010) to include the effect of hydraulic hysteresis, the 

variation of the effective degree of saturation effS  with suction can be evaluated at a 

given void ratio as  

 
p

e

eff e
e

1

( )

s s

S s
s s

s






 




        (6.29) 
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





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


 



 



 




 (6.30) 

where    eff r res res/ 1S S S S    and resS  is the residual degree of saturation. In 

equation (6.29), es  is the air entry value ( aes ) on the main drying path, and the air 

expulsion value ( exs ) on the main wetting path. Similarly, for the pore size distribution 

index, 
p , we have p pd   on the main drying path and 

p pw   on the main wetting 

path. The adopted WRC is shown schematically in Figure ‎6-2. It is noteworthy that the 
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suction reversal values rds  and 
rws  in the WRC should be consistent with those stated in 

equation (6.7) and shown in Figure ‎6-2. 

ffln eS

pw



1

1

pd

aes
exs

rds

rws

ln s

1

 
Figure ‎6-2- WRC model adopted in this study. 

The volume change dependency of the WRC model is accounted for assuming  es , 
p  

and   are functions of void ratio ( e ). For capturing the evolution of es  with void ratio, 

equation (6.23) can be rearranged as 

r r

d
d ( )

e
S S

e
           (6.31) 

Combining equations (6.6), (6.29) and (6.31) for the main drying and wetting paths, the 

updated effective degree of saturation, *

effS , due to a small change in the void ratio, de  , 

can be expressed as (Pasha et al., 2017) 

p

p

e e
res res

* e
eff eff eff

res

(1 )( ) (1 )( )
d

d ( )
1

s s
S S

s es sS S S
s S e





   

   


    (6.32) 

Now, considering the point of transition from saturation to unsaturation ( *

eff 1S   and 

*

es s ) and employing Taylor’s series expansion, the following expression can be 

obtained for the void ratio dependency of es  
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psu1/*

e e

res

d
(1 )

1

e
s s

S e


 


         (6.33) 

where 
psu  is the pore size distribution index at the transition point from saturated to 

unsaturated state. For small increments of void ratio, equation (6.33) can be further 

simplified to the incremental form of 

e e

res psu

d

d (1 )

s s

e e S 


 


         (6.34) 

which can be expressed in the following form after integration  

res psu

*
(1 )*

e e ( )
Se

s s
e






          (6.35) 

where * de e e   is the updated void ratio. 

Variations of the degree of saturation with void ratio on the main drying and wetting 

paths can be expressed in terms of the variations of the WRC model parameters, es  and 

p , with void ratio as follows 

per r r

e p

sS S S

e s e e





  
 

    
         (6.36) 

Calculating the partial derivatives of rS  with respect to es  and 
p , and making use of 

equation (6.34), the void ratio dependency of 
p  is expressed through the following 

equation 

p

r eff

p psu p

res eff eff(1 ) ln

S S

e S S S e




  
 




 
         (6.37) 
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Equation (6.37) indicates that 
p  is a function of both void ratio and suction. However, 

Pasha et al. (2017) showed that the suction dependency of
p is negligible, and therefore 

psu p   is adopted in this study. Through linearisation of equation (6.37) between two 

points with the effective degrees of saturation of 1.0 and 0.5 , the following relationship 

can be obtained for evaluation of the updated pore size distribution index due to small 

change in void ratio, 

 
  p1 /

res
*

p p

res

3 1 2 1 d
1

2(1 )

S e

S e



 

    
   

 
  

     (6.38) 

Now, expressing the updated effS  in a similar manner as in equation (6.32), we can 

obtain the updated slope of the WRC along the scanning path, * , as follows 

  *

eff

1 d
1

e

S e

   
 



  
  

 
       (6.39) 

Ensuring consistency between the effective stress parameter model and the WRC in 

suction reversal paths, the slope of the transition line in ln ln s   plane can be 

expressed as follows,  

pd pw

ex rd

ae rw

rd ex

ae rw

ln

ln

s s

s s

s s

s s

 
 

 
  
   

   
     
             

        (6.40) 

and therefore the updated slope of the scanning line in ln ln s   plane ( * ) can be 

obtained from equation (6.40) once *

es  , 
*

p  and * are calculated. If 
pd pw p    , 

equation (6.41) is simplified to the following form 
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p







           (6.41) 

6.2.5. Coefficient of permeability 

The coefficients of permeability of both water and air phases are functions of void ratio 

and the degree of saturation of the porous medium. The variations of the void ratio 

directly affect the intrinsic permeability of the medium. Various models have been 

proposed for capturing this void ratio dependency of the intrinsic permeability 

(Poiseuille, 1838; Kozeny, 1927; Carman, 1937; Taylor, 1948) . In this study, the 

widely used model by Kozeny-Carman (Scheidegger, 1958) for isotropic porous media 

is adopted, which is as follows 

0
0

0

1

1

ee
k k

e e

   
   

  
         (6.42) 

where 0 0kk I  is the reference intrinsic permeability matrix and 0e  is the reference 

void ratio. 

The dependency of the air and water coefficients of permeability on the degree of 

saturation of the porous media is accounted for using the model proposed by Brooks 

and Corey (1964), which expresses the relative permeability coefficients as functions of 

the effective degree of saturation and the pore size distribution of the porous media as 

follows 

1

rw effk S


           (6.43) 

   2
2

ra eff eff1 1k S S


           (6.44) 
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where 
1 p p(2 3 ) /     and 

2 p p(2 ) /    , according to recommendations by 

Brooks and Corey (1966). 

6.2.6. Initial and boundary conditions 

The solid skeleton displacement ( , )tu x  and the pore pressures 
π ( , )p tx  where π w,a , 

are the main variables in the governing equations (6.5), (6.25) and (6.26). The required 

initial conditions for solving these equations are exactly the same as those elaborated in 

Chapter 3, through equation (3.20) to (3.25). It should only be noted that the boundary 

conditions for the fluid phase now apply to both air and water phases. 

6.3. Numerical solution of the governing equations 

The edge-based smoothed point interpolation method (ESPIM), based on the 

polynomial point interpolation shape functions in conjunction with Tr3 node selection 

scheme for defining the support domain at each point of interest is adopted for 

numerical solution of the governing equations. The details of the method can be found 

in Chapter 3, section 3.4. 

6.3.1. Spatial discretisation 

Introducing the GS-Galerkin approach to equations (6.5), (6.25) and (6.26), the 

following system of fully coupled algebraic equations is derived in matrix form 

T

1 w a ud (1 ) 


     B σ QP QP F        (6.45) 

T

w w 11 w 12 a wa a    Q U H P SP SP F        (6.46) 

T

a a 21 w 22 a a(1 ) a a     Q U H P SP SP F       (6.47) 
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where 
wP  and 

aP  are the vectors of the nodal pore water and air pressures, respectively; 

wF  and 
aF  are the vector of nodal water and air fluxes, respectively; and 

wH  and 
aH  

are the global water permeability and air permeability matrices, respectively. The global 

tangent stiffness matrix TK , the global property matrices Q , S , and 
uF  are evaluated 

through assembly procedures over the smoothing (integration) domains as expressed in 

Chapters 3 and 5. The permeability matrices and the vectors of nodal fluid fluxes are 

evaluated as follows, 

SD SD SD

SD

SD
SD T T

π π 2 2 2 2

1 1 1π π

( ) d , π w,a
k

n n n

k
k

k k k

A

 
  

 
     

 
  

k
H H B B B kB    (6.48) 

SD SD
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SD p T

π π π

1 1

( ) d , π w,a
k

n n
q

k

k k

q


 

    F F Φ       (6.49) 

6.3.2. Time discretisation  

Using the three-point time discretisation scheme with variable time steps as detailed in 

section 3.5.2, the fully coupled discretised governing equations can now be obtained by 

applying equation (3.72) and (3.73) to equations (6.45) to (6.47) as follows, 

 
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It is worth noting that equation (6.50) is obtained by decomposing the left-hand side of 

equation (6.45) into the contributions at time t , and the time increment t . 

6.3.3. Solution algorithm 

Following the line of the modified Newton-Raphson iterative process, the vector of the 

nodal displacement and pore fluid pressures at iteration i  of the current time step 

( )t t  , are improved at iteration 1i   as  
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       (6.53) 

where ,i t  indicates the value of w a( , or ) U P P  at the ith iteration at time t. The 

improvements are obtained so that the nodal displacements and pore fluid pressures 

satisfy the following residual form of the nonlinear equations at time t t   
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Now, to evaluate the incremental vector of the nodal displacements and pore fluid 

pressures, the following matrix equation is formed by expanding equations (6.54) to 

(6.56) with the first-order truncated Taylor series 
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in which J  is the Jacobian matrix, defined as 
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The Jacobian matrix at iteration i of the time t t   can be expressed in the following 

explicit form 
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  (6.59) 

It should be noted that equation (6.54) is multiplied by A  so that the Jacobian matrix is 

symmetric when elasticity or associative plasticity assumptions are made. Finally, from 

equation (6.57), the incremental vector of the nodal displacements and pore fluid 

pressures is obtained at iteration 1i   as 
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A proper stress integration method has to be used in each iteration to obtain the 

unknown stresses. The stresses obtained are then used to form the residual vector for the 

next iteration or as the final stresses for the current time step if the convergence is 

reached in the current iteration. The convergence criterion adopted in this chapter is 

similar to equation (5.17) presented in Chapter 5. 

6.4.  Bounding surface plasticity model 

The UNSW bounding surface plasticity model (BSM) is adopted in this study to 

simulate the behaviour of the soil. The model was originally developed by Russell and 

Khalili (2004), within the framework of critical-state soil mechanics, to simulate the 

stress-strain behaviour of sands. It was later extended to model cyclic response of 

saturated and unsaturated sands by Khalili et al. (2005) and Khalili et al. (2008). Kan et 

al. (2013) introduced a new mapping rule to the model which uses only the last stress 

reversal state to locate the image point on the bounding surface, and is less complex 

compared to the mapping rule originally proposed. In the following, the essential 

elements of the UNSW BSM are described. These elements, in conjunction with the 

elastoplastic stress-strain relationship (see equation (5.29)) can be used to predict the 

elastoplastic response of the solid skeleton in unsaturated soils.  

6.4.1. Bounding and loading surfaces 

In the model adopted, a bounding surface is defined which encompasses all the 

admissible stress states in the stress space. In each stress plane hosting the hydrostatic 

axis, the bounding surface for each soil conforms to the boundaries of undrained 

response of the soil in its loosest state (Khalili et al., 2005). In UNSW model, the shape 

of the bounding surface is expressed in terms of p , q  and   (which were defined in 

section 5.3.4 in Chapter 5), as follows 
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where the over-bar denotes stress condition on the bounding surface. R  and N  are 

material parameters, respectively indicating the ratio of cp  to p  where F  intercepts 

the critical state line (CSL), and the curvature of the bounding surface. cp  controls the 

size of the bounding surface, and csM  is the slope of the CSL in the q p  plane 

defined as a function of the Lode angle   as follows (Sheng et al., 2000), 

1
4 4

max 4 4cs

2
( )

1 (1 )sin3
M M




  

 
  

   
      (6.62) 

where   (not to be confused with the time step growth factor defined in the three point 

time discretisation scheme explained in section 3.5.2) is given by 

csmin

max cs

3 sin

3 sin

M

M







 


         (6.63) 

with cs  being the constant volume effective friction angle. maxM  is the slope of the 

CSL line for triaxial compression and minM  is the slope of the CSL for triaxial 

extension.  

A loading surface is also defined on which the current stress point always lies. This 

surface is homologous to the bounding surface about the centre of homology. The 

centre of homology is the origin of the q p  plane during the first time loading; 

however, it moves to the last point of stress reversal for unloading and reloading. The 

cross sections of the bounding and loading surfaces in q p  plane are shown in 

Figure ‎6-3. 
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The direction of loading is determined using the unit normal to the loading surface at 

the current stress state ( )n , which can be obtained through the same expression as in 

equation (5.30) in Chapter 5, assuming F  as the loading surface. Alternatively, n  can 

be obtained by calculating the normal vector on an image point located on the bounding 

surface. The image point can be located through a simple radial mapping rule where the 

bounding surface intersects a straight line connecting the new centre of homology to the 

current stress state, as shown in Figure ‎6-3. 
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Figure ‎6-3- Schematic representation of the bounding surface, and the loading surface 

for the first time loading (from the origin to 1  ) and unloading (from 1   to 2  ), and 

the mapping rule in each case (dashed lines). 

6.4.2. Plastic potential 

A plastic potential is defined to determine the direction and magnitude of plastic strains. 

The plastic potential is expressed using a plastic flow rule relating the plastic dilatancy, 

p p

v qd   , to the stress ratio /q p , where p

v  and 
p

q  are the volumetric and deviatoric 

plastic strain rates, respectively. The expression for the plastic potential is as follows 

(Kan et al., 2013) 
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where 0p  controls the size of the plastic potential, and A  is a material constant 

dependent on the mechanism and amount of energy dissipation. The direction of the 

plastic flow is then determined using the unit normal to the plastic potential surface at 

the current stress state ( )m , as expressed in equation (5.31) in Chapter 5. 

Two vectors of plastic flow are identified at any stress state, one corresponding to 

compressive loading ( 
m ) and the other to extensive ( 

m ) as shown in Figure ‎6-4. The 

sign of t  in equation (6.64) determines the direction of plastic flow in the deviatoric 

plane. More details in this regard can be found in Khalili et al. (2008). 
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Figure ‎6-4- Schematic representation of the plastic potential surface in compression and 

extension. 

6.4.3. Hardening modulus 

A hardening modulus comprising two components is defined for the current model as 
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b fh h h             (6.65) 

where bh  is the hardening modulus at σ  on the bounding surface, and fh  is the 

hardening modulus at the current stress state σ  defined as a function of the distance 

between σ  and σ . Imposing the consistency condition at the bounding surface and 

assuming isotropic hardening of the bounding surface with plastic volumetric 

compression, 
bh  for unsaturated soils is obtained as 
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b p p

c v v

mF p p s
h

p s F 

    
   

       σ
        (6.66) 
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G p
m

G
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

 σ
. 

The modulus fh  is defined based on the distance between the current stress point and 

the image point such that it is zero on the bounding surface and infinity at the point of 

stress reversal. In the UNSW model, fh is defined as 
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     (6.67) 

where cp  and cp̂  are the sizes of the bounding and loading surfaces, respectively;

 p cs cs1 2( ) M      is the slope of the peak strength line in the  q p  plane; mk  is a 

material parameter; 1 e    is the specific volume and cs  is the critical state specific 

volume.        

6.4.4. Suction hardening 

The effect of suction variations on the critical state of unsaturated soils is referred to as 

suction hardening. For unsaturated soils, the slope of the CSL in q p  plane is 
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assumed to be suction independent (Loret and Khalili, 2002). However, the CSL in 

p   space is prone to suction hardening and is defined as  

𝜐cs = 𝛤(𝑠) −
cs(s) ln( )p          (6.68) 

in which 𝛤(𝑠) is the intercept of the CSL at the reference mean effective stress of 

1kPap  , ( )s  is the slope of the CSL in the p   plane, and csp  is the mean 

effective stress at the critical state ( ( )s  indicates that  is a function of suction). 

Parallel to the CSL, a limiting isotropic compression line (LICL) also exists for 

unsaturated soils whose equation is given by 

LICL c( ) ( ) ln( )N s s p            (6.69) 

where LICL  is the specific volume on the LICL and ( )N s  is the specific volume at the 

reference mean effective stress of 1kPap  . 

Any suction increase leads to an increase in soil stiffness and consequently, both the 

intercept and the slope of the isotropic compression line increase. In the bounding 

surface model employed in this study, a coupled suction hardening approach is adopted 

according to Loret and Khalili (2002) in which the hardening rule is expressed as 

p
p 0 v

c v c0( , ) ( )exp
( )

p s p s
s

 


 

 
    

 
        (6.70) 

In the above equation, 0  is the initial specific volume, c0p  is the initial value of the 

hardening parameter,   is the slope of the unloading-reloading line in the p   plane,  

p

v  is the volumetric plastic strain increment, and ( )s  is a function expressed as 
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where 0( )N s  and 0( )s  are the intercept and slope of the LICL at the initial suction 0s . 

𝛤(𝑠) and ( )s  for the CSL are obtained from the required consistency of the CSL with 

the LICL through a parallel transition of the LICL along the effective stress axis (Loret 

and Khalili (2002)). 

6.5. Numerical examples 

Several examples are investigated in this section to examine the proposed model. One-

dimensional consolidation of elastic unsaturated porous media is studied first. Then, two 

examples are studied to examine the effect of hydraulic hysteresis on hydro-mechanical 

response of porous media and the results are compared to those of an FEM solution. 

The next example involves a series of plane strain compression (PSC) tests 

incorporating the BSM detailed in section 6.4 and the numerical results are compared to 

the results from another study. 29.8m/sg   is assumed in all examples. 

6.5.1. One-dimensional consolidation problem 

One-dimensional consolidation of elastic unsaturated porous media is studied in this 

section. First, a simplified consolidation problem with constant parameters, whose 

analytical solution is available in the literature, is studied for verification of the 

proposed formulation. The effect of the void ratio dependency of the WRC on the 

results is discussed next. Finally, a one-dimensional consolidation problem is 

investigated to highlight the effect of hydraulic hysteresis on the behaviour of 

unsaturated geomaterials during consolidation. The results of a series of FE simulations 
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are used for code-to-code verification of the proposed ESPIM model in the latter 

example. 

6.5.1.1. 1D consolidation assuming constant parameters 

The first example considers one-dimensional consolidation of an elastic unsaturated 

weightless soil column under a uniform distributed load. A 10m  thick soil column is 

considered with a porosity of 0.45n   and a degree of saturation of r 0.8S  . The 

residual degree of saturation is assumed zero, the elastic properties of the material are 

considered 10,000kPaE   and 0.25  , solid grains and water are assumed 

incompressible s w( 0)c c  , and the dynamic viscosity of water is taken 

6

w 10 kPa.s  . The problem domain is illustrated in Figure ‎6-5, together with the 

background mesh used in the numerical analyses which consists of 185 nodes and 320 

triangular elements. 

100 kPa

10 m

2 m

Free-drainage 

surface

z

 

Figure ‎6-5- Mesh representation along with boundary conditions for 1D consolidation 

problem. 
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Qin et al. (2008) and Ho et al. (2014) presented analytical solutions to this problem 

making a number of simplifying assumptions. Similar simplifications are assumed in 

this section and the numerical results are compared to those presented by Ho et al. 

(2014). The coefficient of permeability of water in saturated state and the constitutive 

coefficient 
12a  are set to 

sat

10

w 10 m/sk   and 
12 0.001a  , and are kept constant 

throughout the numerical simulations. No hysteresis effect is considered, and an initial 

value of 0.33  is assumed. 

To determine the WRC for the soil of interest, 
p 0.396   is obtained based on the 

definition of   ( d( ) / ds s  ) and using equations (6.6) and (6.29). Equation (6.24) 

then yields e 81kPas  . Having assumed r 0.8S  , it is obtained that the soil is initially 

in equilibrium condition under an initial suction of 142kPas  . The initial pore air 

pressure is assumed zero attributing the initial suction to the initial negative pore water 

pressure.  

The problem is analysed using five different permeability ratios, a wk k , varying from 

0.01 to 100. ak  and wk  are the coefficients of permeability of air and water phases, 

respectively, defined as 
drya ra ak k k   and 

satw rw wk k k  , where 
dryak  is the coefficient 

of permeability of the air phase at dry condition. In this example, it is assumed that 

dry sata wk k  and rwk  is always taken as 1, allowing the value of rak  to control the changes 

in a wk k . 

The soil column is loaded initially with a 100kPa  surcharge. In the numerical model, 

the application of this surcharge load results in uniformly distributed initial excess pore 

water and pore air pressures generation of w 0( ) 11.9kPap   and a 0( ) 9.4kPap  in 
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the soil column, respectively. To make a meaningful comparison with the results of Ho 

et al. (2014), these initial excess pore pressures are then used as inputs to generate the 

analytical solutions presented by Ho et al. (2014). It is also worth noting that according 

to the equations for one consolidation of unsaturated porous media by Fredlund and 

Hasan (1979), the application of a 100kPa  surcharge generates uniformly distributed 

initial excess pore water and pore air pressures of w 0( ) 11.0kPap   and 

a 0( ) 8.4kPap   which are in good agreement with the proposed numerical model. The 

minor differences observed are due to the slight deviation of   and rS  from the initial 

value of 0.33 and 0.8 , respectively, right after the surcharge application, which occurs 

in the current model according to the adopted WRC model. Adopting constant   and 

rS  in the numerical formulation would lead to the generation of initial pore pressures 

which are exactly identical to those obtained through the approach by Fredlund and 

Hasan (1979). The WRC, however, is kept in effect in this example to maintain the 

structure of the proposed model.  

Figure ‎6-6 illustrates the numerical and analytical solutions for the surface settlement 

through time for different values of a wk k . It is worth noting that the whole surface 

surcharge is applied in the first time step where 0 1st  , which results in an 

instantaneous initial settlement of 0 0.0749mu   in the soil column, due to the low 

compressibility of the air phase. To be able to compare the numerical results with the 

analytical solution of Ho et al. (2014), this initial settlement is subtracted from all the 

numerical results for settlements, and the time origin is set to be at 1st  , i.e. the end of 

the loading stage. A time step growth factor of 1.1   is adopted in the analyses. A 

similar example was also studied by Tang et al. (2017) using an effective stress based 
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FE model for unsaturated porous media. However, they related the difference in the 

initial volume changes obtained from the analytical and numerical results to different air 

compressibility coefficients adopted in the analytical and numerical models. They then 

back calculated the soil elastic properties to end up with the same final surface 

settlement values in their numerical solution as those observed in the analytical 

solutions. This approach is, however, erroneous as similar assumptions are made for air 

compressibility in the two approaches. As a result, the elastic properties back calculated 

by Tang et al are vastly different from those reported in the reference solution. 

It should be again emphasized that although   is not enforced to be constant in the 

analyses, it shows negligible deviations from its initial value due to assuming a volume 

change independent WRC in the analyses. This is essentially in accord with the 

assumption of constant model parameters made for comparing the numerical results to 

the analytical results of Ho et al. (2014).  
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Figure ‎6-6- Surface settlement versus time for different permeability ratios. 
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Figure ‎6-7 and Figure ‎6-8 show the dissipation rates of pore air and pore water 

pressures at a point in the middle of the column ( 5mz  ) for both numerical and 

analytical solutions. Again, different values of 
a wk k  are considered according to Ho et 

al. (2014). It can be observed that the numerical pore pressure results are in perfect 

agreement with those from the analytical solutions. 
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Figure ‎6-7- Change of excess pore air pressure at 5mz   with time for different 

permeability ratios. 
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Figure ‎6-8- Change of excess pore water pressure at 5mz   with time for different 

permeability ratios. 

 

6.5.1.2. Effect of the void ratio dependent WRC model in 1D consolidation  

The effect of the void ratio dependent WRC is studied in this example. The WRC is 

considered as a function of the void ratio according to the model detailed in section 

6.2.4.  1 2a  is also not constant throughout the analyses and is obtained from equation 

(6.24) at each node. The geometry, boundary conditions and material parameters are all 

the same as those in the previous example with the exception of adopting a smaller 

Young’s Modulus of 2,000kPaE   in this example to highlight the effect of volume 

change on the hydraulic response of the material. a w 1k k   is used for all the analyses 

in this example. 

The results of the model are compared with those obtained from the model with 

constant parameters, as depicted in Figure ‎6-9. It can be observed from Figure ‎6-9(a) 

that the initial increase in the degree of saturation is more pronounced when the WRC is 
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updated as the void ratio changes. This is basically due to the rise in the air entry value 

es  and the drop in the pore size distribution index 
p  due to the instantaneous 

settlement after the application of the load. The updated WRC necessitates hydraulic 

equilibrium at a higher degree of saturation considering the fact that the initial suction 

change in the two models are almost identical (see Figure ‎6-9(c)). This higher initial 

degree of saturation also results in a smaller instantaneous settlement as seen in 

Figure ‎6-9(b).  Furthermore, updating the WRC with void ratio causes a greater final 

settlement as observed in Figure ‎6-9(b). This is because when the WRC is updated with 

the void ratio change, higher degrees of saturation and higher 𝜒 values are obtained, 

resulting in higher effective stresses throughout the analysis compared to the cases 

where the WRC is assumed stationary. This implies that ignoring the volume change 

dependency of the WRC in one-dimensional consolidation of unsaturated porous media 

results in under predication of the settlements. The variations of excess pore water and 

air pressures with time are also depicted in Figure ‎6-9(d) and (e), respectively. As can 

be seen from these figures, a volume change independent WRC model also leads to 

underprediction of the initial pore water and air pressures generated due to loading in 

one-dimensional consolidation problems. 
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Figure ‎6-9- Effect of updating the WRC with changes in void ratio on temporal 

variations of: (a) Surface settlement, (b) degree of saturation at  5mz  , (c) excess pore 

water pressure at 5mz  , (d) excess air water pressure at 5mz  , in one dimensional 

consolidation problem. 
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The importance of updating the WRC for volume change during the analyses can also 

be highlighted by studying the surface settlement versus time for four consolidation 

problems similar to the one shown in Figure ‎6-5, but with different initial degrees of 

saturation. All other assumptions and parameters are the same among the four 

examples, and are similar to those used in the previous section. The results of the 

analyses of these four consolidation problems are shown in Figure ‎6-10. It can be 

observed from this figure that the four examples manifest different final settlements. 

Such a behaviour can only be captured when the WRC is updated as a function of the 

void ratio of the soil. As the soil’s initial degree of saturation decreases, a larger initial 

settlement is obtained due to loading, resulting in a larger shift of the WRC towards 

higher suctions, and therefore higher values of 𝜒, which in turn results in higher 

effective stresses and therefore higher final settlements.  
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Figure ‎6-10- Surface settlement of the soil column versus time for different initial 

degrees of saturation. 
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6.5.1.3. Effect of hydraulic hysteresis in 1D consolidation 

The effect of considering the hydraulic hysteresis on the results of one dimensional 

consolidation of elastic unsaturated porous media is studied in this section. A one-

dimensional consolidation problem whose FEM solution is available (Shahbodagh-

Khan et al., 2015) is adopted for this purpose. The problem involves a 100m  long 

unsaturated soil column as illustrated in Figure ‎6-11. Drainage is only allowed on the 

upper boundary of the soil, and other boundaries are considered impervious. The 

displacement boundary conditions are also shown in Figure ‎6-11, along with the 

triangular background mesh with 302 nodes and 400 elements used for the simulations. 

100 m

1 m

Q

Free-drainage 

surface

 
Figure ‎6-11- Schematic representation of the soil column and its associated mesh and 

boundary conditions. 

The material properties adopted are summarised in Table ‎6-1. It should be noted that 

according to Shahbodagh-Khan et al. (2015), a fluid phase with hypothetical mechanical 

properties is considered in this example. Also, in order to be consistent with the 

reference FEM solution, equation (6.42) is replaced by an empirical equation proposed 
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by Taylor (1948) for updating the intrinsic permeability of the medium with void ratio, 

as follows 

0
0 exp

k

e e
k k

C

 
  

 
          (6.72) 

where 
kC  is a material parameter taken as 1.0 in this example. 

Table ‎6-1- Material properties considered for the numerical analyses. 

Parameter Symbol Value Unit 

Young's Modulus E   3,000  kPa 

Poisson's Ratio    0.2 

 Initial porosity 0n   0.33 

 Initial permeability of the liquid phase when r 1S     
0fk   21.425 10   m/s 

Initial permeability of the air phase when r resS S  
0ak  25 10   m/s 

Density of the liquid phase f   0.2977 
3gr/cm   

Compressibility coefficient of the liquid phase fc   52.5 10  1kPa   

Air entry value aes   10 kPa 

Air expulsion value exs  10 or 5 kPa 

Pore size distribution index pd pw    0.15 

 Slope of the transition line in WRC    0.04  

Residual degree of saturation resS   0.2   

 

A linearly increasing distributed surcharge, as shown in Figure ‎6-12,  is applied on the 

soil surface which reaches a maximum value of max 100kPa   at 100st   ( Lt  in 

Figure ‎6-12).  
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Figure ‎6-12- Surface loading regime applied on the soil column. 

A series of simulations are carried out considering different initial degrees of saturation. 

In the first set of the analyses, the hydraulic hysteresis is ignored, i.e., ae ex 10kPas s  . 

The WRC is also assumed void ratio independent throughout the analyses, in 

accordance with Shahbodagh-Khan et al. (2015). An initial time step of 
0 10st   is 

employed and remained unchanged during the analyses (i.e., 1  ). This means that the 

linear surcharge is applied gradually over the first ten time steps through 10 kPa 

surcharge increments. Figure ‎6-13 shows the surface settlement of the soil column 

versus time for dry, saturated, and three unsaturated cases with different initial states of 

initial suction to air entry value ratios of 1.5, 2.0, and 4.0. Also shown in Figure ‎6-13 

are the results of the simulations by Shahbodagh-Khan et al. (2015) using a FEM 

model. The model by Shahbodagh-Khan et al. (2015) includes large deformation 

effects. For the sake of consistency, in this study the nodal coordinates are updated in 

each time step which is adequate due to the small strains observed (maximum vertical 

strain is 3%), and lack of any rotation in the domain. As seen in Figure ‎6-13, the ESPIM 

results in terms of vertical settlement are in excellent accordance with the results of the 

FEM simulations in all cases studied. 
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Figure ‎6-13- Settlement of the soil column with time for different initial suction ratios. 

Figure ‎6-14 to Figure ‎6-16 show the vertical distribution of suction, pore water pressure, 

and pore air pressure along the length of the column for the case with the initial 

condition of ae 2s s  , for both ESPIM and FEM models. Again, the results are in 

perfect agreement implying that the validity of the computational scheme developed for 

the analysis of elastic unsaturated porous media.  
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Figure ‎6-14- Distribution of pore fluid pressure in depth at different times for an initial 

suction of 20 kPa. 
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Figure ‎6-15- Distribution of pore air pressure in depth at different times for an initial 

suction of 20 kPa. 
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Figure ‎6-16- Suction distribution in depth at different times for an initial suction 

of 20 kPa. 

To verify the implementation of the hydraulic hysteresis model included in the ESPIM, 

and also to highlight the effect of hydraulic hysteresis on the results of one dimensional 

consolidation of unsaturated soils, another simulation is carried out assuming and initial 

suction of 0 20kPas  , an air entry value of ae 10kPas  , an air expulsion value of 

ex 5kPas  , implying the existence of hydraulic hysteresis in this case. To meticulously 

simulate the hydraulic route of the material at each point and possible transitions from 

the main paths to the scanning paths and vice versa, a smaller time step of 0.1st   is 

considered in the analysis when hydraulic hysteresis is in effect. The results in terms of 

the surface settlement versus time obtained from the ESPIM model are shown in 

Figure ‎6-17. Also included in this figure are the results obtained using a FE model by 

Shahbodagh-Khan (Shahbodagh-Khan, 2 July 2018, personal communication). It is 

worth mentioning that due to a modification applied to the hydraulic hysteresis 
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implementation in the FEM code by Shahbodagh-Khan, the FEM results for the case 

with hydraulic hysteresis reported in this work are slightly different from those reported 

in Shahbodagh-Khan et al. (2015). As can be seen from Figure ‎6-17, the numerical 

results of this study are in perfect agreement with the benchmark solution. Figure ‎6-17 

shows that taking account of hydraulic hysteresis markedly reduces the rate of 

consolidation. This essentially happens due to the change in the hydraulic path from the 

main path in the non-hysteretic model to the scanning path in the hysteretic model, 

which leads to larger pore pressure generations and lower suctions during the analysis 

when hydraulic hysteresis is included in the model (Shahbodagh-Khan et al., 2015).  
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Figure ‎6-17- Effect of hydraulic hysteresis on the surface settlement of the soil column 

with time. 

 

6.5.2. Two-dimensional consolidation problem 

This example concerns a flexible, smooth, and pervious strip footing placed on an 

unsaturated weightless porous layer with an initial suction of 0 20kPas  , which can 

drain freely on the top surface. The soil layer is located on an impervious rigid bedrock. 
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The geometry of the problem, the displacement boundary conditions and the adopted 

triangular background mesh are depicted in Figure ‎6-18. The same materials as the 

those assumed in the previous example are considered here, except for the liquid phase 

which is water in this example with a density of 3

w 1gr/cm   and compressibility 

coefficient of 7 1

w 4.5 10 kPac    . A step load which linearly increases from zero at 

time 0t   to  
max 400kPa   at 

L 20st t   is gradually applied on the strip footing, as 

shown in Figure ‎6-19. Similar to the previous example, two analyses are performed: one 

assuming that there is no hydraulic hysteresis, and one including the hydraulic 

hysteresis. The time increment adopted for the non-hysteretic simulation is 1st   

while for the hysteretic simulations a small time increment of 0.1st   is used due to 

the highly nonlinear WRC. For the both cases, t  is kept constant throughout the 

analyses. 

10 m

3 m

10 m

Pervious smooth 

flexible footing
Free-drainage 

surface
Q

Point A

5 m

 

Figure ‎6-18- Problem geometry, boundary conditions, and background mesh for the 2D 

consolidation problem. 
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Figure ‎6-19- Loading regime applied on the footing in the 2D consolidation problem. 

Comparisons are made in Figure ‎6-20 and Figure ‎6-21 between the results of the 

hysteretic model and non-hysteretic model, obtained by the ESPIM of this study and FE 

model by Shahbodagh-khan (Shahbodagh-Khan, 25 July 2018, personal 

communication). Due to the same reason as the previous example, the results of the 

hysteretic model for the FEM solution are slightly different from those in Shahbodagh-

Khan et al. (2015). Figure ‎6-20 depicts the vertical displacement of a point of interest 

(Point A shown in Figure ‎6-18) versus time. It can be seen that taking account of 

hydraulic hysteresis does not show a significant effect on the consolidation rate in this 

example. This is mainly because the instantaneous settlement due to the application of 

the load accounts for a significant fraction of the total settlement, in comparison to the 

consolidation settlement. Figure ‎6-21 shows the variations of suction through time at the 

same point of interest. It can be seen that more severe suction reduction occurs in the 

hysteretic model compared to the non-hysteretic model, which agrees with the 

observations of the 1D consolidation example. Again, Figure ‎6-20 and Figure ‎6-21 

show that the ESPIM and FEM results are in perfect agreement. 
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Figure ‎6-20- Vertical displacement of point A for the hysteretic and non-hysteretic 

models, (a) ESPIM results, (b) FEM results. 
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Figure ‎6-21- Suction variations at point A for the hysteretic and non-hysteretic models, 

obtained using ESPIM and FEM. 

 

6.5.3. Plane strain compression problem 

The bounding surface plasticity model implemented in the ESPIM developed in this 

study is examined in this example which concerns a series of PSC tests conducted on 

unsaturated Bourke silt from the Bourke region of New South Wales, Australia as 
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reported in Perić et al. (2014). The elastoplastic behaviour of the material is captured 

using the BSM presented in this chapter. The model parameters are selected the same as 

those presented by Perić et al. (2014), listed in Table ‎6-2. Suction dependency of the 

LICL parameters (  and N ) are also summarised in Table ‎6-3. The background mesh 

adopted in the numerical analyses along with the displacement boundary conditions are 

illustrated in Figure ‎6-22. The tests involve application of a vertical compressive strain 

to the top of the medium at the constant rate of 6 110 s  . In the numerical simulations, a 

stationary WRC with no hydraulic hysteresis is considered in accordance with the 

assumptions of Perić et al. (2014). A constant time step of 1st   is assumed 

throughout the analyses. 

Two sets of drained simulations, with initial net stresses of 30 and 100 kPa are carried 

out. No pore pressure change is allowed in the drained analyses. For each simulation 

set, initial suctions of 50, 150, and 250 kPa are assumed. Another simulation is 

performed assuming a constant water content condition in which only the pore water 

pressure is allowed to change while the pore air pressure is assumed constant all over 

the problem domain. An initial net stresses of 100 kPa and an initial suction of 50 kPa 

are considered in the latter analysis. 
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10 cm

10 cm

 

Figure ‎6-22- Background mesh and displacement boundary conditions for the PSC 

problem. 

 

 

 

Table ‎6-2- Suction-independent parameters of the Bourke silt for the 

BSM. 

Parameter Value 

csM   1.17 

  0.25 

  0.006 

A  2.0 

N  3.0 

R  2.0 

mk  200 

p  0.41 

ae (kPa)s   18 

 

 

Table ‎6-3- Parameters defining the isotropic compression line as a 

function of suction for the Bourke silt. 

 

suction, s (kPa) 

   18s   100 300  

( )s   0.090 0.090 0.090 

( )N s     2.049 2.058 2.068  
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The results of the drained analyses are summarised in Figure ‎6-23 to Figure ‎6-25. The 

variations of the deviatoric stress versus the axial strain are illustrated for the initial net 

stress of 30 kPa in Figure ‎6-23 and for the initial net stress of 100 kPa in Figure ‎6-24. 

Figure ‎6-25 shows how the volumetric strain is generated with loading. Presented in 

Figure ‎6-26 are the variations of the deviatoric stress, volumetric strain and suction 

versus the axial strain for the constant water content analysis. In all cases, the ESPIM 

results are compared to the numerical results presented by Perić et al. (2014) which 

were already verified using a series of conventional triaxial compression tests 

performed on Bourke silt by Uchaipichat and Khalili (2009). In all cases, perfect 

agreements are observed between the results of this study and the reference solutions of 

Perić et al. (2014). 
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Figure ‎6-23- Variations of the deviatoric stress versus axial strain in the drained PSC 

analyses for different initial suctions with the initial net stress of 30 kPa.  
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Figure ‎6-24- Variations of the deviatoric stress versus axial strain in the drained PSC 

analyses for different initial suctions with the initial net stress of 100 kPa. 
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Figure ‎6-25- Volumetric strain versus axial strain in the drained analysis for an initial 

suction of 50 kPa and initial net stress of 100 kPa. 
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Figure ‎6-26- Constant water PSC simulation with an initial suction of 50 kPa and initial 

net stress of 100 kPa, variations of (a) deviatoric stress, (b) Volumetric strain, and (c) 

Suction, versus axial strain. 

6.6. Conclusion 

An ESPIM formulation was introduced for flow and deformation analysis of 

unsaturated porous media. The deformation and flow models were developed based on 

the principle of effective stress, and momentum and mass conservation of the phases. A 

hysteretic water retention model was implemented which takes into account the 

evolution of the WRC with changes in void ratio. An elastoplastic constitutive model 

was adopted within the context of the bounding surface plasticity theory for predicting 

the nonlinear behaviour of soil skeleton in unsaturated porous media. The proposed 
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ESPIM was thoroughly verified against several reference solutions from the literature. 

The importance of inclusion of hydraulic hysteresis and volume change dependency of 

WRC model was highlighted through the numerical investigations. In particular, it was 

shown that a volume change independent WRC model may result in incorrect prediction 

of the settlements and initial pore water and air pressures generated due to loading in 

unsaturated porous media. 
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7. Conclusion 

 

 

 

7.1.  General 

Fully coupled flow and deformation analysis of porous media requires robust and 

efficient numerical schemes for well-grounded simulation of problems in geotechnical 

engineering. Advances in computing power and computational mechanics have made it 

possible to develop a variety of numerical techniques for the solution of geotechnical 

engineering problems. Among them, FEM has attracted the attention of many engineers 

and researchers and is routinely used in the geotechnical engineering community. 

However, FEM has some inherent deficiencies which make it improper in certain 

applications. Various MMs have been so far developed to overcome the shortcomings 

attributed to the classical FEM. Despite their distinct advantages, every of the proposed 

MMs has its own disadvantages. SPIMs are a recently introduced category of MMs 

which possess excellent properties such as ultra-accuracy and super convergence, and 

no mapping is required in their formulation, circumventing many of the problems 

involved with other MMs. Despite their excellent features, SPIMs have been vastly 
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overlooked by geotechnical engineering community. To date, only a few basic studies 

have been performed on the application of these methods for coupled flow and 

deformation analysis of porous media, and even those studies suffer from 

inconsistencies and mathematical inaccuracies. 

The main objective of this study has been to develop SPIM formulations for the flow 

and deformation analysis of porous media to exploit their full potentials in improving 

the currently available numerical schemes. The main tasks accomplished in this study 

are: 

1- Development of a coupled SPIM formulation for flow and deformation analysis of 

saturated elastic porous media which performs more accurately compared to the 

previous formulation proposed for the same porpuse; 

2- Introduction of a new verification procedure, the method of manufactured solutions 

(MMS), to the geomechanics community, 

3- Development of a nonlinear SPIM framework for modelling coupled flow and 

deformation in nonlinear saturated porous media, 

4- Development of an effective stress based SPIM formulation for coupled flow and 

deformation analysis in unsaturated elasto-plastic porous media. 

Each of the abovementioned accomplishments are explained in more details in the 

following. 

7.2. Coupled SPIM formulation for flow and deformation analysis of 

saturated elastic porous media  

SPIMs were originally introduced for applications in solid mechanics and they therefore 

need to be overhauled for multiphase problems. The main challenge in this regard was 
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to come up with a mathematically well-founded procedure to evaluate the coupling 

matrix where the shape functions and their derivatives are involved in the integrations 

over each smoothing domain. Such an integration cannot be carried out solely using the 

Gauss points on the boundary of the smoothing domains normally adopted in SPIMs. A 

new group of interior Gauss points were exploited for this purpose, and the coupling 

matrix was calculated by decomposition into the integration of the derivatives of the 

shape functions over the boundary of the smoothing domains (using the smoothing 

operation), and the integration of the shape functions over the smoothing domains. 

Through three numerical examples it was shown that the proposed formulation perfectly 

captures different aspects of the hydro-mechanical behaviour of saturated elastic porous 

media. The performance of four different ESPIMs employing four different approaches 

for selecting supporting nodes were also evaluated in the numerical examples. 

7.3. ESPIM code verification using the method of manufactured 

solutions 

There are different criteria for scientific code verification ranging from professional 

evaluation of the outputs of the code under study by an expert, to making a comparison 

between the outputs of the code of interest and an already verified computational code, 

and to the robust order of accuracy study which requires the exact solutions to the PDEs 

of interest as a reference. For the first time within the geomechanics community, the 

method of manufactured solutions (MMS) was adopted in this study for verification of a 

code developed for coupled flow and deformation analysis of porous media. The MMS 

basically involves assuming exact solutions for the equations governing the problem 

and computing the source terms by substituting the assumed solutions into the 

equations. The computed source terms are then used in the code for obtaining the 



Chapter 7 - Conclusion 

173 

 

numerical solutions which are compared to the assumed exact solutions through an 

order of accuracy study. The applicability of the method was shown using two 

numerical examples in which different exact solutions were considered for problem 

variables, i.e. displacements and pore fluid pressure. Five sets of spatial domain 

discretisations were adopted to obtain the numerical orders of accuracy which were then 

compared to the formal orders of accuracy. 

7.4. Hydro-mechanical analysis of saturated porous media considering 

material nonlinearity 

The majority of the geotechnical engineering problems are involved with material 

nonlinearity. A nonlinear ESPIM framework based on the modified Newton-Raphson 

technique and an elastic-perfectly plastic Mohr Coulomb constitutive model was 

developed for simulation of saturated porous media. A sub-stepping technique assuming 

known strain increments was used for stress integration. Two different node selection 

schemes for obtaining the support domains at each point of interest along with 

employment of polynomial and radial PIM for construction of nodal shape functions 

were discussed resulting in two smoothed meshfree algorithms: ESPIM-Tr3 and 

ESRPIM-Tr2L. It was shown that not only the ESPIM-Tr3 provides the most accurate 

results compared to the ESRPIM-Tr2L and the conventional FEM-Tr3 in terms of 

displacement and pore pressure calculations for the same background mesh, but also it 

performs the best in terms of computational efficiency. 

7.5. Hydro-mechanical analysis of unsaturated elasto-plastic porous 

media  

An effective stress based model for capturing the coupled flow and deformation 

behaviour of unsaturated porous media was developed in this part of the work. The 
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effect of hydraulic hysteresis was included using a hysteretic water retention model 

which also takes account of volume change and suction dependency of the model 

parameters. A modified Newton-Raphson framework was designed for dealing with 

nonlinearities of the problem and an elastoplastic constitutive model was employed 

within the context of bounding surface plasticity theory for predicting the nonlinear 

behaviour of soil skeleton in unsaturated porous media. The applicability of the 

presented model was validated through some numerical examples. 

7.6. Recommendations for further research 

Based on the findings and results of this study, the following topics are suggested 

for further investigation: 

 A comprehensive comparison of the performance of different SPIMs, i.e. edge-

based, cell-based, and node-based, with different node selection schemes and nodal 

shape functions in fully coupled multiphase problems, 

 Extension of the proposed numerical models for dynamic analysis of 

saturated/unsaturated porous media, 

 Extension of the proposed numerical models for problems involving large 

deformations, 

 Developing a coupled thermo-hydro-mechanical model for unsaturated porous 

media and studying the effect of temperature on the model parameters and 

behaviour of the porous media, 

 Extending the presented models to include weak and strong discontinuities, and 

contacts for application in problems like hydraulic fracturing or Cone Penetration 

Test (CPT) modelling, 
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 Extending the presented models to include automatic adaptivity to enhance the 

efficiency of the models, particularly in problems involving large strain gradients. 
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